Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1631-1639.doi: 10.3724/SP.J.1006.2018.01631

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties

Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO()   

  1. State Key Laboratory of Crop Genetics & Germplasm Enhancement / Hybrid Cotton R&D Engineering Research Center (the Ministry of Education) / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2018-02-25 Accepted:2018-08-20 Online:2018-11-12 Published:2018-09-04
  • Contact: Wang-Zhen GUO E-mail:moelab@njau.edu.cn
  • Supported by:
    This study was supported by the National Key R&D Program for Crop Breeding(2017YFD0102000);Jiangsu Collaborative Innovation Center for Modern Crop Production Project(No.10)

Abstract:

Utilizing the genome-wide SNP information to screen the core SNP loci may provide an accurate and efficient method for the identification of upland cotton varieties. Using the CottonSNP80K array, SNP genotyping was performed within 326 upland cotton accessions. Then, the SNP loci were annotated with TM-1 genomic sequence of Gossypium hirsutum (AD1) genome NBI v1.1 Upland cotton of Nanjing Agricultural University as reference sequence. Statistical analysis of all loci in CottonSNP80K showed that the call rate of 93.85% loci (72 990 in 77 774) was more than 99%, and 61 595 (79.20%) SNPs were polymorphic loci among the tested upland cotton accessions. Among them, minor allele frequency (MAF) of 76.32% (47 009) loci was greater than 0.1. Based on call frequency for each locus > 0.99; loci with polymorphism; MAF > 0.2; heterozygosity rate < 0.05; SNP density with ~400 kb/SNP in each chromosome, we obtained 4857 high-quality core SNP loci. The characteristic statistics of the core SNP loci combination showed that the average call rate was nearly 100%; the average MAF was 0.34; and the average heterozygosity was 0.02. Using these core SNPs, more than 99% of the materials could be identified accurately and effectively. In addition, the identification results of core SNP loci showed extremely significant linear correlation with that of CottonSNP80K. Taken together, a core combination containing 4857 SNP loci for fingerprint identification of upland cotton varieties is constructed, which can accurately identify the purity and reality of modern upland cotton varieties.

Key words: DNA array, fingerprint, SNP, core loci, Upland cotton

Fig. 1

Characteristic statistics of the SNPs on CottonSNP80K arrayThe abscissa represents statistical SNP characteristic parameters, involved in loci call frequency, minor allele frequency (MAF), heterozygosity and distance between adjacent SNPs. The ordinate represents the number of SNPs."

Table 1

Chromosome distribution of the core SNPs for fingerprint analysis"

染色体
Chr.
染色体长度
Chr. length
(Mb)
标记数Number of SNPs 分布密度
Density
(kb/SNP)
染色体
Chr.
染色体长度
Chr. length
(Mb)
标记数Number of SNPs 分布密度
Density
(kb/SNP)
A01 99.9 250 399.5 D01 61.5 153 401.7
A02 83.4 207 403.1 D02 67.3 169 398.1
A03 100.3 248 404.3 D03 46.7 118 395.7
A04 62.9 156 403.3 D04 51.5 128 402.0
A05 92.0 237 388.4 D05 61.9 156 397.0
A06 103.2 255 404.6 D06 64.3 164 392.0
A07 78.3 197 397.2 D07 55.3 138 400.8
A08 103.6 258 401.7 D08 65.9 164 401.8
A09 75.0 183 409.8 D09 51.0 128 398.4
A10 100.9 256 394.0 D10 63.4 156 406.2
A11 93.3 242 385.6 D11 66.1 169 391.1
A12 87.5 215 406.9 D12 59.1 150 394.1
A13 80.0 204 392.0 D13 60.5 156 388.0
Total 1160.2 2908 399.0 Total 774.4 1949 397.3

Table 2

Characteristic statistics of the core SNPs for fingerprint analysis"

类型
Type
最大值
Max.
最小值
Min.
平均值
Mean
检出率 Call frequency 1.00 0.99 1.00
最小等位基因频率 MAF 0.50 0.20 0.34
杂合率 Heterozygosity 0.05 0.00 0.02
多态信息含量 PIC 0.50 0.32 0.44

Fig. 2

Correlation analysis of genetic distance of the 312 upland cotton accessions The abscissa represents the genetic distance between the materials calculated by the total loci in CottonSNP80K. The ordinate represents the genetic distance between the materials calculated by the core loci."

Table 3

Detection of polymorphism between the near-isogenic lines of upland cotton using the core SNP loci combination"

材料
Accession
多态位点(总位点/核心位点)
No. of polymorphic loci
(total loci/core loci)
多态率(总位点/核心位点)
Polymorphic rate
(total loci/core loci)
新乡小吉和新乡小吉无绒无絮突变体
Xinxiangxiaoji linted-fuzzless vs. Xinxiangxiaoji lintless-fuzzless
12529/1215 0.161/0.250
徐州142和徐州142无绒无絮突变体
Xuzhou-142 vs. Xuzhou-142 lintless-fuzzless
14808/1488 0.190/0.306
7235和7235纤维突变体
7235 vs. 7235 mutant
19451/2546 0.250/0.524
TM-1和SL1-7-1突变体
TM-1 vs. SL1-7-1
20859/2188 0.268/0.450
TM-1和 MD-17突变体
TM-1 vs. MD-17
23814/2367 0.306/0.487
TM-1和显性光子N1突变体
TM-1 vs. N1 (dominant naked seed)
17678/2170 0.227/0.447
TM-1和隐性光子n2突变体
TM-1 vs. n2 (recessive naked seed)
19996/2446 0.257/0.503
TM-1和im突变体
TM-1 vs. im (immature fiber)
16333/3116 0.210/0.642

Table 4

Consistency analysis between array genotyping and SNP-PCR for the selected SNP loci"

SNP 染色体
Chr.
位置
Position (bp)
验证不一致数目
Number of mismatches
引物
Primer (5'-3')
TM3086 A01 86363489 1 F: CTTGATTTTCAATTCAACCAAAAAACTCCG
R: AAAATACATGGACGCAACTATCTGATGCATAATTT
TM4824 A02 45647806 0 F: TTGAATGAGTCTCATTTTATCAATTGACCTTTATTA
R: TCATAAGGTAATTTGGCAAGTAATTTTGAAAAAGTC
TM7830 A03 89740533 1 F: AAGCCTATATTTTGCCAACTTACCTTGTGCAG
R: ATTAAGTTAAAAAGTGCCACATGTCACAAAACCAT
TM9574 A04 51844539 0 F: GGCCCTAATCTTAGGCATAGTTTACCCCAAATAA
R: CTTAGGGTAGACGGATGGAGGGATGAGA
TM19508 A07 21138995 0 F: TGCGAGGGATTAAGTTTAGCTTGGAAAGC
R: CCATTAGTTGACAATCTTCAAGAACCTTACGAAAA
TM27528 A08 63064554 0 F: GCTCCCATAATTTTCTTTCACTTCGAGACG
R: AAGAGAAAGGTGAAAATTTTAAGTACAAAAGGTTGA
TM27748 A08 65768181 0 F: GGCTTTTACTGATTTACATTTTGAACAATGTTAAAG
R: GGCTGAATGCTCCTTTACCTTATTTATGGGTT
TM33913 A10 4141534 2 F: GCTCCCTTAAACCCGCAACCTTAGTCA
R: AGAAAGTTGTTTCGGCTGGTATTTTGAGGTT
TM53506 D03 2560865 0 F: ATATTTTCTTTTTCTTTTTTCGATAAGATAGAGCAA
R: CCAAGGTTAGTTAACTAGAAAAACTGACCGAATCAA
TM58088 D05 33818451 0 F: CTCGTATGTCACAAGACCATCAAAATTTAAATGAA
R: TGTATCCCCATTTTGAACACCCACATG
TM69807 D08 63425972 0 F: TTTGTCAATTCTTACCAATTATACCTTCCTACCAAG
R: TATGTTTTGAAAATGCAACACCTATAGAAAAAGCAA
TM72841 D09 47573336 0 F: CAGGAATCATTGGGGTTGGACAAGC
R: TATGCTTGACTAAGGGATGCATTATCATACATTGTT
TM75830 D11 13710651 0 F: CGCGTCGTAATCGAGTTTCACCGA
R: GGTGTCCGGTCCGGTGTGCTTA
TM80004 D13 163793 0 F: GTGGCCACTGAAGAGCAAGCTTAATGA
R: ATGCATGTTCAAGCTTCTTGGTAATGTCATAATC

Fig. 3

Verification on SNPs from array genotyping by SNP-PCR analysisM: DNA marker; 1: TM-1; 2: 7235; 3: J02-508 (7-50); 4: DPL16; 5: Emian 21; 6: Emian 23; 7: Guoxinmian 9; 8: Handan 885; 9: Heishanmian 1; 10: Ji 122; 11: Jummian 1; 12: Shannongmian 8; 13: Shanxi W1; 14: Shanxi W8; 15: Stoneville 2B; 16: Simian 3; 17: Wanmian 17; 18: Xinluzao 32; 19: Xinluzao 7; 20: Xinluzhong 26; 21: Xinluzhong 35; 22: Yumian 15; 23: Zhongmiansuo 12; 24: Zhongmiansuo 41."

[1] Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T, Guo W, Chen X, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar P A, Mehboob Ur R, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H . Toward sequencing cotton (Gossypium ) genomes. Plant Physiol, 2007,145:1303-1310
[2] 喻树迅, 范术丽 . 我国棉花遗传育种进展与展望. 棉花学报, 2003,15:120-124
doi: 10.3969/j.issn.1002-7807.2003.02.011
Yu S X, Fan S L . The evolutions and prospect of cotton genetics and breeding in China. Cotton Sci, 2003,15:120-124 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7807.2003.02.011
[3] Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T . Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017,49:1089-1098
doi: 10.1038/ng.3887
[4] Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X . Asymmetric subgenome selection and cis -regulatory divergence during cotton domestication.Nat Genet, 2017,49:579-587
[5] 郭旺珍, 张天真, 潘家驹, 何金龙 . 我国棉花主栽品种的RAPD指纹图谱研究. 农业生物技术学报, 1996,4:29-34
Guo W Z, Zhang T Z, Pan J J, He J L . Analysis of RAPD fingerprinting on main cotton cultivars in China. J Agric Biotechnol, 1996,4:29-34 (in Chinese with English abstract)
[6] Abdalla A M , Reddy O U K , El-Zik K M, Pepper A E. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet, 2001,102:222-229
doi: 10.1007/s001220051639
[7] 武耀廷, 张天真, 郭旺珍, 殷剑美 . 陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究. 棉花学报, 2001,13:131-133
doi: 10.3969/j.issn.1002-7807.2001.03.001
Wu Y T, Zhang T Z, Guo W Z, Yin J M . Detecting polymorphism among upland cotton ( Gossypium hirsutum L.) cultivars and their roles in seed purity of hybrids with SSR markers. Cotton Sci, 2001,13:131-133 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7807.2001.03.001
[8] 马轩, 杜雄明, 孙君灵 . 18个彩色棉品系的SSR指纹分析. 植物遗传资源学报, 2003,4:305-310
doi: 10.3969/j.issn.1672-1810.2003.04.005
Ma X, Du X M, Sun J L . SSR fingerprinting analysis on 18 colored cotton lines. J Plant Genet Resour, 2003,4:305-310 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2003.04.005
[9] 秦利, 李冰, 范玲, 李磊, 胡保民, 王沛政 . 新疆陆地棉SSR标记指纹图谱构建和杂种纯度鉴定研究. 新疆农业科学, 2005,42:399-401
Qin L, Li B, Fan L, Li L, Hu B M, Wang P Z . Analysis on esteblishment of finger printing of SSR mark for upland cotton and purity of hybrid seed in Xinjiang. Xinjiang Agric Sci, 2005,42:399-401 (in Chinese with English abstract)
[10] 赵亮, 蔡彩平, 梅鸿献, 郭旺珍 . 用于区别不同棉花品种基因组特征的微卫星位点筛选. 作物学报, 2012,38:1810-1817
doi: 10.3724/SP.J.1006.2012.01810
Zhao L, Cai C P, Mei H X, Guo W Z . Screening of microsatellite loci for identifying genome barcoding of cotton cultivars. Acta Agron Sin, 2012,38:1810-1817 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01810
[11] McNally K L, Bruskiewich R, Mackill D, Buell C R, Leach J E, Leung H . Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol, 2006,141:26-31
doi: 10.1104/pp.106.077313
[12] Ganal M W, Altmann T, Roder M S . SNP identification in crop plants. Curr Opin Plant Biol, 2009,12:211-217
doi: 10.1016/j.pbi.2008.12.009 pmid: 19186095
[13] 匡猛, 王延琴, 周大云, 马磊, 方丹, 徐双娇, 杨伟华, 魏守军, 马峙英 . 基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术. 棉花学报, 2016,28:227-233
Kuang M, Wang Y Q, Zhou D Y, Ma L, Fang D, Xu S J, Yang W H, Wei S J, Ma Z Y . High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers. Cotton Sci, 2016,28:227-233 (in Chinese with English abstract)
[14] 孙正文, 匡猛, 马峙英, 王省芬 . 利用CottonSNP63K芯片构建棉花品种的指纹图谱. 中国农业科学, 2017,50:4692-4704
doi: 10.3864/j.issn.0578-1752.2017.24.003
Sun Z W, Kuang M, Ma Z Y, Wang X F . Construction of cotton variety fingerprints using CottonSNP63K array. Sci Agric Sin, 2017,50:4692-4704 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.24.003
[15] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M , Hulse-Kemp A M,Wan Q,Liu B,Liu C,Wang S,Pan M,Wang Y,Wang D,Ye W,Chang L,Zhang W,Song Q,Kirkbride R C,Chen X,Dennis E, Llewellyn D J,Peterson D G,Thaxton P,Jones D C,Wang Q,Xu X,Zhang H,Wu H,Zhou L,Mei G,Chen S,Tian Y,Xiang D,Li X,Ding J,Zuo Q,Tao L,Liu Y,Li J,Lin Y,Hui Y,Cao Z,Cai C,Zhu X,Jiang Z,Zhou B,Guo W,Li R,Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537
[16] Cai C, Zhu G, Zhang T, Guo W . High-density 80 K SNP array is a powerful tool for genotypingG. hirsutum accessions and genome analysis. BMC Genomics, 2017,18:654
[17] Paterson A H, Brubaker C L, Wendel J F . A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127
[18] 黄滋康 . 中国棉花品种及其系谱(修订本). 北京: 中国农业出版社, 2007
Huang Z K. Cotton Varieties and Their Genealogy in China (revised and enlarged edition). Beijing: China Agriculture Press, 2007 ( in Chinese)
[19] Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T H, Li J, Lin L, Liu T, Marler B S, Page J T, Roberts A W, Romanel E, Sanders W S, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers J E, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C , Mansoor S, ur Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J K, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Van Deynze A, Vaslin M F, Waghmare V N, Walford S A, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F, Peterson D G, Rokhsar D-S, Wang X, Schmutz J. Repeated polyploidization ofGossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012,492:423-427
doi: 10.1038/nature11798 pmid: 23257886
[20] Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S . The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012,44:1098-1103
[21] Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S . Genome sequence of the cultivated cottonGossypium arboreum.Nat Genet, 2014,46:567-572
[22] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530
[23] Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L, Zhou Y, Wang L J, Guo W Z, Bai Y L, Ruan J X, Shangguan X X, Mao Y B, Shan C M, Jiang J P, Zhu Y Q, Jin L, Kang H, Chen S T, He X L, Wang R, Wang Y Z, Chen J, Wang L J, Yu S T, Wang B Y, Wei J, Song S C, Lu X Y, Gao Z C, Gu W Y, Deng X, Ma D, Wang S, Liang W H, Fang L, Cai C P, Zhu X F, Zhou B L, Chen Z J, Xu S H, Zhang Y G, Wang S Y, Zhang T Z, Zhao G P, Chen X Y . Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep, 2015,5:14139
[24] Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Jin X, Chen L L, He Y H, Zhang L, Zhu L F, Li Y, Liang Q Q, Lin Z X, Yang X Y, Liu N A, Jin S X, Lei Y, Ding Y H, Li G L, Ruan X A, Ruan Y J, Zhang X L . The genome sequence of Sea-Island cotton (Gossypium barbadense ) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep, 2015,5:17662
[25] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, Yan Y Y, Jia Y H, Yang J, Pan Z E, Gu Q S, Li X Y, Sun Z W, Dai P H, Liu Z W, Gong W F, Wu J H, Wang M, Liu H W, Feng K Y, Ke H F, Wang J D, Lan H Y, Wang G N, Peng J, Wang N, Wang L R, Pang B Y, Peng Z, Li R Q, Tian S L, Du X M . Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018,50:803-813
doi: 10.1038/s41588-018-0119-7
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[4] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[5] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[6] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[7] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[8] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[9] WANG Rui, SHI Long-Jian, TIAN Hong-Li, YI Hong-Mei, YANG Yang, GE Jian-Rong, FAN Ya-Ming, REN Jie, WANG Lu, LU Da-Lei, ZHAO Jiu-Ran, WANG Feng-Ge. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids [J]. Acta Agronomica Sinica, 2021, 47(4): 770-779.
[10] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[11] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[12] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[13] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
[14] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[15] TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!