Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3045-3056.doi: 10.3724/SP.J.1006.2022.12080

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of functional markers and genotype screening for nitrogen use efficiency genes in rice

TAO Ya-Jun1,3(), ZHU Jing-Yan2, WANG Jun1,3, FAN Fang-Jun1,3, XU Yang1,3, LI Wen-Qi1,3, WANG Fang-Quan1,3, CHEN Zhi-Hui1,3, JIANG Yan-Jie1,3, ZHU Jian-Ping1,3, LI Xia1,3, YANG Jie1,3()   

  1. 1Jiangsu High Quality Rice Center / Nanjing Branch of Chinese National Center for Rice Improvement / Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-11-29 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-20
  • Contact: YANG Jie E-mail:ricetao@163.com;yangjie168@aliyun.com
  • Supported by:
    Jiangsu Province Key Research and Development Program Modern Agriculture(BE2020339);Natural Science Foundation of Jiangsu Province(BK20190255);National Natural Science Foundation of China(31901525);Jiangsu Province Key Research and Development Program Modern Agriculture(BE2021374);International Cooperation and Exchange of the National Natural Science Foundation of China(31861143011);Jiangsu Agricultural Science and Technology Innovation Fund(CX(19)1002)

Abstract:

Nitrogen is an essential mineral element that affects plants biomass and yield formation, and its efficient and reasonable utilization is an important guarantee for sustainable agricultural. Breeding rice varieties containing high nitrogen use efficiency (NUE) genes is an effective way to increase NUE and reduce the amount of nitrogen fertilizer. In this study, five genes, OsNR2, OsNPF6.1, OsTCP19, OsLHT1, and OsGRF4, were selected from the aspects of nitrogen absorption, transportation, and assimilation. Based on the reported functional haplotype, co-segregated markers were designed. Using six pairs of allele-specific PCR (AS-PCR) markers and one pair of InDel marker, 70 indica rice, 34 japonica rice, and 84 Taihu rice resources were identified. The results showed that OsNR2 was widely distributed in indica rice, while OsNPF6.1, OsTCP19, and OsGRF4 were less distributed. All 34 japonica rice and 84 Taihu rice resources only contained OsLHT1. We also successfully obtained two indica germplasms, which contained OsNR2, OsNPF6.1, and OsGRF4. The functional markers developed in this research and two materials provide technical support for breeding new rice varieties with high NUE through molecular marker-assisted selection (MAS) methods.

Key words: rice, high nitrogen-use efficiency, AS-PCR, InDel markers

Table 1

Functional marker primers designed based mutation sites"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
PCR片段大小
PCR fragment (bp)
NR2-F AGGGCGAGGACCCCAAGT
NR2-R GTCGTCGGGCTGGTCCCA 242
nr2-R GTCGTCGGGCTGGTCCCT 242
NPF6.1-F ATTATGGAACGGAGGGAG
NPF6.1-R CCCGGATGTCCACAACAC 246
npf6.1-R CCCGGATGTCCACAACAT 246
TCP19-INDEL-F TAACTCTTCAGGGTTCTTGC
TCP19-INDEL-R TGTGCCGTGTCACATAGA 253
LHT1-1-F GTTGCGGCTGACAATAAA
LHT1-1-R AGCATGGGGTCAAAGCAA 317
lht1-1-R AGCATGGGGTCAAAGCAG 317
LHT1-2-F TCATAATGCTTACCCTCT
LHT1-2-R TGGAGGGTTGACTCGTAA 166
lht1-2-R TGGAGGGTTGACTCGTAT 166
GRF4-1-F AACCAAATAAGCCCTTCA
GRF4-1-R ATGTGATAAAAAAGCTGTAA 329
grf4-1-R ATGTGATAAAAAAGCTGTAT 329
GRF4-2-F AACCAAATAAGCCCTTCA
GRF4-2-R TAGTTCACGCTAAAATTAG 410
grf4-2-R TAGTTCACGCTAAAATTAA 410

Fig. 1

Functional classification and variations of NUE genes in rice A: the functional classification of NUE genes; B: the variations of NUE genes."

Fig. 2

PCR amplification of different functional markers Lane 1, 3: NR2 marker; Lane 2, 4: nr2 marker; Lane 5, 7: NPF6.1 marker; Lane 6, 8: npf6.1 marker; Lane 9, 11: LHT1-1 marker; Lane 10, 12: lht1-1 marker; Lane 13, 15: LHT1-2 marker; Lane 14, 16: lht1-2 marker; Lane 17, 19: GRF4-1 marker; Lane 18, 20: grf4-1 marker; Lane 21, 23: GRF4-2 marker; Lane 22, 24: grf4-2 marker; Lane 25: PCR amplification of ‘Nipponbare’ using TCP19-INDEL marker; Lane 26: PCR amplification of ‘Kasalath’ using TCP19-InDel marker. M: DL2000 marker."

Table 2

Amplification parents and sites of designed functional markers"

标记名称
Marker name
扩增亲本
Amplification parent
扩增位点
Amplification site
NR2 NIP OsNR2779T
nr2 9311 OsNR2779A
NPF6.1 NIP OsNPF6.1160G
npf6.1 NJ11 OsNPF6.1160A
TCP19 NIP, Kasalath OsTCP启动子区29 bp的InDel A 29 bp InDel in the OsTCP19 promoter
LHT1-1 NIP OsLHT1-2140T
lht1-1 9311 OsLHT1-2140C
LHT1-2 NIP OsLHT1-595T
lht1-2 9311 OsLHT1-595A
GRF4-1 NIP OsGRF4-884T
grf4-1 RD23 OsGRF4-884A
GRF4-2 NIP OsGRF4-801C
grf4-2 RD23 OsGRF4-801T

Table 3

Distribution of NUE genes in indica"

材料Material OsNR2 OsNPF6.1 OsTCP19 OsLHT1-1 OsLHT1-2 OsGRF4-1 OsGRF4-2
951227 1 1 0 0 0 1 1
南京16 Nanjing 16 1 1 0 0 0 1 1
Z03108 1 1 0 0 0 0 0
04-286 1 1 0 0 0 0 0
扬稻8号 Yangdao 8 1 1 0 0 0 0 0
扬州98127 Yangzhou 98127 1 1 0 0 0 0 0
9311 1 1 0 0 0 0 0
中佳2号 Zhongjia 2 1 1 0 0 0 0 0
苏农3004 Sunong 3004 1 1 0 0 0 0 0
扬籼9850 Yangxian 9850 1 1 0 0 0 0 0
R6547 1 1 0 0 0 0 0
R6548 1 1 0 0 0 0 0
镇籼886 Zhenxian 886 1 0 0 0 0 0 0
IRRI超高产系 IRRI super high-yield line 1 0 0 0 0 0 0
金桂占选 Jinguizhanxuan 1 0 0 0 0 1 1
广超丝苗 Guangchaosimiao 1 0 0 0 0 0 0
玉香油占 Yuxiangyouzhan 1 0 0 0 0 0 0
银花占2号 Yinhuazhan 2 1 0 0 0 0 0 0
丰华占 Fenghuazhan 1 0 0 0 0 0 0
茉莉软占 Moliruanzhan 1 0 0 0 0 0 0
黄华占 Huanghuazhan 1 0 0 0 0 0 0
五山油占 Wushanyouzhan 1 0 1 0 0 0 0
茉莉丝占 Molisizhan 1 0 0 0 0 0 0
矮秀占 Aixiuzhan 1 0 0 0 0 0 0
茉莉油占 Moliyouzhan 1 0 0 0 0 0 0
丰新占 Fengxinzhan 1 0 1 0 0 0 0
黄美占 Huangmeizhan 1 0 0 0 0 0 0
黄莉占 Huanglizhan 1 0 0 0 0 0 0
黄丝占 Huangsizhan 1 0 0 0 0 0 0
丰二占 Feng’erzhan 1 0 0 0 0 0 0
华新占 Huaxinzhan 1 0 0 0 0 0 0
新514 Xin 514 1 1 0 0 0 0 0
R9912 1 0 0 0 0 1 1
浙恢7954 Zhehui 7954 1 0 0 0 0 0 0
泸恢17 Luhui 17 1 1 0 0 0 0 0
蜀恢881 Shuhui 881 1 0 0 0 0 0 0
恢76 Hui76 1 0 0 0 0 0 0
辐恢718 Fuhui 718 1 0 0 0 0 0 0
内香恢1号 Neixianghui 1 1 1 0 0 0 0 0
内多恢1号 Neiduohui 1 1 1 0 0 0 0 0
盐恢559 Yanhui 559 1 0 0 0 0 0 0
川恢725 Chuanhui 725 1 0 0 0 0 0 0
广恢128 Guanghui 128 1 0 0 0 0 0 0
湘747 Xiang 747 1 0 0 0 0 0 0
丰籼1号 Fengxian 1 1 0 0 0 0 0 0
小农占 Xiaonongzhan 1 0 0 0 0 0 0
五山丝苗 Wushansimiao 1 0 0 0 0 0 0
黄花占 Huanghuazhan 1 0 0 0 0 0 0
粤香占 Yuexiangzhan 1 0 0 0 0 0 0
粤禾丝苗 Yuehesimiao 1 1 0 0 0 0 0
粤综占 Yuezongzhan 1 1 0 0 0 0 0
粤农丝苗 Yuenongsimiao 1 1 0 0 0 0 0
金农丝苗 Jinnongsimiao 1 0 0 0 0 0 0
宁317 Ning 317 1 0 0 0 0 0 0
南农3017 Nannong 3017 1 1 0 0 0 0 0
泸恢195 Luhui 195 1 0 0 0 0 0 0
泸恢17 Luhui 17 1 0 0 0 0 0 0
桂99 Gui 99 1 0 0 0 0 0 0
辐恢838 Fuhui 838 1 0 0 0 0 0 0
Basmati-1 1 0 0 0 0 0 0
成恢149 Chenghui 149 1 0 0 0 0 0 0
绵恢725 Mianhui 725 1 1 0 0 0 0 0
E32辐照选-15 E32 radiation-15 1 1 0 0 0 0 0
成恢22 Chenghui 22 1 1 0 0 0 0 0
中香11 Zhongxiang 11 1 0 0 0 0 1 1
L30012 1 1 0 0 0 0 0
新513 Xin 513 1 0 0 0 0 0 0
胜泰1号 Shengtai 1 1 0 0 0 0 0 0
L30015 1 0 0 0 0 0 0
Kasalath 1 1 0 0 0 0 0

Table 4

Distribution of NUE genes in japonica"

材料Material OsNR2 OsNPF6.1 OsTCP19 OsLHT1-1 OsLHT1-2 OsGRF4-1 OsGRF4-2
连粳7号 Lianjing 7 0 0 0 1 1 0 0
连粳10号 Lianjing 10 0 0 0 1 1 0 0
徐稻3号 Xudao 3 0 0 0 1 1 0 0
淮稻5号 Huaidao 5 0 0 0 0 0 0 0
盐稻8号 Yandao 8 0 0 0 0 0 0 0
扬育粳2号 Yangyujing 2 0 0 0 1 1 0 0
扬9709 Yang 9709 0 0 0 1 1 0 0
扬中稻1号 Yangzhongdao 1 0 0 0 1 1 0 0
武陵粳1号 Wulingjing 1 0 0 0 1 1 0 0
扬辐粳1号 Yangfujing 1 0 0 0 1 1 0 0
宁粳1号 Ningjing 1 0 0 0 1 1 0 0
南粳49 Nanjing 49 0 0 0 1 1 0 0
南粳46 Nanjing 46 0 0 0 1 1 0 0
南粳5055 Nanjing 5055 0 0 0 1 1 0 0
苏沪香粳 Suhuxiangjing 0 0 0 1 1 0 0
武香粳14号 Wuxiangjing 14 0 0 0 1 1 0 0
武运粳7号 Wuyunjing 7 0 0 0 1 1 0 0
武运粳23号 Wuyunjing 23 0 0 0 1 1 0 0
苏香粳2号 Suxiangjing 2 0 0 0 1 1 0 0
嘉33 Jia 33 0 0 0 1 1 0 0
嘉991 Jia 991 0 0 0 1 1 0 0
镇稻1号 Zhendao 1 0 0 0 1 1 0 0
日辉粳6号 Rihuijing 6 0 0 0 0 0 0 0
泗阳紫稻 Siyangzidao 0 0 0 1 1 0 0
楚粳39 Chujing 39 0 0 0 0 0 0 0
云光104 Yunguang 104 0 0 0 1 1 0 0
粳优165 Jingyou 165 0 0 0 1 1 0 0
小粒香 Xiaolixiang 0 0 0 1 1 0 0
越光BL Yueguang BL 0 0 0 1 1 0 0
苏秀867 Suxiu 867 0 0 0 1 1 0 0
苏垦118 Suken 118 0 0 0 0 0 0 0
东北194 Dongbei 194 0 0 0 1 1 0 0
临稻16 Lindao 16 0 0 0 1 1 0 0
降糖稻 Jiangtangdao 0 0 0 0 0 0 0

Table 5

Distribution of NUE genes in Taihu resources"

材料Material NR2 NPF6.1 TCP19 LHT1-1 LHT1-2 GRF4-1 GRF4-2
抱芯太湖青 Baoxintaihuqing 0 0 0 1 1 0 0
矮脚太湖青 Aijiaotaihuqing 0 0 0 1 1 0 0
上海青 Shanghaiqing 0 0 0 1 1 0 0
海冬青 Haidongqing 0 0 0 1 1 0 0
常梗青 Changenqing 0 0 0 1 1 0 0
立更青 Ligengqing 0 0 0 1 1 0 0
齐江青 Qijiangqing 0 0 0 1 1 0 0
矮种罗汉黄 Aizhongluohanhuang 0 0 0 1 1 0 0
呆长青 Daichangqing 0 0 0 1 1 0 0
万年青 Wannianqing 0 0 0 1 1 0 0
韭菜青 Jiucaiqing 0 0 0 1 1 0 0
茭白叶青 Jiaobaiyeqing 0 0 0 1 1 0 0
大红稻(老来红) Dahongdao 0 0 0 1 1 0 0
老头老来红 Laotoulaolaihong 0 0 0 1 1 0 0
早黑头红 Zaoheitouhong 0 0 0 1 1 0 0
晚罗汉稻 Wanluohandao 0 0 0 1 1 0 0
晚牛毛黄 Wanniumaohuang 0 0 0 1 1 0 0
TH93 0 0 0 1 1 0 0
白石稻 Baishidao 0 0 0 1 1 0 0
大量稻 Daliangdao 0 0 0 1 1 0 0
白薄稻 Baibodao 0 0 0 1 1 0 0
二黑稻 Eeheidao 0 0 0 1 1 0 0
摧稻 Cuidao 0 0 0 1 1 0 0
红虹稻 Hongxiadao 0 0 0 1 1 0 0
鹅营白粳稻 Eyingbaijingdao 0 0 0 1 1 0 0
大穗头粳稻 Dasuitoujingdao 0 0 0 1 1 0 0
矮子粳稻 Aizijingdao 0 0 0 1 1 0 0
长黄稻 Changhuangdao 0 0 0 1 1 0 0
矮黄稻 Aihuangdao 0 0 0 1 1 0 0
减晚慢种 Jianwanmanzhong 0 0 0 1 1 0 0
天下第一种 Tianxiadiyizhong 0 0 0 1 1 0 0
红芒种 Hongmangzhong 0 0 0 1 1 0 0
矮洁种 Aijiezhong 0 0 0 1 1 0 0
瓜田种 Guatianzhong 0 0 0 1 1 0 0
龙沟种 Longgouzhong 0 0 0 1 1 0 0
老大种 Laodazhong 0 0 0 1 1 0 0
老虎种 Laohuzhong 0 0 0 1 1 0 0
余山种 Yushanzhong 0 0 0 1 1 0 0
TH262 0 0 0 1 1 0 0
江北种 Jiangbeizhong 0 0 0 1 1 0 0
TH274 0 0 0 1 1 0 0
TH275 0 0 0 1 1 0 0
白稻头 Baidaotou 0 0 0 1 1 0 0
TH284 0 0 0 1 1 0 0
TH301 0 0 0 1 1 0 0
TH303 0 0 0 1 1 0 0
TH324 0 0 0 1 1 0 0
TH345 0 0 0 1 1 0 0
TH346 0 0 0 1 1 0 0
TH359 0 0 0 1 1 0 0
不留名 Buliuming 0 0 0 1 1 0 0
TH369 0 0 0 1 1 0 0
甩杀极 Shuaishaji 0 0 0 1 1 0 0
TH373 0 0 0 1 1 0 0
TH374 0 0 0 1 1 0 0
TH376 0 0 0 1 1 0 0
TH380 0 0 0 1 1 0 0
TH382 0 0 0 1 1 0 0
TH384 0 0 0 1 1 0 0
TH385 0 0 0 1 1 0 0
南束罗汉黄 Nanshuluohanhuang 0 0 0 1 1 0 0
润叶黄 Runyehuang 0 0 0 1 1 0 0
TH390 0 0 0 1 1 0 0
有芒旱稻 Youmanghandao 0 0 0 1 1 0 0
TH394 0 0 0 1 1 0 0
TH403 0 0 0 1 1 0 0
TH407 0 0 0 1 1 0 0
TH413 0 0 0 1 1 0 0
六十子粳 Liushizijing 0 0 0 1 1 0 0
东方红1号(穗1) Dongfanghong 1 0 0 0 1 1 0 0
小红早 Xiaohongzao 0 0 0 1 1 0 0
润叶黄 Runyehuang 0 0 0 1 1 0 0
早小白稻 Zaoxiaobaidao 0 0 0 1 1 0 0
抖山旱稻(陆稻) Doushanhandao 0 0 0 1 1 0 0
早飞来风 Zaofeilaifeng 0 0 0 1 1 0 0
一时兴 Yishixing 0 0 0 1 1 0 0
头等一时兴 Toudengyishixing 0 0 0 1 1 0 0
香粳糯稻 Xiangjingnuodao 0 0 0 1 1 0 0
TH433 0 0 0 1 1 0 0
TH434 0 0 0 1 1 0 0
TH436 0 0 0 1 1 0 0
红芒糯 Hongmangnuo 0 0 0 1 1 0 0
TH438 0 0 0 1 1 0 0
TH444 0 0 0 1 1 0 0

Table 6

Sequencing primers for NUE genes designed and SNP (InDel) analysis"

引物名称 Primer name 引物序列 Primer sequence (5'-3')
NR2-CX F: AGGGCGAGGACCCCAAGT; R: TGTCGAGGTCATAGCCCATCTT
NPF6.1-CX F: ATTATGGAACGGAGGGAG; R: GGAGATAGAGGGTGGTGAA
TCP19-CX F: TAACTCTTCAGGGTTCTTGC; R: TGTGCCGTGTCACATAGA
LHT1-1-CX F: GTTGCGGCTGACAATAAA; R: AATCTCGTGGGAAATCTG
LHT1-2-CX F: TCATAATGCTTACCCTCT; R: TTGTTTTGCTAACTCACA
GRF4-CX F: AACCAAATAAGCCCTTCA; R: TTAGTCTGCTGCTCCAAC

Fig. 3

Sequence alignment of functional domains for partial rice varieties A:the partial sequence of OsNR2 in the 9311; B: the partial sequence of OsNPF6.1 in R6547; C: the partial sequence of OsLHT1-1 in SK118; D: the partial sequence of OsLHT1-2 in Huaidao 5; E: the partial sequence of OsGRF4-1 in Jinguizhanxuan; F: the partial sequence of OsGRF4-2 in Nanjing 16; G: the partial sequence of OsTCP19 in Wushanyouzhan. Red box indicates different SNP or InDel."

[1] 张超普, 余四斌, 张启发. 绿色超级稻新品种选育研究进展. 生命科学, 2018, 30: 1083-1089.
Zhang C P, Yu S B, Zhang Q F. Recent advances in green super rice development. Chin Sci Bull, 2018, 30: 1083-1089. (in Chinese with English abstract)
[2] Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47: 834-838.
doi: 10.1038/ng.3337
[3] Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B, Chu C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590: 600-605.
doi: 10.1038/s41586-020-03091-w
[4] Gao Z, Wang Y, Chen G, Zhang A, Yang S, Shang L, Wang D, Ruan B, Liu C, Jiang H, Dong G, Zhu L, Hu J, Zhang G, Zeng D, Guo L, Xu G, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019, 10: 5207.
doi: 10.1038/s41467-019-13110-8
[5] Yan M, Fan X, Feng H, Miller A J, Shen Q, Xu G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ, 2011, 34: 1360-1372.
doi: 10.1111/j.1365-3040.2011.02335.x
[6] Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller A J, Xu G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot, 2015, 66: 317-331.
doi: 10.1093/jxb/eru425 pmid: 25332358
[7] Guo N, Hu J, Yan M, Qu H, Luo L, Tegeder M, Xu G. Oryza sativa Lysine-Histidine-type Transporter 1 functions in root uptake and root-to-shoot allocation of amino acids in rice. Plant J, 2020, 103: 395-411.
doi: 10.1111/tpj.14742
[8] Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560: 595-600.
doi: 10.1038/s41586-018-0415-5
[9] Tang W, Ye J, Yao X, Zhao P, Xuan W, Tian Y, Zhang Y, Xu S, An H, Chen G, Yu J, Wu W, Ge Y, Liu X, Li J, Zhang H, Zhao Y, Yang B, Jiang X, Peng C, Zhou C, Terzaghi W, Wang C, Wan J. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[10] Xu G, Fan X, Miller A. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[11] Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554-560.
pmid: 14607101
[12] 方琳, 陶亚军, 张灵, 范方军, 张爱伟, 李文奇, 王芳权, 许扬, 陈智慧, 蒋彦婕, 杨杰, 王军. 水稻氮高效基因NRT1.1B功能标记开发和资源筛选. 分子植物育种, 2020, 18: 7795-7800.
Fang L, Tao Y J, Zhang L, Fan F J, Zhang A W, Li W Q, Wang F Q, Xu Y, Jiang Y J, Yang J, Wang J. Development of functional marker and screening resources for high nitrogen use efficiency gene NRT1.1B in rice. Mol Plant Breed, 2020, 18: 7795-7800. (in Chinese with English abstract)
[13] 王军, 杨杰, 陈志德, 仲维功. 稻香米基因标记的开发与应用. 分子植物育种, 2008, 6: 1209-1212.
Wang J, Yang J, Chen Z D, Zhong W G. Development and application of fragrance gene markers in rice. Mol Plant Breed, 2008, 6: 1209-1212. (in Chinese with English abstract)
[14] 王军, 赵婕宇, 许扬, 范方军, 朱金燕, 李文奇, 王芳权, 费云燕, 仲维功, 杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用. 作物学报, 2018, 44: 1612-1620.
Wang J, Zhao J Y, Xu Y, Fan F J, Zhu J Y, Li W Q, Wang F Q, Fei Y Y, Zhong W G, Yang J. development and application of functional markers for rice blast resistance gene Bsr-d1 in rice. Acta Agron Sin, 2018, 44: 1612-1620. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01612
[15] 王芳权, 陈智慧, 许扬, 王军, 李文奇, 范方军, 陈丽琴, 陶亚军, 仲维功, 杨杰. 水稻广谱抗稻瘟病基因PigmR功能标记的开发及应用. 中国农业科学, 2019, 52: 955-967.
Wang F Q, Chen Z H, Xu Y, Wang J, Li W Q, Fan F J, Chen L Q, Tao Y J, Zhong W G, Yang J. Development and application of the functional marker for the broad-spectrum blast resistance gene PigmR in rice. Sci Agric Sin, 2019, 52: 955-967. (in Chinese with English abstract)
[16] 陈智慧, 王芳权, 许扬, 王军, 李文奇, 范方军, 仲维功, 杨杰. 软米基因Wx-mp在部分粳稻品种资源中的分布. 植物遗传资源学报, 2019, 20: 975-981.
Chen Z H, Wang F Q, Xu Y, Wang J, Li W Q, Fan F J, Zhong W G, Yang J. The distribution of low amylose content allele Wx-mp in japonica rice. J Plant Genet Res, 2019, 20: 975-981. (in Chinese with English abstract)
[17] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40: 1999-2007.
doi: 10.3724/SP.J.1006.2014.01999
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars andtheir relationship with root morphology and physiology. Acta Agron Sin, 2014, 40: 1999-2007 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01999
[18] Song M, Fan X, Chen J, Qu H, Luo L, Xu G. OsNAR2.1 Interaction with OsNIT1 and OsNIT2 functions in root-growth responses to nitrate and ammonium. Plant Physiol, 2020, 183: 289-303.
doi: 10.1104/pp.19.01364 pmid: 32071150
[19] Huang S, Liang Z, Chen S, Sun H, Fan X, Wang C, Xu G, Zhang Y. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol, 2019, 180: 882-895.
doi: 10.1104/pp.19.00142
[20] Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genomics, 2016, 43: 639-649.
doi: 10.1016/j.jgg.2016.11.001
[21] Ranathunge K, El-Kereamy A, Gidda S, Bi Y, Rothstein S. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot, 2014, 65: 965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570
[22] Tang Z, Fan X, Li Q, Feng H, Miller A J, Shen Q, Xu G. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol, 2012, 160: 2052-2063.
doi: 10.1104/pp.112.204461 pmid: 23093362
[23] Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller A J, Xu G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 2016, 113: 7118-7123.
doi: 10.1073/pnas.1525184113
[24] Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943.
doi: 10.1093/pcp/pct046 pmid: 23509111
[25] Ohashi M, Ishiyama K, Kojima S, Kojima M, Sakakibara H, Yamaya T, Hayakawa T. Lack of cytosolic glutamine synthetase1;2 activity reduces nitrogen-dependent biosynthesis of cytokinin required for axillary bud outgrowth in rice seedlings. Plant Cell Physiol, 2017, 58: 679-690.
doi: 10.1093/pcp/pcx022 pmid: 28186255
[26] Yang X, Nian J, Xie Q, Feng J, Zhang F, Jing H, Zhang J, Dong G, Liang Y, Peng J, Wang G, Qian Q, Zuo J. Rice Ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol Plant, 2016, 9: 1520-1534.
doi: 10.1016/j.molp.2016.09.004
[27] Zeng D D, Qin R, Li M, Alamin M, Jin X L, Liu Y, Shi C H. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol Genet Genomics, 2017, 292: 385-395.
doi: 10.1007/s00438-016-1275-z
[1] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[2] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[3] JIANG Yan, ZHAO Can, CHENG Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[4] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[5] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[6] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[7] WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324.
[8] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[9] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[10] SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: a case study of Hunan province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420.
[11] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[12] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[13] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[14] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[15] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .