Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 858-868.doi: 10.3724/SP.J.1006.2020.91063

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158

JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang()   

  1. Jiangsu Academy of Agricultural Sciences / Jiangsu Provincial Key Laboratory for Agrobiology / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
  • Received:2019-10-15 Accepted:2020-01-15 Online:2020-06-12 Published:2020-02-17
  • Contact: Hong-Xiang MA E-mail:hxma@jaas.ac.cn
  • Supported by:
    National Key Project for the Research and Development of China(2017YFD0100801);China Agriculture Research System(CARS-3);National Natural Science Foundation of China(31671690)

Abstract:

Ningmai 9 and Yangmai 158 are the main wheat cultivars and core parents in the middle and lower reaches of the Yangtze River in China. In the past three years, 80% of the released varieties in the middle and lower reaches of the Yangtze River had the background of Ningmai 9 or Yangmai 158. To make better use of these two parents, the genetic mechanism of their traits need to be further clarified. A high-density genetic map was constructed by Illumina 90k chip using 282 recombinant inbred lines (RILs) from the cross between Ningmai 9 and Yangmai 158. In this study, the traits including plant height, internode length, and spike length were determined in three consecutive growing seasons, and 14 stable QTLs were obtained by QTL mapping. By further position alignment, we focused on six chromosome intervals, which preliminarily revealed the genetic regulatory mechanism of the internode on plant height. KASP markers suitable for high-throughput analysis were developed based on the low-homology markers in the six chromosome intervals, and they were further validated in 101 wheat accessions. The polymerization of Qph-2D and Qph-5A.1 had high selection efficiency which might be decreased if further intruding Q2A. It suggests that the selection of Q2A and Q5A should mainly focus on the alleles reducing plant height, and Qd1-5D could be used in marker-assisted selection for internode length below spike (D1). The results in this study may provide assistance for wheat height genetic improvement in the middle and lower reaches of the Yangtze River.

Key words: wheat (Triticum aestivum L.), Ningmai 9, Yangmai 158, plant height, KASP marker

Fig. 1

Field phenotype for Ningmai 9 and Yangmai 158"

Fig. 2

Molecular marker test of plant height for Ningmai 9 and Yangmai 158 a: Ningmai 9; b: Yangmai 158; M: marker."

Table 1

Phenotypic analysis for plant height and its components"

性状
Trait
环境
Environment
宁麦9号
Ningmai 9
(cm)
扬麦158
Yangmai 158
(cm)
重组自交系群体 RIL population 遗传力
Heritability
最大值
Max
(cm)
最小值
Min
(cm)
平均值
Mean
(cm)
标准差
SD
变异系数
CV(%)
倒五节
D5
2017 4.71 5.64 8.72 2.92 5.83 1.06 18.14 0.43
2018 4.39 5.66 10.15 3.49 5.84 1.06 18.17
2019 3.72 3.76 6.36 1.88 3.86 0.87 22.58
倒四节
D4
2017 7.38 8.05 12.59 5.58 8.16 1.04 12.79 0.51
2018 6.89 7.76 12.75 5.50 8.47 1.01 11.96
2019 5.28 6.78 10.63 4.93 7.04 0.92 13.10
倒三节
D3
2017 8.43 10.08 15.84 8.50 11.28 1.31 11.62 0.61
2018 11.56 13.80 18.87 9.09 13.05 1.56 11.92
2019 9.11 11.16 15.73 7.61 11.17 1.30 11.63
倒二节
D2
2017 15.65 19.24 25.58 12.33 19.62 1.91 9.74 0.76
2018 18.66 20.63 27.27 16.83 22.17 1.88 8.47
2019 17.40 21.34 26.21 15.66 21.11 1.82 8.60
倒一节
D1
2017 26.28 28.99 38.16 20.04 29.40 2.97 10.11 0.83
2018 29.83 32.31 42.63 23.87 32.43 2.82 8.70
2019 27.53 31.26 41.41 23.02 32.07 3.05 9.50
穗长
Spike length
2017 9.85 10.43 12.37 6.50 9.49 0.89 9.40 0.72
2018 8.14 9.11 10.78 5.97 8.73 0.88 10.03
2019 7.31 8.21 10.33 5.44 7.82 0.87 11.13
株高
Plant height
2017 72.29 82.43 101.93 59.54 83.84 6.45 7.69 0.78
2018 79.48 89.26 108.17 72.53 90.78 6.20 6.83
2019 70.35 82.51 102.62 64.25 83.07 6.11 7.36

Table 2

ANOVA for plant height and its components (F-value) "

项目
Item
倒五节
D5
倒四节
D4
倒三节
D3
倒二节
D2
倒一节
D1
穗长
Spike length
株高
Plant height
基因型 Genotype 4.15** 7.08** 8.37** 18.23** 17.98 ** 13.91** 40.51**
环境 Environment 1009.08** 719.59** 783.47** 1205.13** 693.65** 1859.74** 2491.39**
基因型×环境 Genotype×Environment 2.35** 3.45** 3.25** 4.30** 3.06** 3.87** 8.81**

Table 3

Correlation analysis for plant height and its components"

性状
Trait
环境
Environment
倒五节D5 倒四节D4 倒三节D3 倒二节D2 倒一节D1 穗长
Spike length
株高
Plant height
倒五节
D5
2017 (0.266**)
2018 (0.294**)
2019 (0.049)
倒四节
D4
2017 0.632** (0.370**)
2018 0.551** (0.400**)
2019 0.714** (0.070)
倒三节
D3
2017 0.546** 0.631** (0.347**)
2018 0.466** 0.697** (0.500**)
2019 0.531** 0.803** (0.268**)
倒二节
D2
2017 0.388** 0.510** 0.637** (0.506**)
2018 0.285** 0.487** 0.549** (0.639**)
2019 0.219** 0.452** 0.570** (0.459**)
倒一节
D1
2017 0.242** 0.277** 0.309** 0.471** (0.616**)
2018 0.163** 0.320** 0.184** 0.524** (0.733**)
2019 0.057 0.190** 0.198** 0.618** (0.512**)
穗长
Spike length
2017 0.026 0.055 0.059 0.169** 0.157** (0.467**)
2018 -0.058 -0.042 -0.171** 0.105 0.187** (0.524**)
2019 0.222** 0.125* -0.015 0.067 0.118* (0.326**)
株高
Plant height
2017 0.610** 0.683** 0.737** 0.815** 0.771** 0.287** (0.533**)
2018 0.531** 0.719** 0.670** 0.821** 0.765** 0.199** (0.689**)
2019 0.490** 0.673** 0.678** 0.840** 0.784** 0.267** (0.456**)

Table 4

QTL analysis for plant height and its components "

序号
No.
QTL 遗传位置
Genetic position
区间
Interval
2017 2018 2019
LOD 表型贡献率
PVE (%)
加性效应
AEa
LOD 表型贡献率
PVE (%)
加性效应
AE
LOD 表型贡献率
PVE (%)
加性效应
AE
1 Qd5-5A 52.35?55.75 wsnp_Ex_rep_c104539_89224552-RFL_Contig4162_1285 5.90 8.89 0.31 3.11 4.69 0.24
2 Qd4-5A 52.35?56.55 wsnp_Ex_rep_c104539_89224552-RAC875_c103967_76 4.22 7.66 0.26 4.40 2.73 0.24
3 Qd3-5A 52.45?59.75 wsnp_Ex_c49211_53875575-BS00000365_51 6.90 7.89 0.39 4.23 5.18 0.38 4.73 5.25 0.32
4 Qd2-2A 109.15?112.05 Tdurum_contig61938_424-wsnp_Ex_c3695_6740339 3.97 5.93 ?0.46 3.34 4.26 ?0.39
5 Qd2-5A 55.85?59.25 BS00096758_51-BS00098207_51 6.58 9.97 0.58 7.50 10.18 0.60
6 Qd2-7A 49.55?51.95 RAC875_c16624_970-wsnp_Ex_c14009_21899923 4.10 6.13 ?0.48 8.13 11.05 ?0.62 5.30 6.13 ?0.49
7 Qd1-2A 109.35?110.25 Tdurum_contig61938_424-IAAV880 4.74 6.53 ?0.79 3.65 5.51 ?0.63 6.22 9.29 ?0.89
8 Qd1-5A 56.95?58.55 RAC875_c103967_76-BS00098207_51 3.46 5.20 0.60 3.51 5.38 0.66
9 Qd1-5D 9.35?13.85 Kukri_c14878_97-Kukri_c7786_81 3.57 4.87 0.67 3.92 5.90 0.64 2.96 4.30 0.59
10 Qph-2A 109.35?110.55 Tdurum_contig61938_424-IAAV880 4.65 5.79 ?1.56 3.03 3.45 ?1.26
11 Qph-2D 15.55?29.65 BS00022211_51-RAC875_c173_905 3.16 3.99 ?1.25 4.48 4.88 ?1.45
12 Qph-5A.1 18.85?26.55 wsnp_Ex_c12440_19836844-Ex_c6161_335 3.07 3.76 1.21 2.99 2.84 1.08
13 Qph-5A.2 52.65?59.75 wsnp_Ex_c49211_53875575-BS00000365_51 6.49 8.24 1.79 7.34 9.53 2.03 6.35 6.38 1.67
14 Qph-7A 43.45?52.05 Ex_c6196_971-wsnp_Ex_c14009_21899923 7.09 8.94 ?2.02 5.45 5.57 ?1.62

Fig. 3

QTL mapping for plant height and its components The numbers in the figure are consistent with the sequence numbers of QTL in Table 4. "

Table 5

Sequence of KASP markers for plant height and its components"

标记 Marker QTL SNP F1 F2 R
IAAV880 Q2A T/C ccAgaacgcagtggagagtT ccAgaacgcagtggagagtC tgcagacgggagcttagG
IACX9152 Qph-2D T/C aacagagtctcaGtctctccA aacagagtctcaGtctctccG gcctgtCattctcttttcctAtCtT
BobWhite_c1796_701 Qph-5A.1 T/G ggccccggatccaaaatcT ggccccggatccaaaatcG acggagcaaagtggtcttgt
BS00098207_51 Q5A T/C ccaagcttcccgtgacaT ccaagcttcccgtgacaC gccatgatgttTCtgaacttctcT
Kukri_c7786_81 Qd1-5D T/C catcaccttgtatccttcctcA catcaccttgtatccttcctcG ggttctttgttttgagaagagagG
wsnp_JD_c6050_7214383 Q7A A/G GtCgttccacctaacagtacT GtCgttccacctaacagtacC gCtgaatcagaagaatgcacagA

Fig. 4

Development of KASP markers for plant height and its components A indicates the allele of Ningmai 9 and B indicates the allele of Yangmai 158. "

Table 6

t-test of different alleles in the materials from regional test"

Q2A Qph-2D Qph-5A.1 Q5A Qd1-5D Q7A
宁麦9号等位变异Ningmai 9 allele (cm) 87.82 (79) 87.08 (53) 88.53 (57) 86.44 (9) 87.75 (40) 86.50 (2)
扬麦158等位变异Yangmai 158 allele (cm) 88.41 (22) 88.92 (48) 87.20 (44) 88.10 (92) 88.08 (61) 87.98 (99)
差值 Difference (cm) 0.59 1.84 1.32 1.65 0.33 1.48
tt-value -0.54 2.08 1.47 -1.05 0.36 0.46
PP-value 0.59 0.04* 0.15 0.30 0.72 0.65

Table 7

Effect of QTL polymerization"

Qph-2D+Qph-5A.1 Qph-2D+Qph-5A.1+Q2A
株高+ Plant height+ (cm) 89.64 (22) 95.50 (2)
株高? Plant height? (cm) 85.61 (18) 84.85 (14)
差值 Difference (cm) 4.03 10.65
tt-value 2.45 2.21
PP-value 0.02* 0.04*
[1] Hedden P . The genes of the green revolution. Trends Genet, 2003,19:5-9.
[2] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J . Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018,131:2021-2035.
[3] Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S . Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci, 2017, .
[4] McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Xia X C . Catalogue of gene symbols for wheat: 2017 supplement. . Accessed 17 Feb 2018.
[5] Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R . “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002,105:1038-1042.
[6] Asplund L, Leino M W, Hagenblad J . Allelic variation at the Rht8 locus in a 19th century wheat collection. Sci World J, 2012,2012:385610.
[7] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber E . Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.). Theor Appl Genet, 2002,105:921-936.
doi: 10.1007/s00122-002-0994-1
[8] Peng J, Yefim R, Tzion F, RiDer M L, Youchun F, Eviatar N, Abraham K . Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA, 2003,100:2489-2494.
[9] Liu G, Xu S B, Ni Z F, Xie C J, Qin D D, Li J, Lu L H, Zhang J P, Peng H R, Sun Q X . Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat ( Triticum aestivum L.) and spelt wheat( Triticum spelta L.). Chin Sci Bull, 2011,56:1897-1903.
[10] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J . Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012,29:159-171.
[11] Tobias W, Langer S M, Longin C F H . Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet, 2015,128:865-874.
[12] Mccartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D . Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross Rl4452x ‘AC Domain’. Genome, 2005,48:870.
[13] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J . Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009,119:383-395.
[14] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536.
[15] Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J . Characterization of the temporal and spatial expression of wheat ( Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017,130:1235-1252.
[16] Cavanagh C R, Shiaoman C, Shichen W, Bevan Emma H, Stuart S, Seifollah K, Kerrie F, Cyrille S, Brown-Guedira G L, Alina A, . Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013,110:8057-8062.
[17] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L . Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
[18] Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X . Utilization of a wheat660k SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788.
[19] Consortium T I W G S. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
[20] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣 . 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015,48:3779-3793.
Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R . Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin, 2015,48:3779-3793 (in Chinese with English abstract).
[21] Jiang P, Zhang P P, Zhang X, Ma H X . Genetic contribution of Ningmai 9 wheat to its derivatives evaluated by using SNP markers. Int J Genomics, 2016,2016:3602986.
[22] He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P . QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru#1. PLoS One, 2016,11:e0158052.
[23] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L . A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020,69:249-258.
[24] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[25] Li H, Ye G, Wang J . A modified algorithm for the improvement of composite interval mapping. Genetics, 2007,175:361-374.
[26] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W . Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018.
[27] 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺 . 小麦抗赤霉病育种2条技术路线的探讨. 扬州大学学报(农业与生命科学版), 2003,24:59-62.
Cheng S H, Zhang Y, Zhang B Q, Gao D R, Wu H Y, Lu C B, Lyu G F, Wang C S . Discussion of two ways of breeding scab resistance in wheat. J Yangzhou Univ ( Agric & Life Sci), 2003,24:59-62 (in Chinese with English abstract).
[28] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎 . 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44:473-482.
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H . Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agron Sin, 2018, 44: 473-482 (in Chinese with English abstract).
[29] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳 . 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44:505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W . Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511 (in Chinese with English abstract).
[30] 陈广凤, 陈建省, 田纪春 . 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015,41:1500-1509.
Chen G F, Chen J S, Tian J C . Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agron Sin, 2015,41:1500-1509 (in Chinese with English abstract).
[31] 武炳瑾, 冯洁, 崔紫霞, 张传量, 孙道杰 . 利用90k基因芯片进行小麦株高QTL分析 . 麦类作物学报, 2017, 5: 578-584.
Wu B J, Feng J, Cui Z X, Zhang C L, Sun D J . QTL analysis of plant height by using 90k chip technology. J Triticeae Crop, 2017,5:578-584 (in Chinese with English abstract).
[32] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W . Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005,111:423-430.
[33] Wang Z H, Wu X S, Ren Q, Chang X P, Li R Z, Jing R L . QTL mapping for developmental behavior of plant height in wheat ( Triticum aestivum L.). Euphytica, 2010,174:447-458.
[34] 梁子英, 李美霞, 王竹林, 沈玮囡, 奚亚军, 孙风丽, 刘曙东 . 小麦株高相关性状的QTL分析. 西北农业学报, 2014,23:64-72.
Liang Z Y, Li M X, Wang Z L, Shen W N, Xi Y J, Sun F L, Liu S D . Mapping quantitative trait loci for plant height related characteristics in wheat. Acta Agric Boreali-Occident Sin, 2014,23:64-72 (in Chinese with English abstract).
[35] Peng Z S, Li X, Yang Z J, Liao M L . A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011,10:2349.
[36] Roncallo P F, Cervigni G L, Jensen C, Miranda R, Carrera A D, Helguera M, Echenique V . QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012,185:77-92.
[37] Kamran A, Iqbal M, Spaner D . Flowering time in wheat ( Triticum aestivum L.): a key factor for global adaptability. Euphytica, 2014,197:1-26.
[38] Botwright Acuña T L, Rebetzke G J, He X, Maynol E, Wade L J . Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed, 2014,34:631-642.
[39] Dreisigacker S, Wang X, Martinez Cisneros B A, Jing R, Singh P K, . Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor Appl Genet, 2015,128:2317-2329.
[40] Kelbert A J, Spaner D, Briggs K G, King J R . The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004,136:211-221.
[41] 朱新开, 郭文善, 李春燕, 封超年, 彭永欣 . 小麦株高及其构成指数与产量及品质的相关性 . 麦类作物学报, 2009, 29: 1034‒1038.
Zhu X K, Guo W S, Li C Y, Feng C N, Peng Y X . Relationship of plant height component indexes with grain yield and quality in wheat. J Triticeae Crop, 2009,29:1034-1038 (in Chinese with English abstract).
[42] 朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣 . 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006,26:87-92.
Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X . Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality. J Triticeae Crop, 2006,26:87-92 (in Chinese with English abstract).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[6] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[7] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[8] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[9] FU Hong-Yu, CUI Guo-Xian, LI Xu-Meng, SHE Wei, CUI Dan-Dan, ZHAO Liang, SU Xiao-Hui, WANG Ji-Long, CAO Xiao-Lan, LIU Jie-Yi, LIU Wan-Hui, WANG Xin-Hui. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images [J]. Acta Agronomica Sinica, 2020, 46(9): 1448-1455.
[10] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[11] Juan MA, Yan-Yong CAO, Li-Feng WANG, Jing-Jing LI, Hao WANG, Yan-Ping FAN, Hui-Yong LI. Identification of gene co-expression modules of maize plant height and ear height by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(3): 385-394.
[12] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[13] HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227.
[14] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
[15] Hai-Yan LU,Ling ZHOU,Feng LIN,Rui WANG,Feng-Ge WANG,Han ZHAO. Development of efficient KASP molecular markers based on high throughput sequencing in maize [J]. Acta Agronomica Sinica, 2019, 45(6): 872-878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!