Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1279-1285.doi: 10.3724/SP.J.1006.2019.94001
• RESEARCH NOTES • Previous Articles Next Articles
JIN Shu-Rong1,2,WANG Yan-Mei1,2,CHANG Yue1,2,WANG Yue-Hua1,2,LI Jia-Na1,2,NI Yu1,2,*()
[1] |
Hay R K M . Harvest index: a review of its use in plant breeding and crop physiology. Annu Appl Biol, 1995,126:197-216.
doi: 10.1111/aab.1995.126.issue-1 |
[2] | 袁婺洲, 官春云 . 油菜角果内的淀粉酶活性与有关同化物转运的调控. 湖南师范大学自然科学学报, 1995,18(3):74-79. |
Yuan W Z, Guan C Y . Regulation of assimilates transportation by amylase activity in rapeseed pods. J Nat Sci Univ Norm Hunan, 1995,18(3):74-79 (in Chinese with English abstract). | |
[3] | 袁婺洲, 官春云 . 影响油菜收获指数的几个生理因子. 作物学报, 1997,23:580-586. |
Yuan W Z, Guan C Y . Harvest index in rapeseed affected by a few physiological factors. Acta Agron Sin, 1997,23:580-586 (in Chinese with English abstract). | |
[4] |
Yu T S, Zeeman S C, Thorneycroft D, Fulton D C, Dunstan H, Lue W L, Hegemann B, Tung S Y, Umemoto T, Chapple A, Tsai D L, Wang S M, Smith A M, Chen J, Smith S M . alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem, 2005,280:9773-9779.
doi: 10.1074/jbc.M413638200 |
[5] |
Weise S E, Kim K S, Stewart R P, Sharkey T D . β-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol, 2005,137:756-761.
doi: 10.1104/pp.104.055996 |
[6] |
Scheidig A, Fröhlich A, Schulze S, Lloyd J R, Kossmann J . Down regulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J, 2002,30:581-591.
doi: 10.1046/j.1365-313X.2002.01317.x |
[7] |
Streb S, Zeeman S C . Starch metabolism in Arabidopsis. Arab Book, 2012,10:e0160.
doi: 10.1199/tab.0160 |
[8] | 申鸽子 . 不同生境下油菜高收获指数的激素平衡与调控. 西南大学硕士学位论文, 重庆, 2016. |
Shen G Z . Balance and Regulation of Hormones of High Harvest Index Rapeseed (Brassica napus L.) in Different Environments. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract). | |
[9] | 李加纳, 卢坤, 荐红举, 梁颖, 陆军花, 彭柳, 申鸽子, 张烨, 张超, 杨博, 张莉 . 油菜收获指数研究进展. 中国油料作物学报, 2018,40:640-648. |
Li J N, Lu K, Jian H J, Liang Y, Lu J H, Peng L, Shen G Z, Zhang Y, Zhang C, Yang B, Zhang L . Research advances on harvest index of Brassica napus L. Chin J Oil Crop Sci, 2018,40:640-648 (in Chinese with English abstract). | |
[10] |
Allen E J, Morgan D G, Ridgman W I . A physiological analysis of the growth of oilseed rape. J Agric Sci, 1971,77:339-341.
doi: 10.1017/S0021859600024515 |
[11] | Chapman J F, Daniels R W, Scarisbrick D H . Field studies on 14C assimilate fixation and movement in oil-seed rape (B. napus). J Agric Sci, 1984,102:23-31. |
[12] | Pechan P A, Morgan D G . Defoliation and its effects on pod and seed development in oil seed rape (Brassica napus L.). J Exp Bot, 1985,36:458-468. |
[13] | Tayo T O, Morgan D G . Factors influencing flower and pod development in oil-seed rape (Brassica napus L.). J Agric Sci, 1979,92:363-373. |
[14] |
Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M . Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004,136:2687-2699.
doi: 10.1104/pp.104.044347 |
[15] |
Monroe J D, Storm A R . The Arabidopsis β-amylase (BAM) gene family: Diversity of form and function. Plant Sci, 2018,276:163-170.
doi: 10.1016/j.plantsci.2018.08.016 |
[16] |
Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C . β-amylase 4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008,20:1040-1058.
doi: 10.1105/tpc.107.056507 |
[17] |
Lao N T, Schoneveld O, Mould R M, Hibberd J M, Gray J C, Kavanagh T A . An Arabidopsis gene encoding a chloroplast- targeted β-amylase. Plant J, 1999,20:519-527.
doi: 10.1046/j.1365-313X.1999.00625.x |
[18] |
Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F . Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011,62:545-555.
doi: 10.1093/jxb/erq288 |
[19] |
Horrer D, Flütsch S, Pazmino D, Matthews J S, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D . Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol, 2016,26:362-370.
doi: 10.1016/j.cub.2015.12.036 |
[20] |
Kaplan F, Guy C L . RNA interference of Arabidopsis beta- amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J, 2005,44:730-743.
doi: 10.1111/tpj.2005.44.issue-5 |
[21] |
Monroe J D, Storm A R, Badley E M, Lehman M D, Platt S M, Saunders L K, Schmitz J M, Torres C E . β-amylase 1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol, 2014,166:1748-1763.
doi: 10.1104/pp.114.246421 |
[22] | Monroe J D, Breault J S, Pope L E, Torres C E, Gebrejesus T B, Berndsen C E, Storm A R . Arabidopsis β-amylase 2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics . Plant Physiol, 2017,175:1125-1135. |
[23] | Laby R J, Kim D, Gibson S I . The ram1 mutant of Arabidopsis exhibits severely decreased β-amylase activity. Plant Physiol, 2001,127:1798-1807. |
[24] | 黄露, 陶诗顺, 张敏, 姜磊, 彭雅利 . 甘蓝型杂交油菜收获指数及其品种间差异性研究. 江苏农业科学, 2011, (1):95-97. |
Huang L, Tao S S, Zhang M, Jiang L, Peng Y L . Differences analysis of harvest and varieties of Brassica napus L. Jiangsu Agric Sci, 2011, (1):95-97 (in Chinese with English abstract). |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[4] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[5] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[6] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[7] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[8] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[9] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[10] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[11] | SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308. |
[12] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[13] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[14] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[15] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
|