Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 159-168.doi: 10.3724/SP.J.1006.2018.00159

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genetic Contribution of Lumai 14 to Qingnong 2 Revealed by SSR and SNP Markers

Yu-Gang LI1,**, Min REN2,**, Lv SUN1,3, Sheng-Jian WANG1, Mei HAN1,3, Zhen-Qing LI1, Xiao-Ling ZHAI1, Xiao-Yan DAI4, Yuan-Jiang HOU4,*(), Hong-Mei GE1,*()   

  1. 1 Qingdao Academy of Agricultural Sciences, Qingdao 266100, Shandong, China
    2 Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
    3 College of Agronomy and Plant Protection, Qingdao Agricultural University / Shandong Provincial Key Laboratory of Dryland Farming Techniques, Qingdao 266109, Shandong, China
    4 Shandong Qingfeng Seed Company limited, Qingdao 266700, Shandong, China
  • Received:2017-04-10 Accepted:2017-11-21 Online:2018-02-12 Published:2017-12-12
  • Contact: Yu-Gang LI,Min REN,Yuan-Jiang HOU,Hong-Mei GE E-mail:qf5198@163.com;gehm79@126 .com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0100300), the National Natural Science Foundation of China (31301320), the Breeding Improvement Project of Shandong Province (2014LZ01-01), and the Wheat Industry Innovative Team of Qingdao Agriculture Research System.

Abstract:

Lumai 14, a widely planted wheat variety, is the parents of more than 40 bread wheat varieties, among which Qingnong 2 (Lumai 14/Yannong 15//Aiganmai) has been released in recent years. In this study, the inheritance from Lumai 14 to Qingnong 2 was evaluated using 350 SSR markers and 26 026 SNPs detected by iSelect 90k SNP array. Pedigrees show that Lumai 14 and Yannong 15 contain 1/4 and 1/2 blood of Youbaomai, respectively. Genomic marker screening confirmed that Lumai 14 and Yannong 15 shared 55.42% common SSR loci and 71.53% common SNP loci. Polymorphic markers between them were used to disclose that Qingnong 2 inherited more SSR and SNP loci from Lumai 14 (54.11% and 72.55%, respectively) than from Yannong 15 (36.30% and 26.98%, respectively). In Qingnong 2, chromosomes 2B, 3B, and 6A harbored more than 50% SNPs from Yannong 15, whereas, the remaining 18 chromosomes carried more than 50% SNPs from Lumai 14. The parental genetic compositions were present mainly in large chromosomal segments in Qingnong 2. Phenotyping investigation in multi-locations across years indicated that Qingnong 2 was similar to Lumai 14 in length and width of flag leaf, length of first internode, length from flag leaf pulvinus to spike base, earing degree, thousand-grain weight, and grain length, and similar to Yanong 15 in plant height and growth duration. This results provide valuable information for molecular marker-assisted selection in wheat breeding.

Key words: founder parents, genetic contribution, genetic composition, SSR, 90k array

Table 1

Years and locations for trait investigation"

年份
Year
地点
Location
环境数
Number of environments
2013-2014 山东青岛城阳, 山东泰安肥城, 河南新乡 3
2014-2015 山东青岛城阳1), 山东青岛平度, 山东泰安肥城, 河南新乡 4
2015-2016 山东青岛城阳1), 山东青岛平度, 山东泰安肥城 3

Fig. 1

Pedigree of Lumai 14 (A) and Yannong 15 (B) The pedigree was summarized from Fang et al. [33]"

Fig. 2

Percentage and genomic distribution of identical and different SSR (a) and SNP loci (b) between Lumai 14 and Yannong 15"

Fig. 3

Genetic contribution of Lumai 14 and Yannong 15 to Qingnong 2 revealed by SSR and SNP markers(a) Whole genome level; (b) Chromosomal distribution of SSRs; (c) Chromosomal distribution of SNPs."

Table 2

Genetic contribution of Lumai 14 and Yannong 15 on Qingnong 2 with SSR and SNP at 21 chromosomes"

染色体
Chr.
SSR SNP
差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%) 差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%)
1A 11 5 45.45 4 36.36 660 433 65.61 227 34.39
1B 10 6 60.00 3 30.00 685 620 90.51 65 9.49
1D 10 8 80.00 1 10.00 145 140 96.55 5 3.45
2A 9 4 44.44 3 33.33 270 238 88.15 32 11.85
2B 6 3 50.00 3 50.00 302 80 26.49 220 72.85
2D 8 3 37.50 4 50.00 325 321 98.77 3 0.92
染色体
Chr.
SSR SNP
差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%) 差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%)
3A 7 5 71.43 1 14.29 362 318 87.85 43 11.88
3B 4 1 25.00 3 75.00 202 51 25.25 150 74.26
3D 3 1 33.33 2 66.67 66 65 98.48 1 1.52
4A 3 2 66.67 1 33.33 173 155 89.60 18 10.40
4B 7 1 14.29 5 71.43 134 73 54.48 58 43.28
4D 3 2 66.67 1 33.33 15 14 93.33 1 6.67
5A 5 3 60.00 2 40.00 319 277 86.83 42 13.17
5B 5 2 40.00 3 60.00 233 151 64.81 81 34.76
5D 18 10 55.56 7 38.89 44 33 75.00 10 22.73
6A 9 4 44.44 5 55.56 390 121 31.03 263 67.44
6B 6 4 66.67 2 33.33 511 393 76.91 117 22.90
6D 3 2 66.67 1 33.33 77 68 88.31 6 7.79
7A 4 3 75.00 0 0.00 369 286 77.51 83 22.49
7B 6 5 83.33 0 0.00 607 433 71.33 166 27.35
7D 9 5 55.56 2 22.22 35 28 80.00 7 20.00
Total 146 79 54.11 53 36.30 5924 4298 72.55 1598 26.98

Fig. 4

Genetic composition map of Qingnong 2 The first three columns (from left to right) in each group indicate chromosomes of Lumai 14, Yannong 15, and Qingnong 2, and the fourth column shows the chromosomal locations of SNP in the integrated genetic map. Red, blue, light yellow, and gray indicate alleles that Lumai 14 unique, Yannong 15 unique, shared with them and not from the two parents."

Table3

Best linear unbiased prediction (BLUP) data of the agronomic traits of Qingnong 2 and its parents in several cultivated environments"

[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003
Zhuang Q S.Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agricultural Press, 2003 (in Chinese)
[2] 盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇. 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009, 42: 1503-1511
Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y.Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning.Sci Agric Sin, 2009, 42: 1503-1511 (in Chinese with English abstract)
[3] 亓佳佳, 韩芳, 马守才, 张莉莉, 余欣欣, 陈蕴文, 毕晓静, 史秀秀, 牛娜. 小麦骨干亲本小偃6号及其衍生品种(系)的遗传解析. 西北农林科技大学学报(自然科学版), 2015, 43: 45-53
Qi J J, Han F, Ma S C, Zhang L L, Yu X X, Chen Y W, Bi X J, Shi X X, Niu N.Genetic dissection of wheat milestone parent Xiaoyan 6 and its derivatives.J Northwest A&F Univ(Nat Sci Edn), 2015, 43: 45-53 (in Chinese with English abstract)
[4] 于海霞, 肖静, 田纪春. 小麦骨干亲本矮孟牛及其衍生后代遗传解析. 中国农业科学, 2012, 45: 199-207
Yu H X, Xiao J, Tian J C.Genetic dissection of milestone parent aimengniu and its derivatives.Sci Agric Sin, 2012, 45: 199-207 (in Chinese with English abstract)
[5] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919-3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H.Genetic diversity and genome-wide asociation analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919-3929 (in Chinese with English abstract)
[6] Ge H M, You G X, Wang L F, Hao C Y, Dong Y C, Li Z S, Zhang X Y.Genome selection sweep and association analysis shed light on future breeding by design in wheat.Crop Sci, 2012, 52: 1218-1228
[7] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395-1404
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y.Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program.Acta Agron Sin, 2009, 35: 1395-1404 (in Chinese with English abstract)
[8] 方正, 翟冬峰, 刘维正. 试论种质资源创新是小麦育种的前期工程. 小麦研究, 2016, 37(02): 1-6
Fang Z, Zhai D F, Liu W Z.Discussion on the germplasm innovation as the per-breeding program in wheat breeding.J Wheat Res, 2016, 37(02): 1-6 (in Chinese with English abstract)
[9] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954-961
Ge H M, Li Y G, Wang R Y, Li Z Q, Gao J L, Zhang X Y.Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong province.Acta Agron Sin, 2012, 38: 954-961 (in Chinese with English abstract)
[10] 方正, 翟冬峰. 冬小麦杂交育种实践60年回顾. 山东农业科学, 2013, 45: 114-118
Fang Z, Zhai D F.A review of winter wheat hybrid breeding in the past sixty years.Shandong Agric Sci, 2013, 45: 114-118 (in Chinese with English abstract)
[11] 刘兆晔, 于经川, 孙妮娜, 李林志. 骨干亲本鲁麦13、鲁麦14在山东小麦育种中的应用. 农业科技通讯, 2015, (1): 87-90
Liu Z Y, Yu J C, Sun N N, Li L Z.The application of founder parents Lumai 13 and Lumai 14 in wheat breeding of Shandong province. Bull Agric Sci Tech, 2015, (1): 87-90 (in Chinese)
[12] Doebley J F, Gaut B S, Smith B D.The molecular genetics of crop domestication.Cell, 2006, 127: 1309-1321
[13] 张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43: 157-170
Zhang X Y, Ma L, Zheng J.Characteristics of genes selected by domestication and intensive breeding in crop plants.Acta Agron Sin, 2017, 43: 157-170 (in Chinese with English abstract)
[14] Lai J S, Li R Q, Xun X, Jin W W, Xu M L, Zhao H N, Xiang Z K, Song W B, Ying K, Zheng M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H Q, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Springer N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J.Genome-wide patterns of genetic variation among elite maize inbred lines.Nat Genet, 2010, 42: 1027
[15] Zhou D, Chen W, Lin Z, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K G, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W.Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding.Plant Biotechnol J, 2016, 14: 638-648
[16] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526-1535
Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S.Hitchhiking effect mapping: a new approach for discovering agronomic important genes.Sci Agric Sin, 2006, 39: 1526-1535 (in Chinese with English abstract)
[17] 李小军, 胡铁柱, 李淦, 姜小苓, 冯素伟, 董娜, 张自阳, 茹振钢, 黄勇. 小麦品种百农AK58及其姊妹系的遗传构成分析. 作物学报, 2012, 38: 436-446
Li X J, Hu T Z, Li J, Jiang X L, Feng S W, Dong N, Zhang Z Y, Ru Z G, Huang Y.Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines.Acta Agron Sin, 2012, 38: 436-446 (in Chinese with English abstract)
[18] 邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48: 3941-3951
Zou S K, Yin G H, Tang W J, Han Y L, Li N N, Li S C, Huang F, Wang L N, Zhang Q, Gao Y.Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Sci Agric Sin, 2015, 48: 3941-3951 (in Chinese with English abstract)
[19] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P.Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments.Theor Appl Genet, 2014, 128: 353-363
[20] Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, International Wheat Genome Sequencing Consortium, Yang H M, Liu X, He Z H, Mao L, Wang [J].Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91-95
[21] Ling H Q, Zhao S C, Liu D C, Wang J Y, Sun H, Zhang C, Fan H J, Li D, Dong L L, Tao Y, Gao C, Wu H L, Li Y W, Cui Y, Guo X S, Zheng S S, Wang B, Yu K, Liang Q S, Yang W L, Lou X Y, Chen J, Feng M J, Jian J B, Zhang X F, Luo G B, Jiang Y, Liu J J, Wang Z B, Shan Y H, Zhang B R, Wu H J, Tang D Z, Shen Q H, Xue P Y, Zou S H, Wang X J, Liu X, Wang F M, Yang Y P, An X L, Dong Z Y, Zhang K P, Zhang X Q, Luo M C, Dvorak J, Tong Y P, Wang J, Yang H M, Li Z S, Wang D W, Zhang A M, Wang J.Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87-90
[22] Luo M C, Yong Q G, Frank M Y.A 4-gigabase physical map unlocks the structure and evolution of the complex genome ofAegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA, 2013, 110: 7940-7945
[23] Cavanagh C R, Chao S, Wang S C Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G H, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Silva S L D, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.Proc Natl Acad Sci USA, 2013, 110: 8057-8062
[24] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Morten Lillemo, Mather D, Appels R, Dolferus R, Brown-Guedira G, Koral A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch L, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array.Plant Biotechnol J, 2014, 12: 787
[25] Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M C, Dubcovsky J.Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 2009, 23: 23-33
[26] Chao S J, Dubcovsky J, Dvorak, Luo M C, Baenziger S P, Matnyazov R, Clark D R, Talbert L E, Anderson J A, Dreisigacker S, Glover K, Chen J L, Campbell K, Bruckner P L, Rudd J C, Haley S, Carver B F, Perry S, Sorrells M E, Akhunov E D. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11: 727
[27] 陈建省, 陈广凤, 李青芳, 张晗, 师翠兰, 孙彩铃, 邓志英, 刘凯, 谷植群, 田纪春. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析. 中国农业科学, 2014, 47: 4769-4779
Chen J S, Chen G F, Li Q F, Zhang H, Shi C L, Sun C L, Deng Z Y, Liu K, Gu Z Q, Tian J C.Construction of genetic map using genotyping chips and QTL analysis of grain weight. Sci Agric Sin, 2014, 47: 4769-4779 (in Chinese with English abstract)
[28] Gao F M, Liu J D, Yang L, Wu X X, Xiao Y G, Xia X C, He Z H.Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array.Euphytica, 2016, 209: 789-804
[29] 高尚, 莫洪君, 石浩然, 王智强, 林宇, 武方琨, 邓梅, 刘亚西, 魏育明, 郑有良. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析. 应用与环境生物学报, 2016, 22: 85-94
Gao S, Mo H J, Shi H R, Wang Z Q, Lin Y, Wu F K, Deng M, Liu Y X, Wei Y M, Zheng Y L.Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology.Chin J Appl Environ Biol, 2016, 22: 85-94 (in Chinese with English abstract)
[30] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820-831
Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S.Mapping QTLs for wheat panicle traits with high density SNP genetic map.Acta Agron Sin, 2016, 42: 820-831 (in Chinese with English abstract)
[31] Ain Q U, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X C, He Z H, Quraishi U M.Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan.Frontiers in Plant Sci, 2015, 31: 743
[32] Hao C, Wang Y, Chao S, Li T, Liu H X, Wang L F, Zhang X Y.The iSelect 90K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.Sci Rep, 2017, 7: 41247
[33] 方正, 刘维正, 杨今胜, 翟冬峰, 刘为更. 从鲁麦14号的育成论小麦种质资源改良策略. 麦类作物学报, 2005, 25: 121-124
Fang Z, Liu W Z, Yang J S, Zhai D F, Liu W G.Strategy to improve wheat germplasm resource in view of the breeding of Lumai 14.J Triticeae Crops, 2005, 25: 121-124 (in Chinese with English abstract)
[34] Van Inghelandt D, Melchinger A E, Lebreton C, Stich B.Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers.Theor Appl Genet, 2010, 120: 1289-1299
[35] Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J M, Zyprian E, Moreira F M, Grando M S. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape.BMC Plant Biol, 2013, 13: 39
[36] Fischer M C, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu K K, Holderegger R, Widmer A.Estimating genomic diversity and population differentiation: an empirical comparison of microsatellite and SNP variation inArabidopsis halleri. BMC Genomics, 2017, 18: 69
[37] 张利莎, 董国清, 扎桑, 卓嘎, 王德良, 谷方红, 袁兴淼, 张京, 郭刚刚. 基于EST-SSR和SNP标记的大麦麦芽纯度检测. 作物学报, 2015, 41: 1147-1154
Zhang L S, Dong G Q, Zha S, Zhuo G, Wang D L, Gu F H, Yuan X M, Zhang J, Guo G G.EST-SSR and SNP markers based barley malt purity detection. Acta Agron Sin, 2015, 41: 1147-1154 (in Chinese with English abstract)
[38] Würschum T, Langer S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers.Theor Appl Genet, 2013, 126: 1477-1486
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[7] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[8] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[9] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[10] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[11] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[12] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[13] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[14] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[15] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!