Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (03): 378-385.doi: 10.3724/SP.J.1006.2015.00378


Genome-wide Identification of Lysophosphatidic Acid Acyltransferase Gene Family and Their Expression Analysis in Cotton

DINGJian,WUShuang,CAICai-Ping,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2014-08-22 Revised:2014-12-19 Online:2015-03-12 Published:2015-01-12
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn, Tel: 025-84396523 E-mail:moelab@njau.edu.cn


Metabolism related to lipids synthesis plays an important role inregulating both oil biosynthesis and fiber development in cotton. Lysophosphatidic acid acyltransferase (LPAT) is a key enzyme in oil biosynthesis pathway in plant. In this study, eight cotton LPAT family genes were identified and their gene sequences, chromosome location were obtained, based on G. raimondii genome database (http://www.phytozome.net/) and bioinformatic method. These LPAT members were anchored on six chromosomes in G. raimondii. Phylogenetic analysis showed that LPAT candidate genes were classified into four groups, with two members each in group I and group III, one in group II,and three in group IV. The expression patterns of LPAT genes revealedtheir important roles in diverse functions in the developmental stages of vegetative and reproductive growth in cotton. LPAT6 and LPAT8 showed the highest expression level in ovules at 17days post-anthesis, which might play an important role in regulating oil biosynthesis. Eight genes showed the preferential expression level in fiber development stages. Among them,LPAT2, LPAT3, and LPAT4 showed the higher expression level in fiber than in other tissues and organs, implying their association with cotton fiber development.

Key words: Lipids metabolism, LPAT gene family, Chromosome location, Phylogenetic analysis, Expression pattern

[1]Chapman K D, Ohlrogge J B. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem, 2012,287: 2288–2294

[2]Weselake R J, Taylor D C, Rahman M H, Shah S, Laroche A, McVetty P B, Harwood J L. Increasing the flow of carbon into seed oil. Biotechnol Adv, 2009, 27: 866–878

[3]Kim H U, Li Y, Huang A H. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073–1089

[4]Arroyo-Caro J M, Chileh T, Kazachkov M, Zou J, Alonso D L, Garcia-Maroto F. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci, 2013, 199-200: 29–40

[5]陈四龙, 黄家权, 雷永, 任小平, 文奇根, 陈玉宁, 姜慧芳, 晏立英, 廖伯寿. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析. 作物学报, 2012, 38: 245–255

Chen S L, Huang J Q, Lei Y, Ren X P, Wen Q G, Chen Y N, Jiang H F, Yan L Y, Liao B S. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut. Acta Agron Sin, 2012, 38: 245–255 (in Chinese with English abstract)

[6]Roscoe TJ. Identification of acyltransferases controlling triacylglycerol biosynthesis in oilseeds using a genomics-based approach. Eur J Lipid Sci Tech, 2005, 107: 256–262

[7]Kim H U, Huang A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol, 2004, 134: 1206–1216

[8]Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957–970

[9]Zou J, Katavic V, Giblin E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 1997, 9: 909–923

[10]Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670–684

[11]冷雪, 贾银华, 杜雄明. 棉纤维伸长阶段上、下调基因及相关通路的分析.作物学报, 2010,36: 1891–1901

Leng X, Jia Y H, Du X M. Up- and down-regulated genes during cotton fiber elongation and relative pathway. Acta Agron Sin, 2010, 36: 1891–1901 (in Chinese with English abstract)

[12]Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell, 2007, 19: 3692–3704

[13]赵永国, 郭瑞星. 棉子含油量研究进展与高油棉花育种可行性分析. 棉花学报, 2011,23: 184–188

Zhao Y G, Guo R X. Research progress on oil content of cottonseed and feasibility of high oil content breeding in Upland Cotton. Cotton Sci, 2011, 23: 184–188 (in Chinese with English abstract)

[14]张欢, 孟永彪. 用棉籽油制备生物柴油. 化工进展, 2007, (1): 86–89

Zhang H, Meng Y B. Mass production of bio-diesel from cottonseed oil via transesterification. Chem Ind Eng Prog, 2007, 1: 86–89 (in Chinese with English abstract)

[15]Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427

[16]Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucl Acids Res, 2014, 42: D222–D230

[17]Eddy S R. Accelerated Profile HMM Searches. PLoS Comput Biol, 2011, 7: e1002195

[18]Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023–1026

[19]Thompson J D, Gibson T J, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucl Acids Res, 1997, 25: 4876–4882

[20]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol,2011, 28: 2731–2739

[21]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167

Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci, 2003, 15: 166–167

[22]Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant physiol, 2004, 135: 507–515

[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method. Methods, 2001,25:402–408

[24]Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res, 2009, 50(Suppl): S46–51

[25]Zhao L,Lv Y D, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. New world tetraploid cottons contain genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information.BMC Genomics, 2012, 13: 539

[26]Wendel J F. New World tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci USA,1989, 86: 4132–4136

[27]Wendel A A, Lewin T M, Coleman R A. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta, 2009, 1791: 501–506

[28]Brown A P, Slabas A R, Denton H. Substrate selectivity of plant and microbial lysophosphatidic acid acyltransferases. Phytochemistry, 2002, 61: 493–501

[29]戚维聪. 油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究.南京农业大学硕士学位论文, 江苏南京, 2008

Qi W C. Studies on correlations of developing seed lipid accumulation with Kennedy pathway enzyme activities in Brassica napus. MS Thesis of Nanjing Agriculture University, Nanjing, China, 2008 (in Chinese with English abstract)

[30]Wanjie S W, Welti R, Moreau R A, Chapman K D. Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids, 2005, 40: 773–785

[1] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[2] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[5] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[8] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[9] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[10] Hui-Min WANG,Xin-Guo LI,Shu-Bo WAN,Zhi-Meng ZHANG,Hong DING,Guo-Wei LI,Wen-Wei GAO,Zhen-Ying PENG. Structure and expression analysis of the members of peanut annexin gene family [J]. Acta Agronomica Sinica, 2019, 45(3): 390-400.
[11] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[12] Jun-Qiong SHI, Ya-Qin WANG, Tian-Quan ZHANG, Ling MA, Guang-Hua HE. Expression Pattern and Protein Localization of a Yellow-Green Leaf 6 (YGL6) Gene in Rice (Oryza sativa) [J]. Acta Agronomica Sinica, 2018, 44(05): 650-656.
[13] LI Min,YU Tai-Fei,XU Zhao-Shi,ZHANG Shuang-Xi,MIN Dong-Hong,CHEN Ming,MA You-Zhi,CHAI Shou-Cheng,ZHENG Wei-Jun. Soybean Transcription Factor Gene GmNF-YCa Enhances Osmotic Stress Tolerance of Transgenic Arabidopsis [J]. Acta Agron Sin, 2017, 43(08): 1161-1169.
[14] YAN Lei,YANG Zong-Ju,SU Liang,XIAO Yang,GUO Lin,SONG Mei-Fang,SUN Lei,MENG Fan-Hua,BAI Jian-Rong,YANG Jian-Ping. Molecular Cloning of Two Maize (Zea mays) CRY1a Genes and Their Expression Patterns of in Response to Different Light Treatments [J]. Acta Agron Sin, 2016, 42(09): 1298-1308.
[15] LI Hai-Feng,HAN Ying,WANG Bing-Hua,SU Ya-Li,SUN Qi-Xin. Expression Patterns of MADS-box Genes Related to Flower Development of Wheat [J]. Acta Agron Sin, 2016, 42(07): 1067-1073.
Full text



No Suggested Reading articles found!