Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 873-885.doi: 10.3724/SP.J.1006.2022.14043

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.]

DU Xiao-Fen(), WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun*()   

  1. Millet Research Institute of Shanxi Agricultural University / Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding / Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, Shanxi, China
  • Received:2021-03-15 Accepted:2021-07-12 Online:2022-04-12 Published:2021-07-24
  • Contact: WANG Jun E-mail:dxf6285210@126.com;128wan@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Natural Science Foundation Cultivation Project of Shanxi Academy of Agricultural Sciences(YGJPY1906);Shanxi Province Science Fund(201901D1114545);Shanxi Province Youth Fund(201901D211556);Agricultural Science and Technology Innovation Research Project of Shanxi Academy of Agricultural Sciences(YCX2020YQ35);Minor Crop Molecular Breeding Platform Special Project of Shanxi Academy of Agricultural Sciences(YGC2019FZ3)

Abstract:

RNA editing is one of the post-transcriptional regulation mechanisms of gene expression in the chloroplast genomes of higher plants, which affects the chloroplast development and leads to albino phenotype or yellow phenotype of plant leaves. In this study, chlorophyll content was measured with a UV spectrophotometer at seeding stage among Changnong 35, E752, and E1005, and chloroplast structure of leaves was observed with a transmission electron microscopy; the online tool Prep-CP was used to predict the RNA editing sites of chloroplast genes; RNA editing site was verified by PCR, RT-PCR, and sequencing method, and the editing sites were compared and analyzed between foxtail millet and other monocotyledon. Furthermore, the relative expression patterns of rpoB and PEP-transcription-dependent photosynthetic pathway related genes (ndhG, psaA, psbA, and rbcL) were analyzed by qRT-PCR at different developmental stages, and the secondary structure of rpoB protein before and after editing was analyzed by bioinformatics. The results showed that chlorophyll content of E752 and E1005 were significantly lower and their chloroplasts were abnormal compared with Changnong 35. A total of 20 RNA editing sites of 10 chloroplast genes were identified, among which all were C to U conversion; the number of editing sites among chloroplast genes was varied, and ndhB had the most editing sites with the number of 6. Among the 20 editing sites, 19 editing sites were highly conserved in the evolution of species, however rpoC1-2753 was a unique editing site in foxtail millet. The editing efficiency of rpoB-467, rpoB-545, and rpoB-560 was distinctly different from those of the other editing sites among Changnong 35, E752, and E1005, leading to the expression level change of ropB, which might further affect the expression levels changes of ndhG, psaA, psbA, and rbcL. Bioinformatics analysis revealed that secondary structure of rpoB protein was changed due to the RNA editing of rpoB-467 and rpoB-560. Our results laid a foundation for the molecular mechanism analysis of chloroplast RNA editing in chloroplast development of foxtail millet.

Key words: foxtail millet, chloroplast, RNA editing, mutant

Table 1

Primers used in this study"

引物名称
Marker name
引物序列
Sequence (5'-3')
产物大小
Product size (bp)
引物名称
Marker name
引物序列
Sequence (5'-3')
产物大小
Product size (bp)
atpA-F1 TCGCTTAATTGAATCTCCTG 946 rpoB-F1 ATCAGGGCTTGGCAGAAGA 875
atpA-R1 CGTTCCGGTATAAATGGTAG rpoB-R1 ATCCGCAACCGAACGAATA
ccsA-F1 TCTTAGTTTCTCGTTGGGTTTC 641 rpoC1-F1 AGGACGACTCAGAAGAAGAAT 1042
ccsA-R1 TGCAAATATGGTCCAGGTAAT rpoC1-R1 GAACAGTTGGATGCCGAC
matK-F1 GAGGGGTATTCAGAAAAACA 918 rps8-F1 ATGGGCAAGGACACTATTG 404
matK-R1 TTGTGAGAAATTGACAAGGTAA rps8-R1 ATATAACATAAGACTTCTCCCC
matK-F2 CACTTTTCTGGGAAGATGGA 780 rps14-F1 AAAAGTTTGATTCAGAGGGAG 302
matK-F2 CACCAGGTCATTGATACGG rps14-R1 TACCAACTGGATCTTGTTGC
ndhA-F1 ATGGATTCTACCCATTTTGAC 982 ycf3-F1 CTAGATCCCGTATAAATGGAA 498
ndhA-R1 TGTTAATAAGAGATTGCCCAG ycf3-R1 GCTTCGTAATCTTCAACCAGT
ndhB-F1 TTTATGTGGTGCTAACGATT 1073 ndhG-Real-Time-F GCCTTTTCGCTGGGATTAG 155
ndhB-R1 GGTTCATTGATATTCCTGGT ndhG-Real-Time-R GACCACTCTGAGCCGTTTACA
ndhD-F1 ACTTGTTGTTTTGCCGATAT 759 psaA-Real-Time-F TTTCTTAGGCGCTCATTTTGTC 151
ndhD-R1 ATCAATCCGTATGCTCCC psaA-Real-Time-R TATAATGCTCAAGGCTCTAGGC
ndhF-F1 TAATCCCTCTTCTCCCACTT 1132 psbA-Real-Time-F TTATGATTGTATTCCAGGCGGA 154
ndhF-R1 AAACCACCCATAAGAACCAT psbA-Real-Time-R GCAGACTCATTTTCAGTGGTTT
ndhF-F2 TGATCACTCATGCTTATTCGA 1010 rbcL-Real-Time-F CCGAAATCTTTGGAGACGATTC 105
ndhF-R2 ACCAGCAAGACCTACTCCAT rbcL-Real-Time-R CTTCTAAAGCCACACGATTAGC
petB-F1 ATGAGTATGAAATTTTCATATAC 689 rpoB-Real-Time-F AAACGTATTCGTTCGGTTGC 135
petB-R1 ATACCTTGCTTACGTATCA rpoB-Real-Time-R TACCAAAGTTTGTGGAGTCGG
rpl20-F1 AGAGTTCCGCGAGGATAT 325 SiActin-7-F TGATCTCACTGACAGTCTGATG 88
rpl20-R1 TCGTGTAAAGATTATTTGGATT SiActin-7-R GATGTCTCTTACAATTTCCCGC

Fig. 1

Phenotypes and ultrastructure of chloroplasts in Changnong 35, E1005, and E752 at seeding stage A-C: Changnong 35; D-F: E1005; G-I: E752; GL: grana lamellae; SG: starch granule; OP: osmiophilic granule."

Table 2

Comparison of pigment contents in leaves among Changnong 35, E752, and E1005 at seeding stage (mg g-1)"

材料
Material name
总叶绿素含量
Total chlorophyll
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
类胡萝卜素
Carotenoid
长农35号 Changnong 35 2.12±0.060 1.68±0.019 0.45±0.004 0.69±0.016
E752 1.55±0.050** 1.28±0.072* 0.27±0.031** 0.36±0.010**
E1005 0.99±0.017** 0.76±0.018** 0.24±0.002** 0.34±0.008**

Table 3

Prediction, validation, and comparison of RNA editing sites among Changnong 35, E752, and E1005"

基因
Gene ID
密码子位置
Codon position
密码子变化
Codon conversion
氨基酸转变
Amino acid conversion
长农35号
Changnong 35
E752 E1005
atpA 1148 uCa→uUa S→L + + +
ccsA 641 aCu→aUu T→I - - -
matK 331 Cuu→Tuu L→F - - -
1258 Cau→Uau H→Y - - -
ndhA 47 uCg→uUg S→L + + +
470 uCa→uUa S→L + + +
560 uCa→uUa S→L + + +
ndhB 467 cCa→cUa P→L + + +
586 Cau→Uau H→Y + + +
611 uCa→uUa S→L + + +
737 cCa→cUa P→L + + +
830 uCa→uUa S→L + + +
1481 cCa→cUa P→L + + +
ndhD 878 uCa→uUa S→L + + +
ndhF 62 uCa→uUa S→L - - -
1834 Cuu→Tuu L→F - - -
1909 Cuu→Tuu L→F - - -
petB 668 cCa→cUa P→L - - -
rpl20 308 uCa→uUa S→L + + +
rpoB* 467 uCa→uUa S→L +/- +/- +/-
545 uCa→uUa S→L +/- +/- +/-
560 uCa→uUa S→L +/- +/- +/-
617 cCa→cUa P→L + + +
rpoC1 2753 uCa→uUa S→L + + +
rps8 182 uCa→uUa S→L + + +
rps14 80 uCa→uUa S→L + + +
ycf3 44 uCc→uUc S→F - - -
191 aCg→aUg T→M + + +

Table 4

Comparison of RNA editing sites between Setaria italica and other seven monocots"

基因
Gene
密码子位置
Codon
position
谷子
Setaria italica
水稻
Oryza
sativa
黑麦
Lolium
perenne
玉米
Zea
mays
小麦
Triticum asetivum
大麦
Hordeum vulgare
野生二粒小麦
Triticum
dicoccoides
乌拉尔图小麦
Triticum
urartu
atpA 1148 + + + + + + + +
ccsA 641 -
matK 1258 - + +/- + + +
ndhA 47 + - + + + -
470 + + + + + + + +
560 + + + + + + + +
ndhB 467 + + + + + + + +
586 + + + + + + + +
基因
Gene
密码子位置
Codon
position
谷子
Setaria italica
水稻
Oryza
sativa
黑麦
Lolium
perenne
玉米
Zea
mays
小麦
Triticum asetivum
大麦
Hordeum vulgare
野生二粒小麦
Triticum
dicoccoides
乌拉尔图小麦
Triticum
urartu
611 + +/- + + + + + +
737 + + + + + + + -
830 + + + + + + + +
1481 + +/- + + + + + +
ndhD 878 + + +/- + + + + +
ndhF 62 - + + + + + - +
petB 668 - - + + - + +
rpl20 308 + - +/- + + + + +
rpoB 467 +/- +/- +/- + +/- + + +
545 +/- +/- +/- + +/- + + +
560 +/- +/- +/- + +/- + + +
617 + - - + + + +
rpoC1 2753 +
rps8 182 + + + + + - + +
rps14 80 + + - + - - +
ycf3 44 - - + + + + +
191 + +/- + +/- + + +

Fig. 2

Editing efficiency of rpoB among Changnong 35, E752, and E1005"

Fig. 3

Relative expression patterns of rpoB genes at different development stages * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 4

Relative expression patterns of photosynthetic pathway genes at different development stages * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 5

Protein structure on rpoB before and after editing A: the prediction of trans-membrane structure of rpoB before and after editing; the horizontal axis represents the sequence number of amino acid residues; the vertical axis represents the probability value of each amino acid in different position of membrane. B: the prediction of protein secondary structure of rpoB before and after editing; the arrows refer to the editing sites; blue: α-helix; green: β-fold; yellow: random coil; red: extended strand."

[1] Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Zhao Z. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30:549-554.
doi: 10.1038/nbt.2195
[2] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30:555-561.
doi: 10.1038/nbt.2196 pmid: 22580951
[3] 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29:292-301.
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica(L.) P. Beauv.): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29:292-301 (in Chinese with English abstract).
[4] 涂政军, 邹国兴, 黄李超, 陈龙, 代丽萍, 高易宏, 冷语佳, 朱丽, 张光恒, 胡江, 任德勇, 高振宇, 董国军, 陈光, 郭龙彪, 钱前, 曾大力. 水稻淡绿叶基因PGL11的鉴定与精细定位. 中国水稻科学, 2017, 31:489-499.
Tu Z J, Zou G X, Huang L C, Chen L, Dai L P, Gao Y H, Leng Y J, Zhu L, Zhang G H, Hu J, Ren D Y, Gao Z Y, Dong G J, Chen G, Guo L B, Qian Q, Zeng D L. Identification and fine mapping of pale green leaf PGL11 in rice. Chin J Rice Sci, 2017, 31:489-499 (in Chinese with English abstract).
[5] 李玲锋, 熊玉毅, 欧阳林娟, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 孙晓棠, 朱昌兰. 水稻白条纹叶及白穗突变体wlp6的鉴定与基因定位. 中国水稻科学, 2018, 32:538-548.
Li L F, Xiong Y Y, Ou-Yang L J, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Hu L F, Xu J, He H H, Sun X T, Zhu C L. Identification and gene mapping of white stripe leaf and white panicle mutant wlp6 in rice. Chin J Rice Sci, 2018, 32:538-548 (in Chinese with English abstract).
[6] Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1980, 20:663-668.
doi: 10.2135/cropsci1980.0011183X002000050030x
[7] Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17:233-240.
doi: 10.1105/tpc.104.027276
[8] 李传宗. 谷子苗期黄叶性状的生理基础及候选基因鉴定. 中国农业科学院硕士学位论文,北京, 2020.
Li C Z. Physiological Basis and Gene Mapping of Yellow Seeding Character in Foxtail Millet. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2020 (in Chinese with English abstract).
[9] Li W, Tang S, Zhang S, Shan J G, Tang C J, Chen Q N, Jia G Q, Han Y H, Zhi H, Diao X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica(L.) P. Beauv]. Physiol Plant, 2016, 157:24-37.
[10] Zhang S, Tang S, Tang C J, Luo M Z, Jia G Q, Zhi H, Diao X M. SiSTL2 is required for cell cycle, leaf organ development, chloroplast biogenesis, and has effects on C4 photosynthesis in Setaria italica(L.) P. Beauv. Front Plant Sci, 2018, 9:1103.
doi: 10.3389/fpls.2018.01103 pmid: 30105043
[11] Tang C J, Tang S, Zhang S, Luo M Z, Jia G Q, Zhi H, Diao X M. SiSTL1 encoding a large subunit of RNR, is crucial for plant growth, chloroplast biogenesis, and cell cycle progression in Setaria italica. J Exp Bot, 2019, 70:1167-1182.
doi: 10.1093/jxb/ery429
[12] Benne R, Van den Burg J, Brakenhoff J P, Sloof P, Van Boom J H, Tromp M C. Major transcript of the frame shifted cox II gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell, 1986, 46:819-826.
pmid: 3019552
[13] Maier U G, Bozarth A, Funk H T, Zauner S, Rensing S A, Schmitz-Linneweber C, Börner T, Tillich M. Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol, 2008, 6:36-36.
doi: 10.1186/1741-7007-6-36 pmid: 18755031
[14] Takahashi A, Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the International Space Station. Biol Sci Space, 2004, 18:255-260.
pmid: 15858393
[15] Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol, 2011, 191:37-47.
doi: 10.1111/j.1469-8137.2011.03746.x pmid: 21557747
[16] Cai W H, Ji D L, Peng L W, Guo J K, Ma J F, Zou M J, Lu C M, Zhang L X. LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol, 2009, 150:1260-1271.
doi: 10.1104/pp.109.136812
[17] Yu Q B, Jiang Y, Chong K, Yang Z N. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J, 2009, 59:1011-1023.
doi: 10.1111/tpj.2009.59.issue-6
[18] Tseng C C, Sun T Y, Li Y C, Hsu S J, Hsieh M H. Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol Biol, 2010, 73:309-323.
doi: 10.1007/s11103-010-9616-5
[19] Bock R, Kössel H, Maliga P. Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J, 1994, 13:4623-4628.
pmid: 7925303
[20] Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T. Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA, 2007, 104:8178-8183.
doi: 10.1073/pnas.0700865104
[21] Chateigner-Boutin A L, Small I. A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res, 2007, 35:e114.
doi: 10.1093/nar/gkm640
[22] Hoch B, Maier R M, Appel K, Igloi G L, Kossel H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature, 1991, 353:178-180.
doi: 10.1038/353178a0
[23] Kotera E, Tasaka M, Shikanai T. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature, 2005, 433:326-330.
doi: 10.1038/nature03229
[24] Maier R M, Neckermann K, Igloi G L, Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol, 1995, 251:614-628.
pmid: 7666415
[25] Corneille S, Lutz K, Maliga P. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable. Mol Gene Genet, 2000, 264:419-424.
[26] Diekmann K, Hodkinson T R, Wolfe K H, Rekerom R V D, Dix P J, Barth S. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.). DNA Res, 2009, 16:165-176.
doi: 10.1093/dnares/dsp008 pmid: 19414502
[27] 邓李坤, 李妍, 俞嘉宁. 小麦叶绿体蛋白质编码基因RNA编辑位点的测定及与返白现象的关系. 植物学报, 2012, 47:581-593.
doi: 10.3724/SP.J.1259.2012.00581
Deng L K, Li Y, Yu J N. RNA editing sites in chloroplast protein-coding genes in leaf white mutant of Triticum aestivum. Chin Bull Bot, 2012, 47:581-593 (in Chinese with English abstract).
[28] 马红战, 张保军, 樊虎玲. 大麦叶绿体基因RNA编辑位点的鉴定与分析. 麦类作物学报, 2013, 33:1071-1077.
Ma H Z, Zhang B J, Fan H L. Prediction and identification of RNA editing sites in the chloroplast genome of barley (Hordeum vulgare L). J Triticeae Crops, 2013, 33:1071-1077 (in Chinese with English abstract).
[29] 刘思妍, 冯克伟, 卞建新, 王萌, 杨智凯, 聂小军, 宋卫宁. 野生二粒小麦叶绿体基因RNA编辑位点的鉴定与分析. 麦类作物学报, 2015, 35:1609-1616.
Liu S Y, Feng K W, Bian J X, Wang M, Yang Z K, Nie N X, Song W N. Prediction and identification of the RNA editing sites in chloroplast transcripts of Triticum dicoccoides. J Triticeae Crops, 2015, 35:1609-1616 (in Chinese with English abstract).
[30] 葛玲巧, Kumbhar F, 赵贤, 王萌, 王莎, 宋卫宁, 聂小军. 乌拉尔图小麦叶绿体基因RNA编辑位点的预测与鉴定. 分子植物育种, 2017, 15:2479-2488.
Ge L Q, Kumbhar F, Zhao X, Wang M, Wang S, Song W N, Nie X J. Prediction and identification of the RNA editing sites in chloroplast transcripts of Triticum urartu. Mol Plant Breed, 2017, 15:2479-2488 (in Chinese with English abstract).
[31] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol, 1949, 24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[32] Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17:53-57.
doi: 10.1023/A:1007585532036
[33] Mower J P. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res, 2009, 37:W253-W259.
doi: 10.1093/nar/gkp337
[34] 易平, 汪莉, 孙清萍, 朱英国. 红莲型细胞质雄性不育水稻线粒体atp6基因转录本的编辑位点研究. 生物化学与生物物理进展, 2002, 29:729-733.
Yi P, Wang L, Sun Q P, Zhu Y G. Study on the editing site in the transcript of atp6 of HL-rice mitochondria. Prog Biochem Biophys, 2002, 29:729-733 (in Chinese with English abstract).
[35] 江媛, 何筠, 范术丽, 俞嘉宁, 宋美珍. 棉花芽黄突变体十个叶绿体蛋白编码基因RNA编辑位点的测定及分析. 棉花学报, 2011, 23:3-9.
Jiang Y, He Y, Fan S L, Yu J N, Song M Z. The identification and analysis of RNA editing sites of 10 chloroplast protein-coding genes from virescent mutant of Gossypium hirsutum. Cotton Sci, 2011, 23:3-9 (in Chinese with English abstract).
[36] Huang W F, Zhang Y, Shen L Q, Fang Q, Liu Q, Gong C B, Zhang C, Zhou Y, Mao C, Zhu Y L, Zhang J H, Chen H P, Zhang Y, Lin Y J, Bock R, Zhou F. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. New Phytol, 2020, 228:1401-1416.
doi: 10.1111/nph.v228.4
[37] Wang Y, Ren Y L, Zhou K N, Liu L L, Wang J L, Xu Y, Zhang H, Zhang L, Feng Z M, Wang L W, Ma W W, Wang Y L, Guo X P, Zhang X, Lei C L, Cheng Z J, Wan J M. White stripe leaf 4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Front Plant Sci, 2017, 8:1116.
doi: 10.3389/fpls.2017.01116
[38] Liu X, Lan J, Huang Y S, Cao P H, Zhou C L, Ren Y K, He N Q, Liu S J, Tian Y L, Nguyen T, Jiang L, Wan J M. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. J Exp Bot, 2018, 69:3949-3961.
doi: 10.1093/jxb/ery214 pmid: 29893948
[39] Pfalz J, Bayraktar O A, Prikryl J, Barkan A. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J, 2009, 28:2042-2052.
doi: 10.1038/emboj.2009.121
[40] Khrouchtchova A, Monde R A, Barkan A. A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. RNA, 2012, 18:1197-1209.
doi: 10.1261/rna.032623.112 pmid: 22495966
[41] Zhang J H, Guo Y P, Fang Q, Zhu Y L, Zhang Y, Liu X J, Lin Y J, Barkan A, Zhou F. The PPR-SMR protein ATP4 is required for editing the chloroplast rps8 mRNA in rice and maize. Plant Physiol, 2020, 184:2011-2021.
doi: 10.1104/pp.20.00849
[42] Bentolila S, Heller W P, Sun T, Babina A M, Friso G, van Wijk K J, Hanson M R. RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci USA, 2012, 109:1453-1461.
[43] Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci USA, 2012, 109:5104-5109.
doi: 10.1073/pnas.1202452109
[44] Glass F, Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana. Mol Plant, 2015, 8:1466-1477.
doi: 10.1016/j.molp.2015.05.008
[45] Hackett J B, Shi X, Kobylarz A T, Lucas M K, Wessendorf R L, Hines K M, Bentolila S, Hanson M R, Lu Y. An organelle RNA recognition motif protein is required for photosystem II subunit psbF transcript editing. Plant Physiol, 2017, 173:2278-2293.
doi: 10.1104/pp.16.01623 pmid: 28213559
[46] Shi X, Castandet B, Germain A, Hanson M R, Bentolila S. ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing. J Exp Bot, 2017, 68:2833-2847.
doi: 10.1093/jxb/erx139
[47] Zhang F, Tang W J, Hedtke B, Zhong L, Liu L L, Peng L W, Lu C M, Grimm B, Lin R C. Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proc Natl Acad Sci USA, 2014, 111:2023-2028.
doi: 10.1073/pnas.1316183111
[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[4] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[5] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[6] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[7] WEN Qin, JIA Si-Si, WANG Jia-Feng, HUANG Cui-Hong, WANG Hui, CHEN Zhi-Qiang, GUO Tao. Construction and identification of haploid induction gene OsMATL mutants in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 827-836.
[8] MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu. Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet [J]. Acta Agronomica Sinica, 2021, 47(5): 837-846.
[9] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[10] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[11] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[12] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[13] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[14] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[15] JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!