Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (9): 1359-1367.doi: 10.3724/SP.J.1006.2020.03005

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize

SHI Hui-Min1(), JIANG Cheng-Gong1,2, WANG Hong-Wu1, MA Qing2, LI Kun1, LIU Zhi-Fang1, WU Yu-Jin1, LI Shu-Qiang1, HU Xiao-Jiao1,*(), HUANG Chang-Ling1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineer Laboratory of Crop Molecular Breeding, Beijing 100081, China
    2 National Engineering Laboratory of Crop Stress Resistance Breeding / School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2020-01-20 Accepted:2020-04-15 Online:2020-09-12 Published:2020-04-26
  • Contact: Xiao-Jiao HU,Chang-Ling HUANG E-mail:3041601854@qq.com;huxiaojiao@caas.cn;huangchangling@caas.cn
  • Supported by:
    National Natural Science Foundation of China(31500984);Agricultural Science and Technology Innovation Program at CAAS;Central Public-interest Scientific Institution Basal Research Fund(Y2019CG15)

Abstract:

Maize kernel is not only a main nutrient storage organ, but also a model organ for seed development research of gramineous plants. In this study, a stable defective kernel mutant 48 (dek48) was identified from a library of mutants of the maize inbred line Zheng58 treated with ethylmethane sulfonate (EMS). Compared with wild type, the hundred-kernel weight of the dek48 was decreased greatly due to shrunken appearance and small flat size. Moreover, the dek48 was incapable of growing into a plantlet owning to the severely defective embryo and endosperm. The obvious defective development of the mutant can be observed at 12 days after pollination (DAP), indicating that the mutation occurred at an early stage of kernel development. Microscopic observation by scanning electron microscopy (SEM) revealed that starch granule of the dek48 was significantly smaller than wild type (WT). The observation of the paraffin section demonstrated that the starch granule of dek48 endosperm was partially filled and the aleurone layer cells developed irregularly. Genetic analysis based on kernel form indicated that the mutant trait was controlled by a single recessive gene. Based on genetic F2 population mapping, the gene of the mutant was located between 7.39 Mb-7.52 Mb on chromosome 3. The bioinformation analysis indicated that there were six new open reading frames (ORFs) and unknow genes related to kernel development in this region. Furthermore, candidate gene will be identified through sequencing and gene expression analysis in the future.

Key words: maize, defective kernel mutant, dek48, gene mapping

Table 1

Primer sequences used for gene mapping"

引物
Primer
正向序列
Forward sequence (5′-3′)
反向序列
Reverse sequence (5′-3′)
In6.38 TTGGCATCTTGTGGTTTTGTG CGAACGGAGTGAAAGTGATAGAAG
In7.29 GCTCAAGAAAGCAATCGGGTAA GTGATGAAGCCAGGATTCGCT
In7.39 TTTCTGGCTCTTTATTTGTGCTG CAAGCGTACATACACCTGTCAGA
In8.29 ATGCAGTTAAGTTGACCTGAATTG TATAGCTAGGAAACCAAGGCGT
In8.53 GCTTTTTCCACCACTGCGAC ATACTCGGGGGCTGCCTTAC
In9.06 GGAAAACACTAAAACACATAACCCT CTAAGGCGTCACTTTGCGG

Fig. 1

Phenotype of dek48 mutant in maize A: mature M4 ear; B: longitudinal section of wild type kernel; C: longitudinal section of dek48 kernel; D: F2 ear with B73 as the maternal parent; E: F2 ear with Mo17 as the maternal parent; F: F2 ear with C7-2 as the maternal parent.、"

Fig. 2

Hundred-kernel weight of wild type and mutant kernels ** Significant difference at P< 0.01."

Fig. 3

Determination and analysis of WT and dek48 kernel components A: starch content of WT and dek48; B: protein and oil content of WT and dek48. *, ** represent significant difference between the dek48 mutant and WT at the 0.05 and 0.01 probability levels, respectively."

Fig. 4

SEM observation of the endosperm of WT and dek48 A: SEM observation of WT, bar = 10 μm; B: SEM observation of dek48, bar = 10 μm; SG: starch granule; MP: matrix protein."

Fig. 5

Observation of embryo and endosperm of WT and dek48 at different development stages A: the observation and analysis of the embryo, endosperm and whole seed of dek48 at 12, 16, 20, 25, and 30 DAP, bar = 2 mm; B: the observation and analysis of the embryo, endosperm and whole seed of WT at 12, 16, 20, 25, and 30 DAP, bar = 2 mm."

Fig. 6

Paraffin section observation of WT and dek48 kernels at 16DAP A: embryos of WT seeds at 16 DAP, bar = 200 μm; B: embryo of dek48 seeds at 16 DAP, bar = 200 μm; C: aleurone layer of WT seeds at 16 DAP, bar = 50 μm; D: aleurone layer of dek48 seeds at 16 DAP, bar = 50 μm; AL: aleurone."

Table 2

Statistics and analysis of the segregation ratios of WT and dek48 mutants"

总粒数
Total kernel number
突变体籽粒/野生型籽粒
dek48/WT
χ2
M4 515 108/407 1.20
F2 (B73×dek48) 1019 236/783 1.84
F2 (C7-2×dek48) 1067 259/808 0.30
F2 (Mo17×dek48) 1401 326/1075 2.24

Fig. 7

Number of SNP markers"

Fig. 8

Distribution of SNP-index on whole genome"

Fig. 9

The fine mapping of dek48 mutant N: number of population; Recombinant: number of recombinants."

Table 3

Candidate genes annotation in the location interval"

基因位点
Gene locus
基因位置
Gene location
基因注释
Gene annotation
Zm00001d039532 Chr. 3: 7,399,394-7,401,753 WRKY-transcription factor 56
Zm00001d039533 Chr. 3: 7,446,385-7,450,083 Plant cysteine oxidase 2
Zm00001d039534 Chr. 3: 7,451,813-7,457,371 F-box family protein
Zm00001d039535 Chr. 3: 7,479,692-7,482,979 HXXXD-type acyl-transferase family protein
Zm00001d039536 Chr. 3: 7,484,018-7,486,445 Syntaxin22
Zm00001d039537 Chr. 3: 7,487,245-7,530,464 Protein ALWAYS EARLY 3
[1] 李穆, 孟令聪, 郑淑波, 周德龙, 刘宏伟, 王敏, 何欢, 路明. “十二五”以来我国玉米分子育种研究进展. 玉米科学, 2019,27(6):1-6.
Li M, Meng L C, Zeng S B, Zhou D L, Liu H W, Wang M, He H, Lu M. Advances in molecular breeding of maize in China since the 12th Five-Year Plan. J Maize Sci, 2019,27(6):1-6 (in Chinese with English abstract).
[2] Neuffer M G, Sheridan W F. Defective kernel mutants of maize: I. Genetic and lethality studies. Genetics, 1980,95:929-944.
pmid: 17249053
[3] Janice K C, William F S. Characterization of the two maize embryo-lethal defective kernel mutants rgh*-1210 and fl*-1253b: effects on embryo and gametophyte development. Genetics, 1988,120:279-90.
pmid: 17246478
[4] Sheridan W F, Neuffer M G. Defective kernel mutants of maize: II. Morphological and embryo culture studies. Genetics, 1980,95:945-60.
pmid: 17249054
[5] Scanlon M J, Stinard P S, James M G, Myers A M, Robertson D S. Genetic analysis of 63 mutations affecting maize kernel development isolated from mutator stocks. Genetics, 1994,136:281-94.
[6] Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, LeRet M, MartinMagniette M L, Mireau H, Peeters N, Renou J P, Szurek B, Taconnat L, Small I. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell, 2004,16:2089-2103.
pmid: 15269332
[7] Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K, Berthomé R, Lurin C. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol, 2013,10:1557-1575.
[8] Nikolay M, Virginie G, Jörg M, Udo W, Reinhold B. An essential pentatricopeptide repeat protein facilitates 59 maturation and translation initiation of rps3 mRNA in maize mitochondria. Plant Cell, 2012,24:3087-3105.
pmid: 22773745
[9] Qi W, Yang Y, Feng X, Zhang M, Song R. Mitochondrial function and maize kernel development requires dek2, a pentatricopeptide repeat protein involved in nad1 mRNA splicing. Genetics, 2017,205:239-249.
doi: 10.1534/genetics.116.196105 pmid: 27815362
[10] Qi W, Tian Z, Lu L, Chen X, Chen X, Zhang W, Song R. Editing of mitochondrial transcripts nad3 and cox2 by dek10 is essential for mitochondrial function and maize plant development. Genetics, 2017,205:1489-1501.
doi: 10.1534/genetics.116.199331 pmid: 28213476
[11] Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Mol Plant, 2017,10:427-441.
[12] Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. New Phytol, 2017,214:1563-1578.
doi: 10.1111/nph.14507 pmid: 28277611
[13] Dai D, Luan S, Chen X, Wang Q, Feng Y, Zhu C, Qi W, Song R. Maize dek37 encodes a P-type PPR protein that affects cis-splicing of mitochondrial nad2 intron 1 and seed developmen. Genetics, 2018,208:1069-1082.
pmid: 29301905
[14] Li X, Gu W, Sun S, Chen Z, Chen J, Song W, Zhao H, Lai J. Defective Kernel 39 encodes a PPR protein required for seed development in maize. J Integr Plant Biol, 2018,60:45-64.
doi: 10.1111/jipb.12602 pmid: 28981206
[15] Ren R C, Lu X, Zhao Y J, Wei Y M, Wang L L, Zhang L, Zhang W T, Zhang C, Zhang X S, Zhao X Y. Pentatricopeptide repeat protein dek40 is required for mitochondrial function and kernel development in maize. J Exp Bot, 2019,70:6163-6379.
[16] Zhu C, Jin G, Fang P, Zhang Y, Feng X, Tang Y, Qi W, Song R. Maize pentatricopeptide repeat protein dek41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. J Exp Bot, 2019,70:3795-3808.
[17] He Y H, Wang J G, Qi W W, Song R T. Maize dek15 encodes the cohesion-loading complex subunit SCC4 and is essential for chromosome segregation and kernel development. Plant Cell, 2019,31:465-485.
doi: 10.1105/tpc.18.00921 pmid: 30705131
[18] Dai D W, Tong H Y, Cheng L J, Peng F, Zhang T T, Qi W W, Song R T. Maize dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. J Exp Bot, 2019,19:5173-5187.
[19] Nelson G, Li Y B, Hugo K D, Joachim M. Maize defective kernel mutant generated by insertion of a Ds element in a gene encoding a highly conserved TTI2 cochaperone. Proc Natl Acad Sci USA, 2017,114:5165-5170.
doi: 10.1073/pnas.1703498114 pmid: 28461460
[20] Zuo Y, Feng F, Qi W W, Song R T. dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. J Integr Plant Biol, 2019,61:728-748.
doi: 10.1111/jipb.12798 pmid: 30839161
[21] Qi W W, Lu L, Huang S C, Song R T. Maize dek44 encodes mitochondrial ribosomal protein L9 and is required for seed development. Plant Physiol, 2019,180:2106-2119.
doi: 10.1104/pp.19.00546 pmid: 31182559
[22] 李艺, 铁双贵, 朱卫红, 齐建双, 卢彩霞, 孙建军, 周柯. 快速CTAB法提取玉米种子胚基因组DNA. 河南农业科学, 2008,37(2):17-20.
Li Y, Tie S G, Zhu W H, Qi J S, Lu C X, Sun J J, Zhou K. DNA extraction from Maize embryo by a new rapid CTAB method. Henan Acad Agric Sci, 2008,37(2):17-20 (in Chinese with English abstract).
[23] Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J N, Xu Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019,39:37.
[24] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012,30:174-178.
pmid: 22267009
[25] 高玉峰, 张攀, 郝晓敏, 严建兵, 李健生, 杨小红. 一种快速提取玉米大群体基因组DNA的方法. 中国农业大学学报, 2011,16(6):32-36.
Gao Y F, Zhang P, Hao X M, Yan J B, Li J S, Yang X H. A rapid DNA extiaction method for large maize populations. J China Agric Univ, 2011,16(6):32-36 (in Chinese with English abstract).
[26] Birchler J A. Dosage analysis of maize endosperm development. Annu Rev Genet, 1993,27:181-204.
doi: 10.1146/annurev.ge.27.120193.001145 pmid: 8122901
[27] Hou H L, Wang P, Zhang H, Wen H, Gao F, Ma N J, Wang Q, Li L J. Histone acetylation is involved in gibberellin-regulated s odCp gene expression in maize aleurone layers. Plant Cell Physiol, 2015,56:2139-2149.
doi: 10.1093/pcp/pcv126 pmid: 26374791
[28] Yi G, Lauter A M, Scott M P, Becraft P W. The thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel1. Plant Physiol, 2011,156:1826-36.
doi: 10.1104/pp.111.177725 pmid: 21617032
[29] Tian Q, Olsen L, Sun B, Lid S E, Brown R C, Lemmon B E, Fosnes K, Gruis D F, Opsahl H G, Otegui M S, Olsen O A. Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell, 2007,19:3127-45.
doi: 10.1105/tpc.106.048868 pmid: 17933905
[30] Becraft P W, Stinard P S, McCarty D R. CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 1996,273:1406-1409.
doi: 10.1126/science.273.5280.1406 pmid: 8703079
[31] Shen B, Li C J, Min Z, Meeley R B, Tarczynski M C, Olsen O A. sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein. Proc Natl Acad Sci USA, 2003,100:6552-6557.
doi: 10.1073/pnas.0732023100 pmid: 12750475
[32] Yi G, Lauter A M, Scott M P, Becraft P W. The thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel1. Plant Physiol, 2011,156:1826-1836.
doi: 10.1104/pp.111.177725 pmid: 21617032
[33] Guo D, Zhang J, Wang X, Han X, Wei B, Wang J, Li B, Yu H, Huang Q, Gu H, Qu L J, Qin G. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. Plant Cell, 2015,27:3112-3127.
doi: 10.1105/tpc.15.00829 pmid: 26578700
[34] Sarris P F, Duxbury Z, Huh S U, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet S B, Wirthmueller L, Menke F L H, Sohn K H, Jones J D G. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 2015,161:1089-1100.
doi: 10.1016/j.cell.2015.04.024 pmid: 26000484
[35] Chen L, Yang Y, Liu C, Zheng Y, Xu M, Wu N, Sheng J, Shen L. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment. Biochem Biophys Res Commun, 2015,464:962-968.
doi: 10.1016/j.bbrc.2015.07.085 pmid: 26196744
[36] 李琪, 李烨, 牛芳芳, 郭小华, 赵新杰, 吴相民, 杨博, 江元清. 拟南芥转录因子基因WRKY72的特性分析及其抗逆功能鉴定. 农业生物技术学报, 2019,27:191-203.
Li Q, Li Y, Niu F F, Guo X H, Zhao X J, Wu X M, Yang B, Jiang Y Q. Characterization and stress-resistance functional identification of transcription factor gene WRKY72 in Arabidopsis thaliana. J Agric Biotechnol, 2019,27:191-203 (in Chinese with English abstract).
[37] Weits D A, Giuntoli B, Kosmacz M, Parlanti S, Hubberten H M, Riegler H, Hoefgen R, Perata P, van Dongen J T, Licausi F. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun, 2014,5:3425.
doi: 10.1038/ncomms4425 pmid: 24599061
[38] 秘彩莉, 刘旭, 张学勇. F-box蛋白在植物生长发育中的功能. 遗传, 2006,28:1337-1342.
Mi C I, Liu X, Zhang X Y. The function of F-box protein in plant growth and development. Hereditas, 2006,28:1337-1342 (in Chinese with English abstract).
[39] Mitchell R A, Dupree P, Shewry P R. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol, 2007, 144:43-53.
doi: 10.1104/pp.106.094995 pmid: 17351055
[40] Molinari H B C, Pellny T K, Freeman J, Shewry P R, Mitchell, R A C. Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front Plant Sci, 2013,4:50.
doi: 10.3389/fpls.2013.00050 pmid: 23508643
[41] Dascher C, Matteson J, Walch W E. Syntaxin5 regulates endoplasmatic reticulum to Golgi transport. J Biol Chem, 1994,269:29363-29366.
pmid: 7961911
[42] Morita M T, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol, 2004,7:712-718.
doi: 10.1016/j.pbi.2004.09.001 pmid: 15491921
[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[11] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[12] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[13] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!