Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 2036-2044.doi: 10.3724/SP.J.1006.2021.02082
• RESEARCH NOTES • Previous Articles Next Articles
LIU Chang1(), MENG Yun1, LIU Jin-Dong1, WANG Ya-Mei1,*(), Guoyou Ye1,2
[1] |
Zhao G, Fu J, Wang G, Ma P, Wu L, Wang J. Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-3684. Plant Breed, 2010, 129:87-91.
doi: 10.1111/pbr.2010.129.issue-1 |
[2] |
Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron Sustain Dev, 2015, 35:285-294.
doi: 10.1007/s13593-014-0239-0 |
[3] |
Chen Z, Tang Y T, Zhou C, Xie S T, Xiao S, Baker A J M, Qiu R L. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization. Chemosphere, 2017, 175:275-285.
doi: S0045-6535(17)30231-X pmid: 28232138 |
[4] | Matloob A, Khaliq A, Chauhan B S. Weeds of direct-seeded rice in Asia: problems and opportunities. Adv Agron, 2015, 130:291-336. |
[5] |
Turner F T, Chen C C, Bollich C N. Coleoptile and mesocotyl lengths in semidwarf rice seedlings. Crop Sci, 1982, 22:43-46.
doi: 10.2135/cropsci1982.0011183X002200010010x |
[6] |
Chung N J. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields. Crop Pasture Sci, 2010, 61:911-917.
doi: 10.1071/CP10099 |
[7] |
Zhang H, Ma P, Zhao Z, Zhao G, Tian B, Wang J, Wang G. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor Appl Genet, 2012, 124:223-232.
doi: 10.1007/s00122-011-1700-y |
[8] |
Xiong Q, Ma B, Lu X, Huang Y H, He S J, Yang C, Yin C C, Zhao H, Zhou Y, Zhang W K, Wang W S, Li Z K, Chen S Y, Zhang J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell, 2017, 29:1053-1072.
doi: 10.1105/tpc.16.00981 |
[9] | 曹立勇, 朱军, 颜启传, 何立斌, 魏兴华, 程式华. 水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析. 中国水稻科学, 2002, 16(3):24-27. |
Cao L Y, Zhu J, Yan Q C, He L B, Wei X H, Cheng S H. Mapping QTLs with Epistasis for mesocotyl length in a DH population from indica-japonica cross of rice(Oryza sativa). Chin J Rice Sci, 2002, 16(3):24-27 (in Chinese with English abstract). | |
[10] |
Liu H, Zhan J, Li J, Lu X, Liu J, Wang Y, Zhao Q, Ye G. Genome-wide association study (GWAS) for mesocotyl elongation in rice (Oryza sativa L.) under multiple culture conditions. Genes, 2019, 11:49-64.
doi: 10.3390/genes11010049 |
[11] |
Zhan J, Lu X, Liu H, Zhao Q, Ye G. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis. Planta, 2020, 251:1-14.
doi: 10.1007/s00425-019-03297-x |
[12] |
Zhao Y, Zhao W, Jiang C, Wang X, Xiong H, Todorovska E G, Yin Z, Chen Y, Wang X, Xie J, Pan Y, Rashid M A R, Zhang H, Li J, Li Z. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS. Front Plant Sci, 2018, 9:332-345.
doi: 10.3389/fpls.2018.00332 pmid: 29616055 |
[13] |
Sun S, Wang T, Wang L, Li X, Jia Y, Liu C, Huang X, Xie W, Wang X. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nat Commun, 2018, 9:2523-2535.
doi: 10.1038/s41467-018-04952-9 |
[14] |
Zheng J, Hong K, Zeng L, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, Xiong G. Karrikin signaling acts parallel to and additively with Strigolactone signaling to regulate rice mesocotyl elongation in darkness. Plant Cell, 2020, 32:2780-2805.
doi: 10.1105/tpc.20.00123 |
[15] |
Lee H S, Sasaki K, Kang J, Sato T, Song W, Ahn S. Mesocotyl elongation is essential for seedling emergence under deep- seeding condition in rice. Rice, 2017, 10:32-42.
doi: 10.1186/s12284-017-0173-2 |
[16] |
Das S, Upadhyaya H D, Baiai D, Kujur A, Badoni S, Narnoliya L, Kumar V, Tripathi S, Gowda C L, Sharma S, Sube S, Tyagi A K, Parida S. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res, 2015, 22:193-203.
doi: 10.1093/dnares/dsv004 |
[17] |
Lee H S, Sasaki K, Higashitani A, Ahn S N, Sato T. Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.). Rice, 2012, 5:13-22.
doi: 10.1186/1939-8433-5-13 |
[18] |
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14:1941-1955.
doi: 10.1111/pbi.2016.14.issue-10 |
[19] |
Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H, Zou D. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice, 2018, 11:1-12.
doi: 10.1186/s12284-017-0196-8 |
[20] | Farooqi M Q U, Ma S, Lee J K. Bulk segregant analysis for the improvement of drought resistance in maize (Zea mays L.) inbred lines as revealed by SSR molecular markers. Res J Biotechnol, 2018, 13:34-51. |
[21] |
Xu X, Li Q, Ma Z, Fan J, Zhou Y. Molecular mapping of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol Breed, 2018, 38:23-34.
doi: 10.1007/s11032-018-0783-4 |
[22] |
Li C, Ling F, Su G, Sun W, Liu H, Su Y, Xin Q. Location and mapping of the NCLB resistance genes in maize by bulked segregant analysis (BSA) using whole genome re-sequencing. Mol Breed, 2020, 40:1-12.
doi: 10.1007/s11032-019-1080-6 |
[23] |
Miao L, Chao H, Chen L, Wang H, Zhao W, Li B, Zhang L, Li H, Wang B, Li M. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus. Theor Appl Genet, 2019, 132:1761-1775.
doi: 10.1007/s00122-019-03313-4 |
[24] |
Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016, 6:38493-38502.
doi: 10.1038/srep38493 pmid: 27922076 |
[25] |
Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet, 2014, 127:1491-1499.
doi: 10.1007/s00122-014-2313-z |
[26] |
Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice, 2020, 13:55-68.
doi: 10.1186/s12284-020-00416-1 pmid: 32778977 |
[27] |
Ehrenreich I M, Torabi N, Jia Y, Kent J, Martis S, Shapiro J A, Gresham D, Caudy A A, Kruglyak L. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature, 2020, 464:1039-1042.
doi: 10.1038/nature08923 |
[28] |
Abe A, Shunichi K, Kentaro Y, Satoshi N, Hiroki T, Hiroyuki K, Hideo M, Kakoto Y, Chikako M, Muluneh T, Hideki I, Liliana C, Sophien K, Ryohei T. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30:174-178.
doi: 10.1038/nbt.2095 |
[29] |
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74:174-183.
doi: 10.1111/tpj.2013.74.issue-1 |
[30] | Mansfeld B N, Grumet R. QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genome, 2018, 11:1-5. |
[31] |
Kosambi D D. The estimation of map distance from recombination values. Ann Eugen, 1943, 12:172-175.
doi: 10.1111/j.1469-1809.1943.tb02321.x |
[32] |
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001 |
[33] |
Watanabe H, Hase S, Saigusa M. Effects of the combined application of ethephon and gibberellin on growth of rice (Oryza sativa L.) seedlings. Plant Prod Sci, 2007, 10:468-472.
doi: 10.1626/pps.10.468 |
[34] |
Gray W M, Ostin A, Sandberg G, Romano C P, Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95:7197-7202.
doi: 10.1073/pnas.95.12.7197 |
[35] |
Romano C P, Robson P R H, Smith H, Estelle M, Klee H. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol, 1995, 27:1071-1083.
pmid: 7766890 |
[36] |
Watanabe H, Takahashi K, Saigusa M. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regul, 2001, 34:273-275.
doi: 10.1023/A:1013333718573 |
[37] |
Hu Z, Yamauchi T, Yang J, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol, 2014, 55:30-41.
doi: 10.1093/pcp/pct150 |
[38] |
Redona E D, Mackill D J. Mapping quantitative trait loci for seeding vigor in rice using RFLPs. Theor Appl Genet, 1996, 92:395-402.
doi: 10.1007/BF00223685 |
[39] | Katsuta-Seki M, Ebana K, Okuno K. QTL analysis for mesocotyl elongation in rice. Rice Genet Newsl, 1996, 13:126. |
[40] |
Wu J, Feng F, Lian X, Teng X, Wei H, Yu H, Xie W, Yan M, Fan P, Li Y, Ma X, Liu H, Yu S, Wang G, Zhou F, Luo L, Mei H. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol, 2015, 15:218-227.
doi: 10.1186/s12870-015-0608-0 |
[41] |
Zhao G, Wang J. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod Sci, 2008, 11:423-429.
doi: 10.1626/pps.11.423 |
[42] | Masuda Y. Auxin-induced cell elongation and cell wall changes. J Plant Res, 1990, 103:345-370. |
[43] |
Watanabe H, Takahashi K, Saigusa M. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regul, 2001, 34:273-275.
doi: 10.1023/A:1013333718573 |
[44] |
Zhang C, Huang Y, Xiao Z, Yang H, Hao Q, Yuan S, Chen H, Chen L, Chen S, Zhou X, Huang W. A GATA transcription factor from soybean (Glycine max) regulates chlorophyll biosynthesis and suppresses growth in the transgenic Arabidopsis thaliana. Plants, 2020, 9:1036-1041.
doi: 10.3390/plants9081036 |
[45] |
Ye H, Du H, Tang N, Li X, Xiong L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol, 2009, 71:291-305.
doi: 10.1007/s11103-009-9524-8 |
[46] | Nutan K K, Singla-Pareek S L, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. J Exp Bot, 2019, 71:684-698. |
[47] |
Zhang L, Li Q, Dong H, He Q, Liang L, Tan C, Han Z, Yao W, Li G, Zhao H, Xie W, Xing Y. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci Rep, 2015, 5:7663-7673.
doi: 10.1038/srep07663 pmid: 25563494 |
[48] |
Liu D, Zehfroosh N, Hancock B L, Hines K, Fang W, Kilfoil M, Learned-Miller E, Sanguinet K A, Goldner L S, Baskin T I. Imaging cellulose synthase motility during primary cell wall synthesis in the grass Brachypodium distachyon. Sci Rep, 2017, 7:15111-15122.
doi: 10.1038/s41598-017-14988-4 |
[49] |
Inouhe M, Inada G, Thomas B R, Nevins D J. Cell wall autolytic activities and distribution of cell wall glucanases in Zea mays L. seedlings. Int J Biol Macromol, 2000, 27:151-156.
pmid: 10771065 |
[50] |
Erp H V, Walton J D. Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl. Planta, 2009, 229:885-897.
doi: 10.1007/s00425-008-0881-3 |
[51] |
Zhuang J, Jiang H H, Wang F, Peng R H, Yao Q H, Xiong A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep, 2013, 31:1336-1345.
doi: 10.1007/s11105-013-0610-3 |
[52] |
Hwang S G, Kim D S, Hwang J E, Han A R, Jang C S. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541:82-91.
doi: 10.1016/j.gene.2014.02.060 |
[53] |
Li X, Yang D L, Sun L, Li Q, Mao B, He Z. The systemic acquired resistance regulator OsNPR1 attenuates growth by repressing auxin signaling through promoting IAA-amido synthase expression. Plant Physiol, 2016, 172:546-558.
doi: 10.1104/pp.16.00129 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
[4] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[5] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[6] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[7] | ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133. |
[8] | XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902. |
[9] | LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387. |
[10] | WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843. |
[11] | WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677. |
[12] | JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565. |
[13] | HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227. |
[14] | Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187. |
[15] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
|