Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1871-1883.doi: 10.3724/SP.J.1006.2022.13024

• REVIEWS • Previous Articles     Next Articles

Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize

GUO Yao(), CHAI Qiang*(), YIN Wen, FAN Hong   

  1. State Key Laboratory of Arid Land Crop Science / Faculty of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-03-19 Accepted:2022-02-22 Online:2022-08-12 Published:2022-03-09
  • Contact: CHAI Qiang E-mail:guoyaogsau@126.com;chaiq@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32101857);National Natural Science Foundation of China(U21A20218);Science and Technology Project of Gansu Province(20JR5RA037);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10);Central Government will Guide Local Science and Technology Development Projects(ZCYD-2021-10)

Abstract:

To ensure enough crop production of limited land area is important to food security. The key to solve this issue is to increase yield per unit area. Dense planting is an effective agronomic management practice to increase yield per unit area, photosynthetic rate would not be decreased or even improved by increasing planting density moderately, and then enhancing the yield per unit area. It is a key research focus on revealing the mechanism of photosynthetic physiology for improving yield per unit area by dense planting condition of maize. Dense planting would lead to change photosynthetic characteristics, so controlling the physiological factors that restricts photosynthesis is essential for increasing yield. Tap the photosynthetic physiologic potential for maize condition is physiological basis to ensure yield, which plays an important role in addressing food security issues. Therefore, this review focuses on the changes of the research methods and ideas in photosynthetic physiology, and the research status of the photosynthetic physiological response of maize adapted to dense planting and related agronomic regulation pathways at home and abroad, based on previous research results, so as to provide the theoretical and technical methods basis for photosynthetic physiology research. Based on the development trend of modern technology, it is believed that tapping photosynthetic potential and narrowing the gap between photosynthetic potential and actual photosynthetic efficiency are still the main goals of maize dense planting research by traditional research methods combined with molecular biology techniques in the future. In further study, research emphasis should be to investigate the responses of differential expression of photosynthetic physiological function genes to cultivation measures, clarifying the relationship and interaction between agronomic management practice and information expression of photosynthetic-related genes in densely planted maize, enhancing photosynthetic potential for maize via agronomic management practice and molecular biology technology, in order to provide photosynthetic physiological theory and practice to support for maize dense planting.

Key words: maize, dense planting, method changes, photosynthetic physiological, regulation approach

Fig. 1

Structural map for light excitation of chlorophyll molecules[11]"

Fig. 2

Hypothetical model depicting molecular mechanisms controlling red to far red ratio (R:FR) mediated elongation growth[41]"

Fig. 3

Simplified schematic model depicting the signaling pathway of PIFs and MIR156 to modulate shade-avoidance response in adult Arabidopsis plants[42]"

Fig. 4

Main effect of dense planting on photosynthetic physiology"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[2] Slattery R A, Ort D R. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol, 2021, 185: 34-48.
doi: 10.1093/plphys/kiaa006 pmid: 33631812
[3] Jia Q, Sun L, Mou H, Ali S, Liu D, Zhang Y, Zhang P, Ren X, Jia Z. Effects of planting patterns and sowing densities on grain- filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric Water Manage, 2018, 201: 287-298.
doi: 10.1016/j.agwat.2017.11.025
[4] Li T, Liu Y, Shi L, Jiang C D. Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol Biochem, 2015, 94: 86-94.
doi: 10.1016/j.plaphy.2015.05.008
[5] 李广浩, 刘娟, 董树亭, 刘鹏, 张吉旺, 赵斌, 石德杨. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响. 中国农业科学, 2017, 50: 2247-2258.
Li G H, Liu J, Dong S T, Liu P, Zhang J W, Zhao B, Shi D Y. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density- tolerance maize hybrids. Sci Agric Sin, 2017, 50: 2247-2258. (in Chinese with English abstract)
[6] Chapepa B, Mudada N, Mapuranga R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: an overview. J Cotton Res, 2020, 3: 6.
doi: 10.1186/s42397-020-00048-2
[7] Gonçalves A O, Silva E H F M, Gasparotto L G, Rosa J M, Carmo S, Fattori-Júnior I M, Marin F R. Improving indirect measurements of the leaf area index using canopy height. Pesq Agron Bras, 2020, 55: 1894.
[8] 孙华林, 耿石英, 王小燕, 熊勤学. 晚播条件下基于高光谱的小麦叶面积指数估算方法. 光谱学与光谱分析, 2019, 39: 1199-1206.
Sun H L, Geng S Y, Wang X Y, Xiong Q X. Estimation method of wheat leaf area index based on hyperspectral under late sowing conditions. Spect Spect Anal, 2019, 39: 1199-1206. (in Chinese with English abstract)
[9] Hill R. Oxygen evolved by isolated chloroplasts. Nature, 1937, 139: 881-882.
doi: 10.1038/139881a0
[10] Grieco M, Tikkanen M, Paakkarinen V, Kangasjärvi S, Aro E M. Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. Plant Physiol, 2012, 160: 1896-1910.
doi: 10.1104/pp.112.206466
[11] 许大全. 光合作用效率. 上海: 上海科学技术出版社, 2002. pp 9-37.
Xu D Q. Photosynthetic Efficiency. Shanghai: Shanghai Scientific & Technical Publishers 2002. pp 9-37. (in Chinese)
[12] Kurisu G, Zhang H M, Smith J L, Cramer W A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science, 2003, 302: 1009-1014.
pmid: 14526088
[13] Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature, 2004, 428: 287-292.
doi: 10.1038/nature02373
[14] Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature, 2016, 534: 69-74.
doi: 10.1038/nature18020
[15] Wang H W, Lei J L, Shi Y G. Biological cryo-electron microscopy in China. Prot Sci, 2016, 26: 16-31.
doi: 10.1002/pro.3018
[16] Zao L S, Huokko T, Wilson S, Simpson D M, Liu L. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat Plants, 2020, 6: 869-882.
doi: 10.1038/s41477-020-0694-3
[17] Ferreira K N, Iverson T M, Maghlaoui K. Architecture of the photosynthetic oxyen-evolving center. Science, 2004, 303: 1831-1838.
doi: 10.1126/science.1093087
[18] 柴华, 钟尚志, 崔海莹, 李杰, 孙伟. 植物呼吸释放CO2碳同位素变化研究进展. 生态学报, 2018, 38: 2616-2624.
Chai H, Zhong S Z, Cui H Y, Li J, Sun W. Variation in the carbon isotope composition of CO2 derived from plant autotrophic respiration. Acta Ecol Sin, 2018, 38: 2616-2624. (in Chinese with English abstract)
[19] Schloder E. Introduction to optical methods in photosynthesis. Photosyn Res, 2009, 101: 93-104.
doi: 10.1007/s11120-009-9446-y
[20] Filek M, Sieprawska A, Kościelniak J, Oklestkova J, Jurczyk B, Telk A, Biesaga-Kościelniak J, Janeczko A. The role of chloroplasts in the oxidative stress that is induced by zearalenone in wheat plants-the functions of 24-epibrassinolide and selenium in the protective mechanisms. Plant Physiol Biochem, 2019, 137: 84-92.
doi: 10.1016/j.plaphy.2019.01.030
[21] 张稳, 孟淑君, 王琪月, 万炯, 马拴红, 林源, 丁冬, 汤继华. 玉米pTAC2影响苗期叶片叶绿素合成的转录组分析. 中国农业科学, 2020, 53: 874-889.
Zhang W, Meng S J, Wang Q Y, Wan J, Ma S H, Lin Y, Ding D, Tang J H. Transcriptome analysis of maize pTAC2 effects on chlorophyll synthesis in seedling leaves. Sci Agric Sin, 2020, 53: 874-889. (in Chinese with English abstract)
[22] Zhang Y H, Wang E M, Zhao T F, Wang Q Q, Chen L J. Characteristics of chlorophyll fluorescence and antioxidant-oxidant balance in PEPC and PPDK transgenic rice under aluminum stress. Russ J Plant Phys, 2018, 65: 49-56.
[23] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, Zhang Y, Wang R N, Arshad A, Hao X Y, Sun M, Gao Z Q, Zhang L Z. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res, 2020, 257: 107926.
doi: 10.1016/j.fcr.2020.107926
[24] Coulter J A, Nafziger E D, Janssen M R, Palle P. Response of Bt and near-isoline corn hybrids to plant density. Agron J, 2010, 102: 103-111.
doi: 10.2134/agronj2009.0217
[25] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15,000 kg hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45: 3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Sci Agric Sin, 2012, 45: 3437-3445. (in Chinese with English abstract)
[26] 李荣发, 刘鹏, 杨清龙, 任昊, 董树亭, 张吉旺, 赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响. 作物学报, 2018, 44: 1032-1042.
Li R F, Liu P, Yang Q L, Ren H, Dong S T, Zhang J W, Zhao B. Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (Zea mays L.) with high planting density. Acta Agron Sin, 2018, 44: 1032-1042. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01032
[27] 王巧梅, 樊志龙, 赵彦华, 殷文, 柴强. 绿洲灌区不同密度玉米群体的耗水特性研究. 作物学报, 2017, 43: 1347-1356.
doi: 10.3724/SP.J.1006.2017.01347
Wang Q M, Fan Z L, Zhao Y H, Yin W, Chai Q. Effect of planting density on water consumption characteristics of maize in oasis irrigation area. Acta Agron Sin, 2017, 43: 1347-1356. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01347
[28] Assefa Y, Prasad P V V, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Ciampitti I A. Yield responses to planting density for US modern corn hybrids: a synthesis-analysis. Crop Sci, 2016, 56: 2802-2817.
[29] Ren B, Liu W, Zhang J, Dong S T, Liu P, Zhao B. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Sci Nat, 2017, 104: 12.
doi: 10.1007/s00114-017-1445-9
[30] 李广浩, 李龙, 陆大雷, 陆卫平. 氨基酸复合肥对不同密度春玉米产量和养分利用的影响. 中国作物学会学术年会, 2018. p 106.
Li G H, Li L, Lu D L, Lu W P. Effect of amino acid compound fertilizer on the yield and nutrient utilization of different density spring corn. Proceedings of Annual Academic Meeting of the Crop Science Society of China, 2018. p 106. (in Chinese with English abstract)
[31] Jare D, Krnji S B, Vrani M. Effect of plant density on leaf area index, anthesis to silking interval, yield and yield components of maize inbreds and their sister-lines. J Cent Eur Agric, 2019, 20: 179-193.
doi: 10.5513/JCEA01/20.1.2194
[32] Piao L, Qi H, Li C F, Zhao M. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Res, 2016, 198: 258-268.
doi: 10.1016/j.fcr.2016.08.012
[33] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang W J, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01226
[34] 侯佳敏, 罗宁, 王溯, 孟庆锋, 王璞. 增密对我国玉米产量、叶面积指数、光合速率的影响. 中国农业科学, 2021, 54: 2538-2546.
Hou J M, Luo N, Wang S, Meng Q F, Wang P. Effects of increasing planting density on grain yield, leaf area index and photosynthetic rate of maize in China. Sci Agric Sin, 2021, 54: 2538-2546. (in Chinese with English abstract)
[35] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019, 45: 248-255.
doi: 10.3724/SP.J.1006.2019.83042
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019, 45: 248-255. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83042
[36] Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006, 29: 315-330.
doi: 10.1111/j.1365-3040.2005.01493.x
[37] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44: 920-930.
Hu D D, Zhang J W, Liu P, Zhao B, Dong S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agron Sin, 2018, 44: 920-930. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00920
[38] Xiao Z, Liao Y, Ren G D, Zhang Y Y, Kuai B K. Repression of AtCLIH expression results in a decrease in the ratio of chlorophyll a/b but does not affect the rate of chlorophyll degradation during leaf senescence. J Plant Physiol Mol Biol, 2007, 33: 596-606.
pmid: 18349515
[39] Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Asibi A E, Zhang X J. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front Plant Sci, 2021, 12: 726568.
doi: 10.3389/fpls.2021.726568
[40] Murakami K, Matsuda R, Fujiwara K. Light-induced systemic regulation of photosynthesis in primary and trifoliate leaves of phaseolus vulgaris: effects of photosynthetic photon flux density (PPFD) versus spectrum. Plant Biol, 2014, 16: 16-21.
doi: 10.1111/plb.12055
[41] Franklin K A. Shade avoidance. New Phytol, 2008, 179: 930-944.
doi: 10.1111/j.1469-8137.2008.02507.x pmid: 18537892
[42] Xie Y R, Liu Y, Wang H, Ma X J, Wang B B, Wu G X, Wang H Y. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun, 2017, 8: 348.
doi: 10.1038/s41467-017-00404-y
[43] Liebsch D, Keech O. Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol, 2016, 212: 563-570.
doi: 10.1111/nph.14217
[44] 张柳, 王铮, 张亚婕, 林春, 陈严平, 李军营, 毛自朝. 烟草叶片衰老期过程中的蛋白质组学分析. 植物生理学报, 2014, 50: 488-500.
Zhang L, Wang Z, Zhang Y J, Lin C, Chen Y P, Li J Y, Mao Z Z. Proteomic analysis of senescing leaf of tobacco. J Plant Physiol, 2014, 50: 488-500. (in Chinese with English abstract)
[45] 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探. 植物生态学报, 2010, 34: 1439-1447.
doi: 10.3773/j.issn.1005-264x.2010.12.010
Jia S F, Li C F, Dong S T, Zhang J W. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays). Chin J Plant Ecol, 2010, 34: 1439-1447. (in Chinese with English abstract)
[46] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46: 1819-1830.
doi: 10.3724/SP.J.1006.2020.02027
Li Y S, Jin J, Liu X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review. Acta Agron Sin, 2020, 46: 1819-1830. (in Chinese with English abstract)
[47] Aliyeva N K, Aliyeva D R, Suleymanov S Y, Rzayev F H, Gasimov E K, Huseynova I M. Biochemical properties and ultrastructure of mesophyll and bundle sheath thylakoids from maize (Zea mays) chloroplasts. Func Plant Biol, 2020, 47: 970-976.
doi: 10.1071/FP20004
[48] Buckley T N, John G P, Scoffoni C, Sack L. The sites of evaporation within leaves. Plant Physiol, 2017, 173: 1763-1782.
doi: 10.1104/pp.16.01605 pmid: 28153921
[49] Loucos K E, Simonin K A, Barbour M M. Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant Cell Environ, 2017, 40: 203-215.
doi: 10.1111/pce.12865
[50] Drozak A, Romanowska E. Acclimation of mesophyll and bundle sheath chloroplasts of maize to different irradiances during growth. BBA-Bioenergetics, 2006, 1757: 1539-1546.
doi: 10.1016/j.bbabio.2006.09.001
[51] Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardeström P. The impact of light intensity on shade-induced leaf senescence. Plant Cell Environ, 2012, 35: 1084-1098.
doi: 10.1111/j.1365-3040.2011.02474.x
[52] Xiang Y, Bian X L, Wei T H, Yan J W, Sun X J, Han T, Dong B C, Zhang G F, Li J, Zhang A Y. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol, 2021, 232: 2400-2417.
doi: 10.1111/nph.17761 pmid: 34618923
[53] 卢霖, 董志强, 董学瑞, 焦浏, 李光彦, 高娇. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响. 作物学报, 2015, 41: 1870-1879.
doi: 10.3724/SP.J.1006.2015.01870
Lu L, Dong Z Q, Dong X R, Jiao L, Li G Y, Gao J. Effects of ethylene-chlormequat-potassium on leaf nitrogen assimilation after anthesis and early senescence under different planting densities. Acta Agron Sin, 2015, 41: 1870-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01870
[54] Zhou Y F, Wang D, Wang N, Yu J L, Wang Y T, Wu Q, Xu W J, Huang R D. Involvement of endogenous abscisic acid and cytokinin in photosynthetic performance of different stay green inbred lines of maize under drought. Int J Agric Biol, 2016, 18: 1067-1074.
[55] Bi H G, Liu P P, Jiang Z S, Ai X Z. Overexpression of the Rubisco activase gene improves growth and low temperature and weak light tolerance in Cucumis sativus L. Physiol Plant, 2017, 161: 224-234.
doi: 10.1111/ppl.12587
[56] Panda D, Sarkar R K. Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. Physiol Mol Biol Plants, 2013, 19: 43-51.
doi: 10.1007/s12298-012-0142-6
[57] Sun J L, Sui X L, Huang H Y, Wang S H, Wei Y X, Zhang Z X. Low light stress down-regulated Rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J Integr Agric, 2014, 13: 997-1007.
doi: 10.1016/S2095-3119(13)60670-X
[58] Wang Y W, Yu J, Jiang X H, Sun L G, Li K, Wang P Y, Wu M, Chen G X, Lv C G. Analysis of thylakoid membrane protein and photosynthesis related key enzymes in super high-yield hybrid rice LYPJ grown in field condition during senescence stage. Acta Physiol Plant, 2015, 37: 1.
doi: 10.1007/s11738-014-1746-y
[59] Naik A A, Reddy M S, Babu P, Kavitha P. Effect of plant density and nitrogen management on uptake of major nutrients in sweet corn (Zea mays var. saccharata). Int J Mol Sci, 2020, 9: 3656-3660.
[60] Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot, 2018, 69: 751-767.
doi: 10.1093/jxb/erx322
[61] Kobayashi K, Masuda T. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front Plant Sci, 2016, 7: 1811.
pmid: 27990150
[62] Sussenbacher I, Menghini D, Scherzer G, Salinger K, Erhart T, Moser S, Vergeiner C, Hörtensteiner S, Kräutler B. Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves. Photosynth Res, 2019, 142: 69-85.
doi: 10.1007/s11120-019-00649-2
[63] Cao Y J, Wang L C, Gu W R, Wang Y J, Zhang J H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J Integr Agron, 2021, 20: 494-510.
[64] Zhou T, Wang L, X Sun, Wang X C, Wang X C, Pu T, Yang H, Rengel Z, Liu W G, Yang W Y. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/ soybean relay strip intercropping. Field Crops Res, 2021, 262: 108054.
doi: 10.1016/j.fcr.2020.108054
[65] Wang Z K, Zhao X N, Wu P T, Gao Y, Yang Q, Shen Y Y. Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Res, 2017, 214: 1-13.
doi: 10.1016/j.fcr.2017.08.017
[66] Huang F Y, Liu Z H, Zhang P, Jia Z K. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res, 2021, 205: 104794.
doi: 10.1016/j.still.2020.104794
[67] Gan Y T, Kadambot H M, Neil C, Li X G, Liu L P. Chapter seven-ridge-furrow mulching systems: an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron, 2013, 118: 429-476.
[68] 孙仕军, 朱振闯, 陈志君, 杨丹, 张旭东. 不同颜色地膜和种植密度对春玉米田间地温、耗水及产量的影响. 中国农业科学, 2019, 52: 3323-3336.
Sun S J, Zhu Z C, Chen Z J, Yang D, Zhang X D. Effects of different colored plastic film mulching and planting density on soil temperature, evapotranspiration and yield of spring maize. Sci Agric Sin, 2019, 52: 3323-3336. (in Chinese with English abstract)
[69] 殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶. 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响. 中国农业科学, 2016, 49: 2898-2908.
Yin W, Chen G P, Chai Q, Zhao C, Feng F X, Yu A Z, Hu F L, Guo Y. Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi Corridor. Sci Agric Sin, 2016, 49: 2898-2908. (in Chinese with English abstract)
[70] Guan X K, Wei L, Turner N C, Ma S C, Yang M D, Wang T C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J Clean Prod, 2020, 250: 119514.
doi: 10.1016/j.jclepro.2019.119514
[71] Xu R X, Zhao H M, Liu G B, You Y L, Ma L, Liu N, Zhang Y J. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa-silage maize relay intercropping system in the North China Plain. Field Crops Res, 2021, 263: 108068.
doi: 10.1016/j.fcr.2021.108068
[72] Jensen A M, Lof M, Gardiner E S. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L. seedlings. Environ Exp Bot, 2011, 71: 367-375.
[73] Rodrigues V A, Crusciol C A C, Bossolani J W, Portugal J R, Moretti L G, Bernart L, Vilela R G, Galeriani T, Lollato R P. Foliar nitrogen as stimulant fertilization alters carbon metabolism, reactive oxygen species scavenging and enhances grain yield in a soybean/maize rotation. Crop Sci, 2021, 61: 3687-3701.
doi: 10.1002/csc2.20587
[74] Wu Z Z, Bi Y F, Wang A K, Du X H, Ying Y Q, Zhang Y B. Alleviation of drought stress in phyllostachys edulis by N and P application. Sci Rep, 2018, 8: 228.
doi: 10.1038/s41598-017-18609-y
[75] Boomsma C R, Santini J B, Tollenaar M. Maize more phophysiological responses to intense crowding and low nitrogen availability: an analysis and review. Agron J, 2009, 101: 1426-1452.
doi: 10.2134/agronj2009.0082
[76] Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie A R, Hibberd J M. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J, 2010, 62: 641-652.
doi: 10.1111/j.1365-313X.2010.04179.x
[77] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428-444.
Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428-444. (in Chinese with English abstract)
[78] Boomsma C R, Santini J B, Terry D. Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil Tillage Res, 2010, 106: 227-240.
doi: 10.1016/j.still.2009.12.006
[79] Guo Y, Yin W, Fan Z L, Hu F L, Fan H, Zhao C, Yu A Z, Chai Q, Coulter J A. No-tillage with reduced water and nitrogen supply improves water use efficiency of wheat in arid regions. Agron J, 2020, 112: 578-591.
doi: 10.1002/agj2.20031
[80] 刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭战勇, 谢惠玲, 汤继华, 李卫华. 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018, 51: 821-834.
Liu K, Zhang X H, Sun G Y, Yan P S, Guo H P, Chen S Y, Xue Y D, Guo Z Y, Xie H L, Tang J H, Li W H. Genome-wide association studies of plant type traits in maize. Sci Agric Sin, 2018, 51: 821-834. (in Chinese with English abstract)
[81] Xu B, Li H, Li Y, Yu G H, Zhang J, Huang B R. Characterization and transcriptional regulation of chlorophyll b reductase gene NON-YELLOW COLORING 1 associated with leaf senescence in perennial ryegrass (Lolium perenne L.). Environ Exp Bot, 2018, 149: 43-50.
doi: 10.1016/j.envexpbot.2018.01.017
[1] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-YuYANG Zhi-HuanHU Qing-YuSUN Su-LiLI XiaoZHU Zhen-DongWANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[2] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[3] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[4] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[5] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[6] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[7] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[8] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[9] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[10] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[11] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[12] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[13] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[14] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[15] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .