Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (06): 917-923.doi: 10.3724/SP.J.1006.2016.00917

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship of Inferior Kernel Setting with Sink Strength under Controlling Pollination

LIANG Hong-Wei,GAO Ju-Lin,WANG Zhi-Gang*,YU Xiao-Fang,SUN Ji-Ying,HU Shu-Ping,WANG Zhen,YU Shao-Bo,LI Ya-Jian   

  1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China
  • Received:2015-12-01 Revised:2016-03-14 Online:2016-06-12 Published:2016-03-21
  • Contact: 王志刚,E-mail: imauwzg@163.com, Tel: 13734813561 E-mail:lxflhw2008@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31301265, 31460329), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-14-B04), and the National Key Technology Support Program of China (2011BAD16B13, 2012BAD04B04, 2013BAD07B04).

Abstract:

Clarifying the relationship of sink capacity and/or sink activity with kernel abortion and/or filling stagnation of inferior kernels, is of great importance for closing the yield gap by improving the grain filling of inferior kernels of maize. In this present study, two typical commercial maize hybrids Zhengdan 958 and Pioneer 335 were planted at two locations. At silking stage, two pollination treatments, incomplete pollination (IcP) and complete pollination (CP), were imposed to each cultivar at each location. The objective of incomplete pollination, in which the pollinated filaments within the basal region of the ear was decreased by handing-pollinating, was to stimulate the inferior kernel set in the apical region of the ear, where the inferior kernels should be aborted or filling-stagnated in complete pollination. The sink capacity, sink activity and grain filling parameters were compared within IcP and CP treatments. The endosperm cell division process and the maximum endosperm cell number of inferior kernels showed no difference between IcP and CP treatments, while the soluble acid invertase activity of IcP was significantly higher than that of CP, by 12.6% on an average and 21.8% at the maximum. Furthermore, the actual 100-kernel weight, the stimulated final kernel weight, the maximum kernel-filling rate and the mean kernel-filling rate of IcP treatment were also higher than those of CP. The results suggested that the abortion and/or filling stagnation of inferior kernels of maize is not limited by its sink capacity; sink activity during blister stage is the primary limited factor of the abortion and/or filling stagnation of inferior kernels.

Key words: Maize, Inferior kernel, Controlling pollination, Sink capacity, Sink activity

[1]Wang Z G, Gao J L, Ma B L. Concurrent improvement in maize yield and nitrogen use efficiency with integrated agronomic management strategies. Agron J, 2014, 106: 1243–1250
[2]孙国伟, 张风路, 郭江, 赵久然, 郭景伦. 对玉米籽粒败育原因的再认识. 玉米科学, 2004, 12(专刊): 35–37
Sun G W, Zhang F L, Guo J, Zhao J R, Guo J L. Discuss on the cause of maize kernel abortion. J Maize Sci, 2004, 12(special issue): 35–37 (in Chinese with English abstract)
[3]申丽霞, 王璞, 张红芳, 易镇邪. 施氮对夏玉米不同部位籽粒灌浆的影响. 作物学报, 2005, 31: 532−534
Shen L X, Wang P, Zhang H F, Yi Z X. Effect of nitrogen supply on grain filling at different ear position in summer maize. Acta Agron Sin, 2005, 31: 532–534 (in Chinese with English abstract)
[4]李玉玲, 台国琴. 玉米籽粒灌浆及种子萌发特性的粒位效应研究. 玉米科学, 2005, 13(1): 60–63
Li Y L, Tai G Q. Study on the kernel position effects of grain filling and seed germination characteristics in maize. J Maize Sci, 2005, 13(1): 60−63 (in Chinese with English abstract)
[5]Yang J C, Zhang J H, Wang Z Q, Zhu Q S. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regul, 2003, 41: 185−195
[6]Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants. Int Rice Res Paper Ser, 1987, 125: 1−19
[7]Warren W J. Control of crop processes. In: Rees A R, Cockshull K E, Hand D W, Hurd R G, eds. Crop Processes in Controlled Environments. London/New York: Academic Press, 1972. pp 7−30
[8]Ho L C. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39: 355−378
[9]王纪华, 王树安, 赵冬梅, 倪军昌. 玉米籽粒发育的调控研究 (Ⅲ) 离体条件下的化学调控机理探讨. 作物学报, 1996, 22: 208−213
Wang J H, Wang S A, Zhao D M, Ni J C. Study on regulation of development of maize kernels: III. The approach to chemical regulation under conditions of tissue culture. Acta Agron Sin, 1996, 22: 208–213(in Chinese with English abstract)
[10]唐祈林, 荣廷昭. 玉米秃尖与内源激素的关系. 核农学报, 2007, 21: 366–368
Tang Q L, Rong T Z. The relationship between endogenous hormone and barren ear tip of maize. J Nucl Agric Sci, 2007, 21: 366−368 (in Chinese with English abstract)
[11]张凤路, 赵久然, 王纪华. 离体条件下玉米籽粒发育调控研究. 杂粮作物, 2001, 21(4): 34–35
Zhang F L, Zhao J R, Wang J H. Regulating study on maize kernel development in vitro. Rain Fed Crops, 2001, 21(4): 34−35 (in Chinese with English abstract)
[12]徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452–1461
Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452–1461 (in Chinese with English abstract)
[13]徐云姬, 顾道建, 秦昊, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41: 297–307
Xu Y J, Gu D J, Qing H, Zhang H, Wang Z Q, Yang J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agron Sin, 2015, 41: 297−307 (in Chinese with English abstract)
[14]冯汉宇, 王志敏, 孔凡娜, 张敏洁, 周顺利. 基于控制授粉技术的玉米籽粒生育特性与建成机制研究. 作物学报, 2011, 37: 1605–1615
Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Mechanism of maize kernel setting and characteristics of kernel growth and development under controlled pollination. Acta Agron Sin, 2011, 37: 1605−1615 (in Chinese with English abstract)
[15]张祖建, 朱庆森, 王志琴. 水稻胚乳细胞计数方法研究. 江苏农学院学报, 1996, 17(2): 7−11
Zhang Z J, Zhu Q S, Wang Z Q. A method of counting endosperm cells in rice grain. J Jiangsu Agric Coll, 1996, 17(2): 7−11 (in Chinese with English abstract)
[16]王晓燕, 董树亭, 高荣岐, 张海艳. 不同类型玉米胚乳细胞增殖动态及其与粒重的关系. 华北农学报, 2006, 21(2): 23–26
Wang X Y, Dong S T, Gao R Q, Zhang H Y. Endosperm cell proliferating and its relation to grain weight in different types of maize. Acta Agric Boreali Sin, 2006, 21(2): 23−26 (in Chinese with English abstract)
[17]周竹青, 朱旭彤, 王维金. 三种粒型小麦品种胚乳细胞增殖动态研究. 生物数学学报, 2004, 19(1): 123–126
Zhou Z Q, Zhu X T, Wang W J. Study on the dynamic of endosperm proliferation cell in wheat cultivars (Lines) with three grain types. J Biomath, 2004, 19(1): 123−126 (in Chinese with English abstract)
[18]Singh B K, Jenner C F. A modified method for the determination of cell number in wheat endosperm. Plant Sci Lett, 1982, 26: 273−278
[19]张海艳, 董树亭, 高荣岐. 不同类型玉米籽粒灌浆特性分析. 玉米科学, 2007, 15 (3): 67–70
Zhang H Y, Dong S T, Gao R Q. Analysis on grain filling characteristics of different types of maize. J Maize Sci, 2007, 15 (3): 67−70 (in Chinese with English abstract)
[20]杨升辉, 杨恒山, 唐汝友, 王素阁, 徐长帅, 陈勇. 不同氮肥运筹下春玉米籽粒灌浆特性的分析. 玉米科学, 2014, 22 (1) : 91−95
Yang S H, Yang H S, Tang R Y, Wang S G, Xu C S, Chen Y. Analysis on kernel filling characteristics for spring maize in different nitrogen fertilizer strategies. J Maize Sci, 2014, 22 (1): 91−95 (in Chinese with English abstract)
[21]谷岩, 王振明, 何文安, 梁烜赫, 吴春胜. 不同类型玉米品种籽粒胚乳细胞增殖与籽粒建成的关系. 西北农林科技大学学报, 2010, 38(1): 90−96
Gu Y, Wang Z M, He W A, Liang X H, Wu C S. Relationship between endosperm cell proliferation and seed formation in maize of different types. J Northwest A&F Univ, 2010, 38(1): 90−96 (in Chinese with English abstract)
[22]高俊凤. 植物生理学实验指导. 北京:高等教育出版社, 2006. pp 105–108
Gao J F. Plant Physiology Experiment Instruction. Beijing: Higher Education Press, 2006. pp 105−108 (in Chinese)
[23]Reed A J, Singletary G W. Roles of carbohydrate supply and phytohormones in maize kernel abortion. Plant Physiol, 1989, 91: 986−992
[24]秦大鹏, 刘鹏, 王空军, 董树亭, 张吉旺, 刘月娥. 高淀粉玉米籽粒胚乳细胞增殖与淀粉积累的关系. 山东农业科学, 2008, 8: 35−39
Qin D P, Liu P, Wang K J, Dong S T, Zhang J W, Liu Y E. Relationship between endosperm cell proliferation and starch accumulation in high-starch maize grain. Shandong Agric Sci, 2008, 8: 35−39 (in Chinese with English abstract)
[25]杨建昌, 刘立军, 王志琴, 郎有忠, 朱庆森. 稻穗颖花开花时间对胚乳发育的影响及其生理机制. 中国农业科学, 1999, 32(3): 44–51
Yang J C, Liu L J, Wang Z Q, Lang Y Z, Zhu Q S. Effects of flowering time of spikelets on endosperm development in rice and its physiological mechanism. Sci Agric Sin, 1999, 32(3): 44–51
[26]Yang J C, Cao Y Y, Zhang H, Liu L J, Zhang J H. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228(1): 137−149
[27]张风路, 王志敏, 赵明, 王树安, 赵久然, 郭景伦. 多胺与玉米籽粒败育关系研究. 作物学报, 1999, 25: 565−568
Zhang F L, Wang Z M, Zhao M, Wang S A, Zhao J R, Guo J L. Studies on the relationship between polyamines and kernel abortion in maize. Acta Agron Sin, 1999, 25: 565−568 (in Chinese with English abstract)
[28]Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integr Plant Biol, 2011, 53: 388−398

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!