Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (03): 359-366.doi: 10.3724/SP.J.1006.2015.00359
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YU Yong-Tao,LI Gao-Ke,QI Xi-Tao,LI Chun-Yan,MAO Ji-Hua,HU Jian-Guang*
[1]Bailey D M, Bailey R M. The relationship of pericarp to tenderness in sweet corn. Proc Am Soc Hortic Sci, 1938, 36: 555–559[2]Ito G M, Brewbaker J L. Genetic advance through mass selection for tenderness in sweet corn. J Am Hortic Sci, 1981, 106: 496–499[3]Hoenisch R W, Davis R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot. Plant Dis, 1994, 78: 517–519[4]Tracy W F, Galinai W C. Thickness and cell layer number of the pericarp of sweet corn and some of its relatives. HortScience, 1987, 22: 645–647[5]Helm J L, Zuber M S. Inheritance of pericarp thickness in corn belt maize. Crop Sci, 1972, 12: 428–430[6]Ho L C, Kannenberg W, Hunter R B. Inheritance of pericarp thickness in short season maize inbreds. Can J Genet Cytol, 1975, 17: 621–629[7]Ito G M, Brewbaker J L. Genetic analysis of pericarp thickness in progenies of eight corn hybrids. J Am Soc Hortic Sci, 1991, 116: 1072–1077[8]Choe E, Rocheford T. Marker assisted selection and breeding for desirable thinner pericarp thickness and ear traits in fresh market waxy corn germplasm. Euphytica, 2012, 183: 243–260[9]Helm J L, Zuber M S. Pericarp thickness on dent corn inbred lines. Crop Sci, 1969, 9: 803–804[10]王晓明, 谢振文, 曾慕衡, 乐素菊. 超甜玉米果穗形态和品质性状的杂种优势及遗传特性分析. 中国农业科学, 2005, 38: 1931–1936Wang X M, Xie Z W, Zeng M H, Le S J. Heterosis and inheritance analysis of ear shape and quality characters in super sweet corn. Sci Agric Sin, 2005, 38: 1931–1936 (in Chinese with English abstract)[11]刘鹏飞, 蒋锋, 乐素菊, 张姿丽, 陈青春, 张媛, 王晓明. 甜玉米果皮厚度主基因+多基因遗传效应分析. 西北农林科技大学学报(自然科学版), 2013, 41(7): 43–48Liu P F, Jiang F, Le S J, Zhang Z L, Chen Q C, Zhang Y, Wang X M. Major genes and polygenes inheritance for pericarp thickness of sweet corn. J Northwest A&F Univ (Nat Sci Edn), 2013, 41(7): 43–48 (in Chinese with English abstract)[12]Wang B, Brewbaker J L. Quantitative trait loci affecting pericarp thickness of corn kernels. Maydica, 2001, 46: 159–165[13]李余良, 林瑞德, 胡建广, 刘建华. 用显微测微尺测定超甜玉米果皮厚度初报. 广东农业科学, 2004, (增刊): 48–49Li L Y, Lin R D, Hu J G, Liu J H. A preliminary report on pericarp thickness determination by micrometer in sweet corn. Guangdong Agric Sci, 2004, (suppl): 48–49 (in Chinese)[14]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018[15]Sanguinetti C J, Neto E D, Simpson A J G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques, 1994, 17: 914–921[16]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[17]Lincoln S E, Daly M J, Lander E S. Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL. Whitehead Institute for Biomedical Research, Cambridge, MA. 1993[18]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78[19]苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100–1107Su C F, Zhao T J, Gai J Y. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100–1107 (in Chinese with English abstract)[20]Utz H F, Melchinger A E. PlabQTL: A program for composite interval mapping of QTL. J Agric Genomics, 1996, 2: 1–5[21]Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113–125[22]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536[23]Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723[24]Helm J L, Zuber M S. Effect of harvest date on pericarp thickness in dent corn. Can J Plant Sci, 1970, 50: 411–413[25]张士龙, 周淑梅, 王青峰, 李小琴. 玉米籽粒果皮厚度变化规律研究. 华南农业大学学报, 2008, 29(1): 10–13Zhang S L, Zhou S M, Wang Q F, Li X Q. Research on variation of pericarp thickness of sweet maize kernel. J South China Agric Univ, 2008, 29(1): 10–13 (in Chinese with English abstract)[26]乐素菊, 肖德兴, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米果皮结构与籽粒柔嫩性的关系. 作物学报, 2011, 37: 2111–2116Yue S J, Xiao D X, Liu P F, Zeng M H, Wang W Q, Wang X M. Relationship between pericarp structure and kernel tenderness in super sweet corn. Acta Agron Sin, 2011, 37: 2111–2116 (in Chinese with English abstract)[27]姚坚强, 俞琦英, 王美兴, 张莲英, 朱金庆. 春播超甜玉米籽粒果皮厚度与可溶性总糖含量在灌浆期间的变化. 浙江农业学报, 2012, 24: 193–196Yao J Q, Yu Q Y, Wang M X, Zhang L Y, Zhu J Q. Changes of pericarp thickness and soluble sugar during the kernel filling process of spring super-sweet corn. Acta Agric Zhejiangensis, 2012, 24: 193–196 (in Chinese with English abstract)[28]Brewbaker J L, Larish L B, Zan G H. Pericarp thickness of the indigenous American races of maize. Maydica, 1996, 41: 105–111[29]Richardson D L. Pericarp thickness in popcorn. Agron J, 1960, 52: 77–80[30]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. biomass and grain yield. Genetics, 2001, 158: 1737–1753[31]Carlborg O, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618–625[32]Gómez E, Royo J, Muñiz L M, Sellam O, Paul W, Gerentes D, Barrero C, López M, Perez P, Hueros G. The maize transcription factor myb-related protein-1 is a key regulator of the differentiation of transfer cells. Plant Cell, 2009, 21: 2022–2035[33]Selinger D, Chandler V L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell, 1999, 11: 5–14[34]Carey C, Strahle J T, Selinger D, Chandler V. Mutations in the pale aleurone color 1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell, 2004, 16: 450–464[35]Buckner B, Miquel P S, Janick-Buckner D, Bennetzen J L. The y1 gene of maize codes for phytoene synthase. Genetics, 1996, 143: 479–488[36]Matusova R, Rani K, Verstappen F W A, Franssen M C R, Beale M H, Bouwmeester H J. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol, 2005, 130: 920–934 |
[1] | SU Da, YAN Xiao-Jun, CAI Yuan-Yang, LIANG Tian, WU Liang-Quan, MUHAMMAD Atif Muneer, YE De-Lian. Effects of phosphorus fertilizer on kernel phytic acid and zinc bioavailability in sweet corn [J]. Acta Agronomica Sinica, 2022, 48(1): 203-214. |
[2] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[3] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[4] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[5] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[6] | YAN Xiao-Jun, YE De-Lian, SU Da, LI Fang, ZHENG Chao-Yuan, WU Liang-Quan. Effects of phosphorus application on phosphorus uptake and utilization of sweet corn [J]. Acta Agronomica Sinica, 2021, 47(1): 169-176. |
[7] | Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353. |
[8] | WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677. |
[9] | WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19. |
[10] | YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61. |
[11] | WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146. |
[12] | Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG,Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN. Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments [J]. Acta Agronomica Sinica, 2019, 45(6): 856-871. |
[13] | Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828. |
[14] | YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537. |
[15] | ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521. |
|