Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (05): 701-707.doi: 10.3724/SP.J.1006.2017.00701

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Quantitative Trait Locus Shelling Percentage and Correlation Between Shelling Percentage with Pod Traits in Cultivated Peanut (A. hypogaea L.)

CAI Yan,XU Zhi-Jun,LI Zhen-Dong,LI Xin-Ping,GUO Jian-Bin,REN Xiao-Ping,HUANG Li,CHEN Wei-Gang,CHEN Yu-Ning,ZHOU Xiao-Jing,LUO Huai-Yong,JIANG Hui-Fang*   

  1. Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2016-06-22 Revised:2016-11-03 Online:2017-05-12 Published:2016-12-14
  • Contact: Jiang Huifang, E-mail: peanut@oilcrops.cn, Tel: 027-86711550 E-mail:m15802737574@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271764, 31371662, 31471534, 31461143022), the Crop Germplasm Resources Protection Project (2015NWB035), and the China Agriculture Research System (CARS-14-peanut resource evaluation).

Abstract:

Peanut is an important oil crops, the shelling percentage of mature pods in peanut is not only associated with peanut oil, also related to the thickness of shell and the extent of easy-shelling. Therefore the shelling percentage is a crucial component for peanut genetic breeding. In this study, 188 recombinant inbred lines (RIL), derived from a cross between two Spanish type peanut cultivars (Yuanza 9102 × Xuzhou 68-4) were used to analyze their in 2013 and 2014 years phenotype data and shelling percentage. Compared with their parents, 29 lines had higher shelling percentage. There were significantly or very significantly negative correlation between shelling percentage and pod size related traits. On the basis of a linkage map (containing 365 markers and 22 linkage groups) constructed before, QTL mapping of shelling percentage traits was conducted by using CIM model in WinQTLcart 2.5. A total of 22 QTLs were detected in the two environments, every single QTL explained the phenotypic variation ranging from 3.61% to 13.49%. A total of five intervals (AHGS0344–AGGS2438, AGGS0957–AHGA7048, AGGS0058–AHGA72558, AHTE0446–AHGA363492, AGGS0311–AGGS2287) were detected in both environments to be located on the linkage group 2, linkage group 3 and linkage group 10 explaining phenotypic variation of 3.68%–13.99%. There were QTLs both related to pod and shelling percentage in four intervals, including AHGS0344–AGGS2438 on linkage group 2 and AGGS1363–AHGA24894 on linkage group 6 containing QTLs related to pod length; AHTE0470–AGGS1233 on linkage group 13 containing QTLs related to pod length and weight of 100-pod; AHTE0381–AGGS0100 on linkage group 18 containing QTLs related to pod, besides genetic effects between shelling percentage and pod traits in the same intervals were opposite.

Key words: Cultivated peanut, Shelling percentage, QTL, Correction analysis

[1]殷冬梅, 尚明照, 崔党群. 花生主要农艺性状的遗传模型分析. 中国农学通报, 2006, 22(7): 261–265 Yin D M, Shang M Z, Cui D Q. Studies on genetic analysis of major agronomic characters in peanut(Arachis hypogaea L.). Chin Agric Sci Bull, 2006, 7(22): 261–265 (in Chinese with English abstract) [2]杨海棠, 马素芹, 陈华. 花生主要农艺性状的配合力分析. 中国农学通报, 2009, 25(22): 118–121 Yang H T, Ma S Q, Chen H. Studies on combining ability of major agronomic characters in peanut( Arachis hypogaea L.). Chin Agric Sci Bull, 2009, 25(22): 118–121 (in Chinese with English abstract) [3]刘华. 栽培种花生产量和品质相关性状遗传分析与QTL定位研究. 河南农业大学硕士学位论文, 河南郑州, 2011. pp 48–57 Liu H. Inhertance of Main Traits Related to Yield and Quality and Their QTL Mapping in Peanut(Archis Hypogaea L). MS Thesis of Henan Agricultural University, Zhengzhou, China, 2011. pp 48–57 (in Chinese with English abstract) [4]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2011. pp 85–93 Zhang X Y. Inheritance of Main Traits Related to Yield, Quantity and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L.). PhD Dissertation of Zhejiang University, Hangzhou, China, 2011. pp 85–93 (in Chinese with English abstract) [5]周金超. 花生遗传连锁图谱构建及农艺性状的QTL定位. 河北农业大学硕士学位论文, 河北保定, 2014. pp 33–47 Zhou J C. Genetic Map Construction and QTL Mapping for Agronomic Traits in Cultivated Peanut (Arachis hypogaea L.). MS Thesis of Hebei Agricultural University, Baoding, China, 2014. pp 33–47 (in Chinese with English abstract) [6]吕维娜. 花生栽培种SSR遗传连锁图谱构建及重要产量性状QTL定位分析. 郑州大学硕士学位论文, 河南郑州, 2014. pp 30–41 Lu W N. Construction of Genetic Linkage Map Based on SSR Markers and QTLs Identification for Major Yield Traits in the Cultivated Peanut (Arachis hypogaea L.). MS Thesis of Zhengzhou University, Zhengzhou, China, 2014. pp 30–41 (in Chinese with English abstract) [7]Huang L, He H Y, Chen W G, Ren X P, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, Jiang H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Thero Appl Genet, 2015, 128: 1103–1115 [8]李兰周. 利用SSR标记构建花生遗传图谱及农艺性状的QTL分析. 山东农业大学硕士学位论文, 山东泰安, 2013. pp 43–57 Li L Z. Construction of Genetic Linkage Map by SSR Markers and QTL Analysis of Agronomic Traits in Peanut(Arachis hypogaea L.). MS Thesis of Shandong Agricultural University, Tai’an, China, 2013. pp 43–57 (in Chinese with English abstract) [9]郭慧敏. 栽培种花生染色体片段置换系群体的构建及部分农艺性状QTL定位. 河北农业大学硕士学位论文, 河北保定, 2014. pp 22–39 Guo H M. Construction of Chromosome Segment Substitution Lines and QTLs Mapping for Agronomic Traits in Cultivated Peanut(Arachis hypogaea L.). MS Thesis of Hebei Agricultural University, Baoding, China, 2014. 2014. pp 22–39 (in Chinese with English abstract) [10]Chen W, Jiao Y, Cheng L, Huang L, Liao B S, Tang M, Ren X P, Zhou X J, Chen Y N, Jiang H F. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016, 17: 1–9 [11]Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electronic J Biotechnol, 2009, 12: 1–10 [12]Shirasawa K, Koilkonda P, Aoki K, . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80 [13]廖小妹, 张炼辉,李丽容,郑广柔. 珍珠豆型花生品种性状相关与偏相关分析. 中国油料作物学报, 1989, 1: 1–2 Liao X M, Zhang L H, Li L R, Zheng G R. Analyzing correlation and partal correlation between the characters of Spanish-type peanut varieties. Chin J Oil Crop Sci, 1989, 1: 1–2 (in Chinese with English abstract) [14]张晓杰, 姜慧芳, 任小平, 廖伯寿. 中国花生核心种质的主成分分析及相关分析. 中国油料作物学报, 2009, 31: 298–304 Zhang X J, Jiang H F, Ren X P, Liao B S. Principal component analysis and correlation analysis on Chinese core peanut. Chin J Oil Crop Sci, 2009, 31: 298–304 (in Chinese with English abstract) [15]钟瑞春. 花生桂花21产量与相关性状分析. 南方农业学报, 2003, (4): 65–66 Zhong R C. Analysis of yield-related traits on peanut Guihua 21. J Southern Agric, 2003, (4): 65–66 (in Chinese with English abstract) [16]姜华俭. 六个花生品种(系)的性状相关与回归分析. 花生科技, 1998, (3): 23–25 Jiang H J. Correlation analysis and regression analysis of six peanut varieties. Peanut Sci, 1998, (3): 23–25 (in Chinese with English abstract) [17]江建华, 倪皖莉, 于欢欢, 管叔琪, 肖美华. 花生单株生产力与主要农艺性状间的相关性研究. 中国农学通报, 2013, (36): 125–130 Jiang H J, Ni W L, Yu H H, Guan S Q, Xiao M H. The correlation analysis between productivity per plant and major agronomic traits of peanut. Chin Agric Sci Bull, 2013, (36): 125–130 (in Chinese with English abstract) [18]李少华, 董申平, 郭拥军, 高三明, 李秀梅. 花生主要性状与产量的关系. 湖北农业科学, 2004, (1): 49–50 Li S H, Dong S P, Guo Y J. Relationship between yield and main traits on peanut. Hubei Agric Sci, 2004, (1): 49–50 (in Chinese with English abstract) [19]熊文献, 袁建中, 余辉, 喻春强, 熊瑞芳. 高产优质花生新品种远杂9102特征特性及保优节本配套栽培技术. 花生学报, 2003, 32(S1): 500–503 Xiong W X, Yuan J Z, Yu H, Yu C Q, Xiong R F. New cultivation techniques for new variety peanut Yuanza 9102. Peanut Sci, 2003, 32(S1): 500–503 (in Chinese with English abstract) [20]禹山林. 中国花生品种及其系谱(精). 上海: 上海科技出版社, 2008. pp 250–271 Yu S L. Peanut Varieties and Pedigree in China. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 250–271 (in Chinese) [21]李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41: 1313–1323 Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41: 1313–1323 (in Chinese with English abstract) [22]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C M , Thudi M, Pandey M K, Rami J-F, Fonce′ka D, Gowda M V C, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173–184 [23]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theor Appl Genet, 2004, 108: 1064–1070 [24]Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor Appl Genet, 1989, 78: 613–618 [25]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13 [26]侯敏, 刘阳, 刘学良, 陈尔冉, 苗凯. 高产优质花生新品种铁花6号的选育. 杂粮作物, 2010, 30(2): 85–86 Hou M, Liu Y, Liu X L, Chen E R, Miao K. Selection of a new peanut variety Tiehua No.6. Rain Fed Crops, 2010, 30(2): 85–86 [27]苗华荣, 胡晓辉, 杨伟强,崔凤高,陈静. 高产大花生新品种花选11号选育及配套栽培技术.中国农业科技导报, 2012, (4): 45–45 Miao H R, Hu X H, Yang W Q, Cui F G, Chen J. Selection of a high-yield large peanut variety Huaxuan No.11 and its cultivation techniques. J Agric Sci Tech China. 2012 (in Chinese with English abstract) [28]成良强. 花生遗传图谱构建及产量相关性状的QTL分析. 中国农业科学院硕士学位论文, 北京, 2014. pp 30–37 Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.) MS Thesis of Chinese Academy of Agricultural Science, Beijing, China, 2014. pp 30–37 (in Chinese with English abstract) [29]廖福琴, 卢春生, 黄萍萍,苏秋芹. 加工型春花生主要农艺性状与产量的相关和通径分析. 安徽农业科学, 2003, 31: 938–939 Liao F Q, Lu C S, Huang P P, Su Q Q. Relation of agronomic characters and yield of spring peanut and its analysis. J Anhui Agric Sci, 2003, 31: 938–939 (in Chinese with English abstract) [30]Tuberosa R, Saivi S, Sanguineti M. Mapping QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963 [31]周广飞. 一个控制玉米行粒数、穗长及其一般配合力的多效性QTL(qKNR7.2)鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2014. pp 40–45 Zhou G F. Identification of A Pleiotropic QTL (qKNR7.2) for Kernel Number Per row, Ear Length and General Combaining Ability of Maize. MS Thesis of Huazhong Agricultural university, Wuhan, China, 2014. pp 40-45 (in Chinese with English abstract) [32]鄢文豪. 水稻多效性QTL Ghd8的克隆及功能分析. 华中农业大学博士学位论文, 湖北武汉, 2012. pp 45–55 Yan W H. Cloning and Functional Analysis of Rice Pleiotropic QTL Ght8. PhD Dissertation of Huazhong Agricultural University. Wuhan, China, 2012. pp 45–55 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[15] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!