Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 225-234.doi: 10.3724/SP.J.1006.2019.083033

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of fertility restoration and molecular mapping of restorer genes in two maize restore lines of CMS-C

Bi-Tao MOU1,2,Zhuo-Fan ZHAO1,Ling YUE1,Chuan LI1,Jun ZHANG3,Zhang-Bo LI3,Han SHEN3,Mo-Ju CAO1,*()   

  1. 1 Maize Research Institute, Sichuan Agricultural University / Key Laboratory of Maize Biology and Genetics and Breeding of Southwest China, Ministry of Agriculture, Chengdu 611130, Sichuan, China
    2 Edible Fungus Sericulture Research Institute, Yibin Academy of Agricultural Sciences, Yibin 644000, Sichuan, China
    3 Inner Mongolia Zhenjin Seed S&T Co., Ltd, Ordos 014300, Inner Mongolia, China;
  • Received:2018-04-16 Accepted:2018-10-08 Online:2019-02-12 Published:2018-11-05
  • Contact: Mo-Ju CAO E-mail:caomj@sicau.edu.cn
  • Supported by:
    This study was supported by the National Thirteenth Five-Year National Research and Development Program(2016YFD0101206)

Abstract:

The objective of the present study was to identify novel and powerful restorer lines for CMS-C. So maize inbred lines Z16 and 7250-14-1 were crossed with both isonuclear alloplasmic and isoplasmic allonuclear CMS-C, CMS-T, and CMS-S male sterile lines. Self-cross and back-cross were conducted for some of the fertility restored F1 for genetic analysis and restorer gene mapping. Male fertility expression was investigated for all the F1, F2 and backcross populations, showing that Z16 and 7250-14-1 could restore the fertility for C Huangzaosi, C478, C698-3, and CMo17 completely, and partly restore the fertility for C48-2. Z16 could not restore the fertility for G48-2, EC48-2, ES48-2, RB48-2, and Lei48-2, while 7250-14-1 could partly restore the fertility for G48-2, EC48-2, and ES48-2, and maintain the sterility for RB48-2 and Lei48-2. Both Z16 and 7250-14-1 couldn’t restore the fertility of CMS-T, and partly restore the fertility for CMS-S. Genetic analysis showed that the fertility restoration was controlled by a pair of dominant genes for Z16 when crossed with C478 or C Huangzaosi. But for 7250-14-1, the fertility restoration was controlled by a pair of dominant genes for C Huangzaosi, and two pairs of complementary dominant genes for C478. Both of the restorer genes for Z16 and 7250-14-1 were mapped on the short arm of chromosome 8 by molecular markers. For Z16, it was mapped within a physical distance of 494 kb from the marker B-1 to the end of the chromosome, and for 7250-14-1, it was located between B-1 and Chr8-86080, with physical distance of 249 kb. This study not only provides some information for the practical application of Z16 and 7250-14-1, but also lays a foundation for the cloning and functional analysis of restorer genes.

Key words: maize, cytoplasmic male sterility, restorer gene, molecular mapping

Table 1

Isonuclear alloplasmic and isoplasmic allonuclear sterile lines of maize"

C型不育系
CMS-C
T型不育系
CMS-T
S型不育系
CMS-S
C型亚组不育系
CMS-C subgroup
CMo17 TMo17 SMo17 G48-2
C698-3 T698-3 S698-3 EC48-2
C黄早四
C Huangzaosi
ES48-2
C478 RB48-2
C48-2 类48-2 Lei 48-2

Fig. 1

Fertility phenotype of some F1 combinations I: no emerged of anthers; II: from 0 to 25% anthers emerged; III: more than 25% to 50% anthers emerged; IV: more than 50% to 75% anthers emerged; V: more than 75% anthers emerged."

Table 2

Results of fertility identification of F1 hybrids crossed between CMS-C lines and Z16"

组合
Combination
雄穗育性等级 Fertility grade of tassel 花粉可染率 Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
CMo17×Z16 0 0 0 0 28 98.6 0 1.4
C698-3×Z16 0 0 0 0 25 96.7 0 3.3
C黄早四×Z16 C Huangzaosi×Z16 0 0 0 0 29 97.4 0 2.6
C478×Z16 0 0 0 0 28 97.8 0 2.2
C48-2×Z16 0 4 24 0 0 39.0 26.9 34.1
G48-2×Z16 28 0 0 0 0 0 0 100
EC48-2×Z16 30 0 0 0 0 0 0 100
ES48-2×Z16 29 0 0 0 0 - - -
RB48-2×Z16 28 0 0 0 0 - - -
类48-2×Z16 Lei48-2×Z16 28 0 0 0 0 - - -

Table 3

Results of fertility identification of F1 hybrids crossed between CMS-T, CMS-S lines, and Z16"

组合
Combination
雄穗育性等级Fertility grade of tassel 花粉可染率Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
TMo17×Z16 28 0 0 0 0
T698-3×Z16 29 0 0 0 0
SMo17×Z16 0 5 24 0 0 22.0 12.1 65.9
S698-3×Z16 30 0 0 0 0 29.2 33.3 37.5

Table 4

Results of fertility identification of F1 hybrids crossed between CMS-C lines and 7250-14-1"

组合
Combination
雄穗育性等级Fertility grade of tassel 花粉可染率Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
CMo17×7250-14-1 0 0 0 0 28 96.6 3.3 0
C698-3×7250-14-1 0 0 0 0 29 91.9 2.7 5.4
C黄早四×7250-14-1
C Huangzaosi×7250-14-1
0
0
0
0
30
98.8
0
1.2
C478×7250-14-1 0 0 0 0 29 97.8 0 2.2
C48-2×7250-14-1 0 0 29 0 0 83.3 11.1 5.6
G48-2×7250-14-1 0 0 28 0 0 94.1 0 5.9
EC48-2×7250-14-1 0 0 28 0 0 22.6 25.0 52.4
ES48-2×7250-14-1 0 2 26 0 0 96.6 0 3.4
RB48-2×7250-14-1 29 0 0 0 0 0 0 100
类48-2×7250-14-1
Lei48-2×7250-14-1
28
0
0
0
0
0
0
100

Table 5

Results of fertility identification of F1 hybrids crossed between CMS-T, CMS-S lines, and 7250-14-1"

组合
Combination
雄穗育性等级Fertility grade of tassel 花粉可染率Pollen staining rate
I II III IV V 可染
Fully staining (%)
半染
Semi-staining (%)
不染
Not staining (%)
TMo17×7250-14-1 29 0 0 0 0
T698-3×7250-14-1 29 0 0 0 0
SMo17×7250-14-1 0 0 0 29 0 14.1 15.3 70.6
S698-3×7250-14-1 0 0 0 28 0 43.9 43.9 12.2

Table 6

Fertility results of F2 and BC1 populations crossed between CMS lines and Z16"

组合
Combination
可育株
No. of fertile plants
不育株
No. of sterile plants
总株数
Total No. of
plants
理论比例
Theoretical
ratio
χ2 年份和地点
Year and place
(C黄早四×Z16)F2
(C Huangzaosi×Z16) F2
287 115 402 3:1 1.33 2016景洪 Jinghong
299 106 405 3:1 0.15 2017温江 Wenjiang
1820 616 2436 3:1 0.05 2017崇州 Chongzhou
(C黄早四×Z16)×黄早四
(C Huangzaosi×Z16)×Huangzaosi
33 36 69 1:1 0.06 2016温江 Wenjiang
98 107 205 1:1 0.20 2017温江 Wenjiang
(C478×Z16)F2 251 107 358 3:1 2.15 2017温江 Wenjiang
(C478×Z16)×478 134 135 269 1:1 0 2017温江 Wenjiang

Table 7

Fertility results of F2 and BC1 populations crossed between CMS lines and 7250-24-1"

组合
Combination
可育株
No. of fertile plants
不育株
No. of sterile plants
总株数
Total No. of
plants
期望比例
Theoretical
ratio
χ2 年份、地点
Year and place
(C黄早四×7250-14-1)F2
(C Huangzaosi×7250-14-1) F2
271 85 356 3:1 0.12 2016景洪 Jinghong
319 104 423 3:1 0.02 2017温江 Wenjiang
1386 475 1861 3:1 0.14 2017崇州 Chongzhou
(C黄早四×7250-14-1)×黄早四
(C Huangzaosi×7250-14-1) ×Huangzaosi
23 22 45 1:1 0 2016温江 Wenjiang
124 141 265 1:1 0.55 2017温江 Wenjiang
(C478×7250-14-1)F2 163 110 273 9:7 1.19 2016温江 Wenjiang
243 159 392 9:7 1.44 2017温江 Wenjiang
(C478×7250-14-1)×478 59 191 247 1:3 0.37 2017温江 Wenjiang

Supplementary table 1

Polymorphic markers for restoring gene mapping in Z16"

引物
Primer
引物类型
Primer type
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
Chr8-86080 InDel CGTCGTTGAGGTGAGAAGAG CTCCGAACCTGATCCGAGTA
B-2 InDel ACGAATACGATACGTAGCCA GTGAATCTGCGGTGAACAAA
B-6-1 InDel GGATGGAATATATAAAGTTTGCT GGCTCATTACCTTGGTGTCA
B-1 InDel GATCGTTCCGGCCCAAGAAG TAGCCGTGGAGTTGGTAGCC
m-1 SSR CATTGACCGGGGTAGGAAGT CATTGACCGGGGTAGGAAGT
TIDP5557 InDel CATGAGATCAACGGGATGC AGTAGAGATCCGGGAGGTGG
Chr8-1330080 InDel CCAAGTTGGATACAACGACAGA AGAAGCAACGTCTGCAGGAT
IDP8573 InDel CGAGTCAGTTGCTTACGGG AATTGCCGAGTGGATACAGG

Fig. 2

Linkage map of the Rf on chromosome 8 in Z16"

Fig. 3

Linkage map of the Rf on chromosome 8 in 7250-14-1"

Supplementary table 2

Polymorphic markers for restoring gene mapping in 7250-14-1"

引物
Primer
引物类型
Primer type
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
m-10 SSR AGCGCTCGATTCCTGTAGTG GGGTGTCGTTGGTTGGGATT
Chr8-86080 InDel CGTCGTTGAGGTGAGAAGAG CTCCGAACCTGATCCGAGTA
B-2 InDel ACGAATACGATACGTAGCCA GTGAATCTGCGGTGAACAAA
B-6-2 InDel CCAATGTTTTGATGGAAGTCCT AATTGCCATGTTCTTACCTGT
B-1 InDel GATCGTTCCGGCCCAAGAAG TAGCCGTGGAGTTGGTAGCC
Chr8-398180 InDel GCCAGTTCGGAGACAGGAT ACCGCCATCCAATTAACAAG
IDP8319 InDel TTGACCCTCCTGTTACGTGC GAGCATGGACCACATGACC
IDP500 InDel CACTGCCGTAGAGTAGTGCG GGCTTCAAGATCAGTCCG
IDP7866 InDel GGACGAAGCGATCGAGTACC AGATGAGGGAAGTGAGCAGC
Chr8-1330080 InDel CCAAGTTGGATACAACGACAGA AGAAGCAACGTCTGCAGGAT
[1] Beckett J B . Classification of male-sterile cytoplasms in maize. Crop Sci, 1971,11:724-727.
[2] Pring D R, Conde M F, Levings C S I . DNA heterogeneity within the C group of maize male-sterile cytoplasms. Crop Sci, 1980,20:159-162.
doi: 10.2135/cropsci1980.0011183X002000020002x
[3] Duvick D N, Snyder R J, Anderson E G . The chromosomal location of Rf1, a restorer gene for cytoplasmic pollen sterile maize. Genetics, 1961,46:1245-1252.
doi: 10.2135/cropsci1969.0011183X000900020012x pmid: 13888759
[4] Snyder R J, Duvick D N . Chromosomal location of Rf2, a restorer gene for cytoplasmic male sterile corn. Crop Sci, 1969,9:156-157.
[5] Wise R P, Schnable P S . Mapping complementary genes in maize: positioning the rf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. Theor Appl Genet, 1994,88:785-795.
doi: 10.1007/bf01253987 pmid: 24186179
[6] Cui X Q, Wise R P, Schnable P S . The rf2 nuclear restore gene of male-sterile T-cytoplasm maize. Science, 1996,272:1334-1336.
[7] Zhang Z F, Wang Y, Zheng Y L . AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol Genet Genomics, 2006,276:162-169.
doi: 10.1007/s00438-006-0131-y pmid: 16705419
[8] 李鹏, 肖森林, 王淑霞, 刘娟, 赵贤容, 陈化榜 . 玉米S型细胞质雄性不育恢复基因Rf3的精细定位及其候选基因预测. 山东农业科学, 2014, ( 8):1-5.
doi: 10.3969/j.issn.1001-4942.2014.08.001
Li P, Xiao S L, Wang S X, Liu J, Zhao X R, Chen H B . Fine mapping of fertility restorer gene Rf3 of S-type cytoplasmic male sterility and candidate gene prediction in maize. Shandong Agric Sci, 2014, ( 8):1-5 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4942.2014.08.001
[9] Feng Y, Zheng Q, Song H, Wang Y, Wang H, Jiang L J, Yan J B, Zheng Y L, Yue B . Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theor Appl Genet, 2015,128:2341-2350.
[10] Kheyr-pour A, Gracen V E, Everett H L . Genetics of fertility restoration in the C-group of cytoplasmic male sterility in maize. Genetics, 1981,98:379-388.
doi: 10.1007/BF00135050 pmid: 17249089
[11] 陈伟程, 罗福和, 季良越 . 玉米C型胞质雄花不育的遗传及其在生产上的应用. 作物学报, 1979,5:21-28.
Chen W C, Luo F H, Ji L Y . Some genetic aspects of the C-type cytoplasmic male-sterility in maize and its use in breeding. Acta Agron Sin, 1979,5:21-28 (in Chinese with English abstract).
[12] Vidakovic M . Genetics of fertility restoration in cytoplasmic male sterility of the C-type (cms-C) in maize. Maydica, 1988,33:51-64.
[13] Vidakovic M, Vancetovic J . Complementary genes Rf4, Rf5 and Rf6 are not the unique genetic system for fertility restoration in cms-C of maize(Zea mays L.). Maize Genet Coop Newsl, 1997,71:10.
[14] Vidakovic M, Vancetovic J . The existence of a duplicated or parallel genetic system for fertility restoration in cms C (C cytoplasmic male sterility) of maize (Zea mays L.). Maydica, 1997,42:313-316.
[15] Sisco P H . Duplications complicate genetic mapping of Rf4, a restorer gene for cms-C cytoplasmic male sterility in corn. Crop Sci, 1991,31:1263-1266.
doi: 10.2135/cropsci1991.0011183X003100050036x
[16] 汤继华, 刘宗华, 陈伟程, 胡彦民, 季洪强, 季良越 . 玉米C型胞质不育恢复主基因SSR标记. 中国农业科学, 2001,34:592-596.
doi: 10.3321/j.issn:0578-1752.2001.06.003
Tang J H, Liu Z H, Chen W C, Hu Y M, Ji H Q, Ji L Y . The SSR markers of the main restorer genes for CMS-C cytoplasmic male sterility in maize. Sci Agric Sin, 2001,34:592-596 (in Chinese with English abstract).
doi: 10.3321/j.issn:0578-1752.2001.06.003
[17] Kohls S, Stamp P, Knaak C, Messmer R . QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize. Theor Appl Genet, 2011,123:327-338.
doi: 10.1007/s00122-011-1586-8 pmid: 21479555
[18] Lee S L J, Earle E D, Gracen V E . The cytology of pollen abortion in s cytoplasmic male-sterile corn anthers. Am J Bot, 1980,67:237-245.
doi: 10.1002/j.1537-2197.1979.tb06269.x
[19] Colhoun C W, Steer M W . Microsporogenesis and the mechanism of cytoplasmic male sterility in maize. Ann Bot, 1981,48:417-424.
doi: 10.1093/oxfordjournals.aob.a086145
[20] Tatum L A . The southern corn leaf blight epidemic. Science, 1971,171:1113-1116.
doi: 10.1126/science.171.3976.1113 pmid: 17777595
[21] Weider C, Stamp P, Christov N, Hüsken A, Foueillassar X, Camp K, Munsch M . Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci, 2009,49:77-84.
doi: 10.2135/cropsci2007.12.0694
[22] Duvick D N . Cytoplasmic pollen sterility in corn. Adv Genet, 1965,13:1-56.
doi: 10.1016/S0065-2660(08)60046-2
[23] Porebski S, Bailey L G, Baum B R . Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997,15:8-15.
doi: 10.1007/BF02772108
[24] Qu J, Liu J . A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. BMC Res Notes, 2013,6:1-10.
doi: 10.1186/1756-0500-6-1
[25] Kosambi D D . The estimation of map distances from recombination values. Ann Hum Genet, 1944,12:172-175.
doi: 10.1111/j.1469-1809.1943.tb02321.x
[26] 赵卓凡, 黄玲, 刘永明, 张鹏, 魏桂, 曹墨菊 . 玉米CMS-C同质异核不育系育性恢复的遗传研究. 遗传, 2018,40:402-414.
Zhao Z F, Huang L, Liu Y M, Zhang P, Wei G, Cao M J . Genetics of fertility restoration in the isocytoplasm allonuclear C-group of cytoplasmic male sterility in maize. Hereditas(Beijing), 2018,40:402-414 (in Chinese with English abstract).
[27] Ren R, Nagel B A, Kumpatla S P, Zheng P Z, Cutter G L, Greene T W, Thompson S A . Maize cytoplasmic maize sterility (CMS) C-type restorer Rf4 gene,molecular markers and their use.US2012090047 . 2012 -04-12.
[28] Nan G L, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V . MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017,144:163-172.
doi: 10.1242/dev.140673 pmid: 27913638
[29] Komori T, Ohta S, Murai N Y, Kuraya Y, Suzuki S, Hiei Y . Map-based cloning of a fertility restorer gene, Rf-1, in rice(Oryza sativa L.). Plant J, 2004,37:315-325.
[30] Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y G . Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006,18:676-687.
doi: 10.1105/tpc.105.038240 pmid: 16489123
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!