Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 889-899.doi: 10.3724/SP.J.1006.2015.00889

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Epistatic and QTL × Environment Interaction Effects of QTLs for Leaf Traits and Leaf Chlorophyll Content in Soybean

LIANG Hui-Zhen1,YU Yong-Liang1,YANG Hong-Qi1,DONG Wei1,XU Lan-Jie1,NIU Yong-Guang1,ZHANG Hai-Yang1,LIU Xue-Yi2,FANG Xuan-Jun3   

  1. 1 Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 Industrial Crop Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China 3 Hainan Provincial Institute of Tropical Agriculture Resources, Sanya 572025, China
  • Received:2014-11-13 Revised:2015-02-06 Online:2015-06-12 Published:2015-03-13

Abstract:

A RIL population containing 447 lines, derived from a cross of cultivar Jingdou 23 × Huibuzhiheidou, as well as their parents were used to analyze inheritance and detect epistatic effects, and QTL × environment (QE) interactions related to leaf traits and leaf chlorophyll content (CC) in soybean using major gene plus polygene mixed inheritance analysis and composite interval mapping (QTL NETwork 2.0). The leaf traits including leaf length (LL), leaf width (LW), leaf stalk length (LSL) were evaluated in 2011, 2012, and 2013, as well as CC was detected on 1 August and 8 August, 2012, and on 2 August and 9 August, 2013. LL was found to be controlled by two pairs of additive-additive by additive epistatic hybrid main genes, LW was found to be controlled by three pairs of equivalent main genes, LSL was found to be controlled by four pairs of additive-additive by additive epistatic major genes, CC was controlled by four pairs of additive major genes. Ten QTLs for LL, LW, LSL, and CC were mapped on the linkage group (LG) A1, A2, C2, H_1, L, and O, separately. Of them two QTLs for LL were mapped on LG C2 and LG L, additive by additive epistatic effect and QE interactions. Three QTLs with additive effect and QE interactions associated with LW were mapped on LG A2, C2, and O. Two QTLs for LSL were mapped on LG L and O. Three QTLs for CC were mapped on LG A1, C2, and H_1. The genetic mechanism for leaf traits and leaf chlorophyll content is more complicated containing additive effect, additive × additive epistatic effect and QE interaction. It is important to consider not only to QTLs with major effects, but also to those with epistatic effects in soybean molecular marker-assisted breeding for stability of expression and inheritance of agronomic traits.

Key words: Soybean, Leaf traits, Leaf chlorophyll content, QTL ×, environment interactions effects, Epistatic effects

[1]Kokubun M. Soybean cultivar difference in leaf photo-synthetic rate and its relation to seed yield. Crop Sci, 1988, 57: 743–748

[2]Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385–403

[3]Thompson J A, Nelson R L, Schweitzer L E. Relationships among specific leaf weight, photosynthetic rate and seed yield in soybean. Crop Sci, 1995, 35: 1575–1581

[4]Ma B L, Morrison M J, Voldeng H D. Leaf greenness and photosynthetic rates in soybean. Crop Sci, 1995, 35: 1411–1414

[5]Secor J, McCarty D R, Shibles R, Green D E. Variability and selection for leaf photosynthesis in advanced generation of soybean. Crop Sci, 1982, 22: 255–259

[6]Haberlandt G. Physiological plant anatomy. London: Macmillan, 1914

[7]Buttery B R, Buzzell R I, Findlay W I. Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can J Plant Sci, 1981, 61: 191–198

[8]李仕贵, 何平, 王玉平, 黎汉云, 陈英, 周开达, 朱立煌. 水稻剑叶性状的遗传分析和基因定位. 作物学报, 2000, 26: 261–265

Li S G, He P, Wang Y P, Li H Y, Chen Y, Zhou K D, Zhu L H. Genetic analysis and gene mapping of the leaf traits in rice (Oryza sativa L.). Acta Agron Sin, 2000, 26: 261–265 (in Chinese with English abstract)

[9]刘进, 姚晓云, 李清, 张宇, 任春元, 王嘉宇, 徐正进. 水稻叶片性状QTL分析. 华北农学报, 2012, 27(5): 86–90

Liu J, Yao X Y, Li Q, Zhang Y, Ren C Y, Wang J Y, Xu Z J. QTL analysis for the leaf traits in rice. Acta Agric Boreali-Sin, 2012, 27(5): 86–90 (in Chinese with English abstract)

[10]Xu W W, Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 2000, 43: 461–469

[11]赵慧, 张正斌, 徐萍. 小麦叶片水分利用效率生理性状遗传相关分析. 中国农业科学, 2006, 39: 1796–1803

Zhao H, Zhang Z B, Xu P. Genetic correlation analysis between leaf water use efficiency and relevant physiological traits in wheat. Sci Agric Sin, 2006, 39: 1796–1803 (in Chinese with English abstract)

[12]This D, Borries C, Souyris I, Teulat B. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. Barley Genet Newsl, 2000, 30: 20-23

[13]Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H. QTL Analysis of Major Agronomic Traits in Soybean. Agric Sci China, 2007, 6: 399–405

[14]Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582–589

[15]仕相林, 孙亚男, 王家麟, 刘春燕, 陈庆山, 胡国华. 大豆叶片性状QTL的定位及Meta分析. 作物学报, 2012, 38: 256–263

Ren X L, Sun Y N, Wang J L, Liu C Y, Chen Q S, Hu G H. Mapping and meta-analysis of QTLs for leaf traits in soybean. Acta Agron Sin, 2012, 38: 256–263 (in Chinese with English abstract)

[16]李广军,李河南,程利国,章元明.大豆叶绿素含量动态表达的QTL分析. 作物学报, 2010, 36: 242–248

Li G J, Li H N, Cheng L G, Zhang Y M. QTL analysis for dynamic expression of chlorophyll content in soybean. Acta Agron Sin, 2010, 36: 242–248 (in Chinese with English abstract)

[17]崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33: 744–750

Cui S Y, Yu D Y. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max (L.) Merr.]. Acta Agron Sin, 2007, 33: 744–750 (in Chinese with English abstract))

[18]Lin S, Cianzio S, Shoemaker R. Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed, 1997, 3: 219–229

[19]Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome, 2004, 47: 190–198

[20]王珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析. 广西大学硕士学位论文, 广西南宁, 2004

Wang Z. Construction of Soybean SSR Based Map and QTL Analysis Important Agronomic Traits. MS Thesis of Guangxi University, Nanning, China, 2004 (in Chinese with English abstract)

[21]梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2006

Liang H Z. Genetic analysis and QTL mapping of seed traits in soybean [Glycine max (L.) Merr]. Ph D Thesis of Northwest A&F University, Yangling, China, 2006 (in Chinese with English abstract)

[22]Darvasi A, Weinreb A, Minke V, WeHer J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134: 943–951

[23]Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, DOI: 2012, 10.1111/j.1744-7917.2012.01519.x

[24]盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003

Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003 (in Chinese)

[25]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274

[26]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–14

[27]Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92: 230–244

[28]Liang H Z, Yu Y L, Yang H Q, Xu L J, Dong W, Du H, Cui W W, Zhang H Y. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet, 2014, 127: 2127–2137

[29]Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G, Khush G S. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107: 679–690

[30]伍宝朵, 陈海峰, 郭丹丹, 沙爱华, 单志慧, 张晓娟, 杨中路, 邱德珍, 陈水莲, 朱晓玲, 张婵娟, 周蓉, 周新安. 大豆种质资源叶型和荚粒性状的关系及与SSR标记的关联分析. 作物学报, 2012, 38: 1196–1204

Wu B D, Chen H F, Guo D D, Sha A H, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Chen S L, Zhu X L, Zhang C J, Zhou R, Zhou X A. Relationship of leaflet shape, pod traits and association with SSR markers in soybean germplasm. Acta Agron Sin, 2012, 38: 1196–1204 (in Chinese with English abstract)

[31]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651

[32]Porter C. Inheritance of the Gene(s) Controlling Leaflet Shape in Soybean. MS Thesis of Virginia Polytechnic Institute and State University, 2000

[33]Weiss M G. Genetic linkage in soybeans: linkage group IV. Crop Sci, 1970, 10: 368–370

[34]Bernard R L. Two genes affecting stem termination in soybeans, Crop Sci, 1972, 12: 235–239

[35]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. Anew integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128

[36]Jansen R C, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33–37

[37]Sabouri H. QTL detection of rice grain quality traits by microsatellite markers using an indica rice (Oryza sativa L.) combination. J Genet, 2009, 88: 81–85

[38]Su C C, Cheng X N, Zhai H Q, Wan J M. Detection and analysis of QTL for resistance to the brown planthopper, Nilaparvata lugens (Stal), in rice (Oryza sativa L.), using backcross inbred lines. Acta Genet Sin, 2002, 29: 332–338

[39]Beaver J S, Osorno J M. Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica, 2009, 168: 145–175

[40]Fanizza G, Gatta C D, Bagnulo C. A non-destructive determination of leaf chlorophyll in Vitis vinifera. Ann Appl Biol, 1991, 119: 203–209

[41]Ma L Q, Zhou E F, Huo N X, Zhou R H, Wang G Y, Jia J Z. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica, 2007, 153: 109-117

[42]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336

[43]Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907–913

[44]王金社, 李海旺, 赵团结, 盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010, 36: 191–201

Wang J S, Li H W, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agron Sin, 2010, 36: 191–201 (in Chinese with English abstract)

[45]Hagiwara W E, Onish K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27–35

[46]Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res, 2005, 91: 161–170

[47]Rongwen J, Akkaya M S, Bhagwat A A, Lavi U, Cregan P B. The Use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet, 1995, 90: 43–48

[48]张学英, 侯雪琪,周淑芹, 赵九洲,陈洁敏, 宋力平. 浅谈大豆理想株型育种. 大豆通报, 1994, (4): 15–16

Zhang X Y, Hou X Q, Zhou S Q, Zhao J Z, Chen J M, Song L P. Introduction to soybean ideal plant type. Soybean Bull, 1994, (4): 15–16 (in Chinese)

[49]王金陵. 东北地区大豆株型的演变. 大豆通报, 1996, (1): 5–7

Wang J L. The development of soybean plant type in Northeast China. Soybean Bull, 1996, (1): 5–7 (in Chinese)

[50]杜维广, 王育民, 谭克辉. 大豆品种(系)间光合活性的差异及与产量的关系. 作物学报, 1982, 8: 131–134

Du W G, Wang Y M, Tan K H. Varietal difference in photosynthetic activity of soybean and its relation to yield. Acta Agron Sin, 1982, 8: 131–134 (in Chinese with English abstract)

[51]梁建秋, 张明荣, 吴海英. 大豆抗旱性研究进展. 大豆科学, 2010, 29: 341–346

Liang J Q, Zhang M R, Wu H Y. Advances in drought tolerance of soybean. Soybean Sci, 2010, 29: 341–346 (in Chinese with English abstract)

[52]林汉明, 常汝镇, 邵桂花. 中国大豆耐逆研究. 北京: 中国农业出版社, 2009

Lin H M, Chang R Z, Shao G H. Research on tolerance to stresses in Chinese soybean. Beijing: Chinese Agriculture Press, 2009 (in Chinese)

[53]张振宇. 干旱条件下大豆叶片性状分析. 黑龙江农业科学, 2011, (11): 18–19

Zhang Z Y. Soybean leaf traits under drought analysis. Heilongjiang Agricultural Sciences, 2011, (11): 18–19 (in Chinese with English abstract)

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[12] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[13] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!