Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1853-1870.doi: 10.3724/SP.J.1006.2022.23001

• REVIEWS •     Next Articles

Enhancement of plant variety protection and regulation using molecular marker technology

XU Yunbi1,6,*(), WANG Bing-Bing2, ZAHNG Jian3, ZHANG Jia-Nan4, LI Jian-Sheng5,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Biobin Data Sciences, Changsha 410221, Hunan, China
    3Syngenta Group China, Beijing 102206, China
    4MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, Hebei, China
    5National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
    6International Maize and Wheat Improvement Center (CIMMYT), El Batan Texcoco 56130, Mexico
  • Received:2022-01-05 Accepted:2022-02-22 Online:2022-08-12 Published:2022-03-01
  • Contact: XU Yunbi,LI Jian-Sheng E-mail:xuyunbi@caas.cn;lijiansheng@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101803);Shijiazhuang Science and Technology Incubation Program(191540089A);Hebei Innovation Capability Enhancement Project(19962911D);Central Public-interest Scientific Institution Basal Research Fund(Y2020PT20);Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences (CAAS)(CAAS-XTCX2016009);Central Non-public-interest Basic Research Fund of the Institute of Crop Science of CAAS, Bill and Melinda Gates Foundation, and CGIAR Research Program MAIZE

Abstract:

Plant variety protection is one of the important approaches for plant intellectual property protection. The distinctness, uniformity and stability (DUS) and essentially derived variety (EDV) are two major concepts in plant variety protection. DUS-EDV has been evaluated largely through morphological traits and pedigrees at the very beginning, to an integrated approach using morphological traits, pedigrees and molecular marker information and now to a stage largely driven by molecular diagnostics. Molecular diagnostic technology has been evolved from RFLP to SSR and SNP marker systems. The liquid SNP chip, represented by genotyping by target sequencing through capture in solution, has advantages of low cost, high flexibility in marker combinations and wide suitability for DUS-EDV evaluation across plant species. There are two important strategies in DUS-EDV evaluation, one being examined based on the analysis and comparison at the whole genome level and the other being examined at specific genomic regions for target functional loci associated with important phenotypes. Evaluation criteria should be established separately for DUS and EDV. The former can be evaluated based on the criteria constructed for specific fingerprint maps, haplotypes, unique alleles, genomic regions, target functional markers, minimum genetic homozygosity, and within-variety variation, whereas the latter can be examined by the genetic similarity between the potential EDV and check variety estimated using a large number of molecular markers evenly distributed across the genome, rather than by the number of markers. The number and the genomic coverage of molecular markers are two key factors affecting the efficiency and reliability in DUS and EDV assessment. Using only a small number of markers in such assessment will likely result in a large sampling error for the estimates. The threshold of genetic similarity required for distinguishing EDV and non-EDV can vary greatly across plant species and with the levels of plant variety protection. After reviewed the current status of plant variety protection across countries, the authors proposed that a national consultant expert committee should be established for consistent support to implement and improve DUS-EDV system, and an official database system should be constructed for public service and comparison of variety DNA fingerprint data to facilitate innovative activities in plant breeding.

Key words: plant variety protection, distinctness-uniformity-stability (DUS), essentially derived variety (EDV), molecular marker, molecular diagnostics, genetic similarity

Table 1

Evolution of molecular marker diagnostic systems used for plant variety protection"

世代
Generation (years)
支撑技术
Support technique
代表分子标记
Representative molecular markers
检测方式
Diagnostics
特征
Characteristics
G1
(1980s)
凝胶电泳
Gel electrophoresis
RFLP, RAPD 琼脂糖和聚丙烯酰胺凝胶电泳,
EB和银染
Agarose and polyacrylamide gel electrophoresis with EB and silver staining
手动, 实验室, 极高成本, 不灵活
Manual, exp. laboratory, very high cost, not flexible, 100 DP/D
G2
(1990s)
荧光检测
Florescence
electrophoresis
SSR, AFLP, KASP, SNP 聚丙烯酰胺凝胶电泳加荧光检测
Polyacrylamide gel electrophoresis and florescence detection
半自动, 实验台, 高成本, 不太灵活
Semi-automatic, exp. station, high cost, little flexible, 1000 DP/D
G3
(2000s)
固相芯片
Solid chips
SNP, 包括InDel
SNP, including InDels
探针杂交和荧光检测
Probe hybridization and florescence detection
自动, 工作站, 低成本, 比较灵活
Automatic, workstation, low cost, less flexible, 1M+ DP/D
G4
(2010s)
液相芯片
Liquid chips
SNP, 包括InDel
SNP, including InDels
靶向测序基因型检测和液相捕获
Genotyping by target sequencing (GBTS) and captured in solution
自动, 工作站, 极低成本, 非常灵活
Automatic, workstation, very low cost, very flexible, 1M+ DP/D
G5
(2020s)
全测序
Fully sequencing
SNP和所有序列变异
SNP and all sequence
variations
序列阅读和比较
Sequence reading and comparison
高度自动, 便携式, 几乎零成本,
超灵活
Highly automatic, carry-on, almost no cost, extremely flexible, 1B+ DP/D

Fig. 1

Contribution of four parental lines to their progeny and its detection—stepwise improvement through hybridization, (L1×L2 RIL × L3×L4 RIL) RILs"

Fig. 2

Contribution of four parental lines to their progeny and its detection—improvement through MAGIC hybridization, [(L1×L2) × (L3×L4)] RILs"

Fig. 3

Maize inbred line Zheng 58 and its parents and their genetic contribution This figure is revised and updated from Zhang et al. [17]"

Fig. 4

Discriminant criteria of Essentially Derived Variety (EDV) and examples using genetic similarity at the molecular level"

[1] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
[2] Xu Y B. Molecular Plant Breeding. Oxfordshire, UK: CABI Publishing House, 2010.
[3] Cooke R J, Reeves J C. Plant genetic resources and molecular markers: variety registration in a new era. Plant Genet Resour, 2003, 1: 81-87.
doi: 10.1079/PGR200312
[4] Heckenberger M, Bohn M, Melchinger A. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines. Crop Sci, 2005, 45: 1120-1131.
doi: 10.2135/cropsci2004.0110
[5] Heckenberger M. Identification of Essentially Derived Varieties in Maize (Zea mays L.) Using Molecular Markers, Morphological traits, and Heterosis. PhD Dissertation of University of Hohenheim,Stuttgart, Germany, 2004.
[6] UPOV, International Union for the Protection of New Varieties of Plants. Guidance on the use of biochemical and molecular markers in the examination of distinctness, uniformity and stability (DUS), TGP/15. https://www.upov.int/edocs/tgpdocs/en/tgp_15.pdf. 2013.
[7] Jamali S H, Cockram J, Hickey L T. Insights into deployment of DNA markers in plant variety protection and registration. Theor Appl Genet, 2019, 132: 1911-1929.
doi: 10.1007/s00122-019-03348-7
[8] 徐云碧, 朱立煌. 分子数量遗传. 北京: 中国农业出版社, 1994.
Xu Y B, Zhu L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994. (in Chinese)
[9] Botstein D R, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet, 1980, 32: 314-331.
[10] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18: 7231-7238.
[11] Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531-6535.
pmid: 1979162
[12] Zabeau M, Voss P.. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application. 92402629.7 (Publ. Number 0 534 858 A1). 1993.
[13] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman H, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414.
pmid: 7501463
[14] Tauz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res, 1984, 12: 4127-4138.
doi: 10.1093/nar/12.10.4127
[15] Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37.
doi: 10.1007/s11032-019-0940-4
[16] Guo Z, Yang Q, Huang F, Zheng H, Sang Z, Xu Y, Zhang C, Wu K, Tao J, Prasanna B M, Olsen M S, Wang Y, Zhang J, Xu Y. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230.
doi: 10.1016/j.xplc.2021.100230
[17] Zhang R, Xu G, Li J, Yan J, Li H, Yang X, Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet, 2018, 131: 1207-1221.
doi: 10.1007/s00122-018-3072-z
[18] Collard B, Jahufer M, Brouwer J, Pang E. An introduction to markers, quantitative trait loci (QTL) mapping and marker- assisted selection for crop improvement: the basic concepts. Euphytica, 2005, 142: 169-196.
doi: 10.1007/s10681-005-1681-5
[19] Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3
[20] Kage U, Kumar A, Dhokane D, Karre S, Kushalappa A C. Functional molecular marker for crop improvement. Crit Rev Biotechnol, 2015, 16: 1-14.
doi: 10.3109/07388559609146599
[21] Chai Y C, Hao X M, Yang X H, Allen W B, Li J M, Yan J B, Shen B, Li J S. Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breed, 2012, 29: 939-949.
doi: 10.1007/s11032-011-9644-0
[22] UPOV, International Union for the Protection of New Varieties of Plants. Guidelines for the conduct of tests for distinctness, uniformity and stability, rice (Oryza sativa L.). TG/16/8. https://www.upov.int/edocs/tgdocs/en/tg016.pdf, 2004.
[23] Arens P, Mansilla C, Deinum D, Cavellini L, Moretti A, Rolland S, van der Schoot H, Calvache D, Ponz F, Collonnier C, Mathis R, Smilde D, Caranta C, Vosman B. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor Appl Genet, 2010, 120: 655-664.
doi: 10.1007/s00122-009-1183-2 pmid: 19855951
[24] Cockram J, White J, Zuluaga D L, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey M J, Werner P, Harrap D, Tapsell C, Liu H, Hedley P E, Stein N, Schulte D, Steuernagel B, Marshall D F, Thomas W T B, Ramsay L, Mackay I, Balding D J, Waugh R, O'Sullivan D M. Genome wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA, 2010, 107: 21611-21616.
doi: 10.1073/pnas.1010179107
[25] Cockram J, Jones H, Norris C, O'Sullivan D M. Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp vulgare L.). Theor Appl Genet, 2012, 125: 1735-1749.
doi: 10.1007/s00122-012-1950-3 pmid: 22898724
[26] Gore M A, Chia J M, Elshire R J, Sun Q, Ersoz E S, Hurwitz B L, Peiffer J A, McMullen M D, Grills G S, Ross-Ibarra J, Ware D H, Buckler E S. A first-generation haplotype map of maize. Science, 2009, 326: 1115-1117.
doi: 10.1126/science.1177837
[27] Chia J M, Song C, Bradbury P J, Costich D, de Leon N, Doebley J, Elshire R J, Gaut B, Geller L, Glaubitz J C, Gore M, Guill K E, Holland J, Hufford M B, Lai J, Li M, Liu X, Lu Y, Richard McCombie R, Nelson R, Poland J, Prasanna B M, Pyhäjärvi T, Rong T, Sekhon R S, Sun Q, Tenaillon M I, Tian F, Wang J, Xu X, Zhang Z, Kaeppler S M, Ross-Ibarra J, McMullen M D, Buckler E S, Zhang G, Xu Y, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet, 2012, 44: 803-807.
doi: 10.1038/ng.2313
[28] Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L, Gao S, Xu X, Zhang G, Li Y, Jiao Y, Doebley J F, Ross-Ibarra J, Lorant A, Buffalo V, Romay M C, Buckler E S, Ware D, Lai J, Sun Q, Xu Y. Construction of the third- generation Zea mays haplotype map. GigaScience, 2018, 7: 1-12.
doi: 10.1093/gigascience/gix134 pmid: 29300887
[29] Jordan K W, Wang S, Lun Y, Gardiner L J, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest K L, Sharpe A G, Sidebottom C H, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal U K, Bariana H S, Hayden M J, Pozniak C, Jeddeloh J A, Hall A, Akhunov E. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol, 2015, 16: 48.
doi: 10.1186/s13059-015-0606-4
[30] Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C, McNally K L, Alexandrov N, Gao X Y, Li J, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J, 2020, 18: 14-16.
doi: 10.1111/pbi.13215
[31] Torkamaneh D, Laroche J, Valliyodan B, O'Donoughue L, Cober E, Rajcan I, Abdelnoor R V, Sreedasyam A, Schmutz J, Nguyen H T, Belzile F. Soybean (Glycine max) Haplotype Map (GmHapMap): a universal resource for soybean translational and functional genomics. Plant Biotechnol J, 2021, 19: 324-334.
doi: 10.1111/pbi.13466
[32] Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni J J, Fei Z, Ye Z. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiol, 2021, 186: 2078-2092.
doi: 10.1093/plphys/kiab230
[33] Lu Y, Yan J, Guimarães C T, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek B S, Magorokosho C, Mugo S, Makumbi D, Parentoni S N, Shah T, Rong T, Crouch J H, Xu Y. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet, 2009, 120: 93-115.
doi: 10.1007/s00122-009-1162-7
[34] Mace E S, Tai S, Gilding E K, Li Y, Prentis P J, Bian L, Campbell B C, Hu W, Innes D J, Han X, Cruickshank A. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat Commun, 2013, 4: 2320.
doi: 10.1038/ncomms3320
[35] Olufowote J O, Xu Y, Chen X, Park W D, Beachell H M, Dilday R H, Goto M, McCouch S R. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome, 1997, 40: 370-378.
pmid: 9202415
[36] Singh R K, Sharma R K, Singh A K, Singh V P, Singh N K, Tiwari S P, Mohapatra T. Suitability of mapped sequence tagged microsatellite site markers for establishing distinctness, uniformity and stability in aromatic rice. Euphytica, 2004, 135: 135-143.
doi: 10.1023/B:EUPH.0000014905.10397.08
[37] Lombard V, Tireau B, Blouet F, Zhang D, Baril C P. Usefulness of AFLP markers to estimate varietal homogeneity of rapeseed inbred line varieties in the context of plant registration and protection. Euphytica, 2002, 125: 121-127.
doi: 10.1023/A:1015755217589
[38] Tommasini L, Batley J, Arnold G M, Cooke R J, Donini P, Lee D, Law J R, Lowe C, Moule C, Trick M, Edwards K J. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet, 2003, 106: 1091-1101.
pmid: 12671758
[39] Cooke R J, Bredemeijer G M M, Ganal M W, Peeters R, Isaac P, Rendell S, Jackson J, Roder M S, Korzun V, Wendehake K, Areshchenkova T, Dijcks M, Laborie D, Bertrand L, Vosman B. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica, 2003, 132: 331-341.
doi: 10.1023/A:1025046919570
[40] Yim G R, Ding D R, Wang C P, Leong W H, Hong Y. Microsatellite markers to complement distinctness, uniformity, stability testing of Brassica chinensis (Xiaobaicai) varieties. Open Hort J, 2009, 2: 54-61.
[41] Vélez M D, Ibánez J. Assessment of the uniformity and stability of grapevine cultivars using a set of microsatellite markers. Euphytica, 2012, 186: 419-432.
doi: 10.1007/s10681-012-0633-0
[42] Wang L X, Li H B, Gu T C, Liu L H, Pang B S, Qiu J, Zhao C P. Assessment of wheat variety stability using SSR markers. Euphytica, 2013, 195: 435-452.
doi: 10.1007/s10681-013-1006-z
[43] Julier B, Barre P, Lambroni P, Delaunay S, Thomasset M, Lafaillette F, Gensollen V. Use of GBS markers to distinguish among lucerne varieties, with comparison to morphological traits. Mol Breed, 2018, 38: 133.
doi: 10.1007/s11032-018-0891-1
[44] Achard F, Butruille M, Madjarac S, Nelson P T, Duesing J, Laffont J L, Nelson B, Xiong J, Mikel M A, Smith J S C. Single nucleotide polymorphisms facilitate distinctness-uniformity- stability testing of soybean cultivars for plant variety protection. Crop Sci, 2020, 60: 2280-2303.
doi: 10.1002/csc2.20201
[45] Saccomanno B, Wallace M, O'Sullivan D M, Cockram J. Use of genetic markers for the detection of off-types for DUS phenotypic traits in the inbreeding crop, barley. Mol Breed, 2020, 40: 13.
doi: 10.1007/s11032-019-1088-y
[46] Van Eeuwijk F, Law J. Statistical aspects of essential derivation, with illustrations based on lettuce and barley. Euphytica, 2004, 137: 129-137.
doi: 10.1023/B:EUPH.0000040510.31827.ae
[47] Leigh F, Law J R, Lea V J, Donini P, Reeves J C. A comparison of molecular markers and statistical tools for diversity and EDV assessments. In:The Wake of the Double Helix: from the Green Revolution to the Gene Revolution. Proceedings of an International Congress, Bologna, Italy, 2003. pp 349-363.
[48] Noli E, Teriaca M S, Conti S. Criteria for the definition of similarity thresholds for identifying essentially derived varieties. Plant Breed, 2013, 132: 525-531.
doi: 10.1111/pbr.12109
[49] Noli E, Teriaca M S, Conti S. Identification of a threshold level to assess essential derivation in durum wheat. Mol Breed, 2012, 29: 687-698.
doi: 10.1007/s11032-011-9582-x
[50] Borchert T, Krueger J, Hohe A. Implementation of a model for identifying essentially derived varieties in vegetatively propagated Calluna vulgaris varieties. BMC Genet, 2008, 9: 1.
doi: 10.1186/1471-2156-9-1
[51] Maccaferri M, Sanguineti M C, Xie C, Smith J S C, Tuberosa R. Relationships among durum wheat accessions. II: A comparison of molecular and pedigree information. Genome, 2007, 50: 385-399.
pmid: 17546097
[52] ISF, International Seed Federation. Guidelines for the handling of a dispute on essential derivation in maize lines. https://www.worlseed.org/wp-content/uploads/2015/10/ISF_Guidelines_Disputes_EDV_Maize_2014.pdf. 2014.
[53] UPOV, nternational Union for the Protection of New Varieties of Plants. Identification of SNP markers to aid assessment of essential derivation in maize. BMT/14/7 Rev. https://www.upov.int/edocs/mdocs/upov/en/bmt_14/bmt_14_7_rev.pdf. 2014.
[54] Janis M D, Smith S. Technological change and the design of plant variety protection regimes. Chicago-Kent Law Rev, 2007, 82: 1557-1615.
[55] Hufford M B, Seetharam A S, Woodhouse M R, Chougule K M, Ou S, Liu J, Ricci W A, Guo T, Olson A, Qiu Y, Coletta R D, Tittes S, Hudson A I, Marand A P, Wei S, Lu Z, Wang B, Tello-Ruiz M K, Piri R D, Wang N won Kim D, Zeng Y, O'Connor C H, Li X, Gilbert A M, Baggs E, Krasileva K V, Portwood II J L, Cannon E K S, Andorf C M, Manchanda N, Snodgrass S J, Hufnagel D E, Jiang Q, Pedersen S, Syring M L, Kudrna D A, Llaca V, Fengler K, Schmitz R J, Ross-Ibarra J, Yu J, Gent J I, Hirsch C N, Ware D, Dawe R K. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, e373: 655-662.
[56] Liu Z, Li J, Fan X, Htwe N M P S, Wang S, Huang W, Yang J, Xing L, Chen L, Li Y, Guan R, Chang R, Wang D, Qiu L. Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha. Crop J, 2017, 5: 326-336.
doi: 10.1016/j.cj.2016.11.001
[57] Yang Y, Tian H, Wang R, Wang L, Yi H, Liu Y, Xu L, Fan Y, Zhao J, Wang F. Variety discrimination power: an appraisal index for loci combination screening applied to plant variety discrimination. Front Plant Sci, 2021, 12: 566796.
doi: 10.3389/fpls.2021.566796
[58] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50: 1-14.
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Ge J R, Jiang B, Zhang X C, Tian H L, Hou Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017, 50: 1-14. (in Chinese with English abstract)
[59] 陆徐忠, 倪金龙, 李莉, 汪秀峰, 马卉, 张小娟, 杨剑波. 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014, 40: 823-829.
Lu X Z, Ni J L, Li L, Wang X F, Ma H, Zhang X J, Yang J B. Construction of rice variety based on ID used SSR fingerprint and commodity information. Acta Agron Sin, 2014, 40: 823-829. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00823
[60] 王立新, 李云伏, 常利芳, 黄岚, 李宏博, 葛玲玲, 刘丽华, 姚骥, 赵昌平. 建立小麦品种DNA 指纹的方法研究. 作物学报, 2007, 33: 1738-1740.
Wang L X, Li Y F, Chang L F, Huang L, Li H B, Ge L L, Liu L H, Yao J, Zhao C P. Method of ID constitution for wheat cultivars. Acta Agron Sin, 2007, 33: 1738-1740 (in Chinese with English abstract).
[61] 高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山. 黑龙江部分大豆品种分子ID 的构建. 作物学报, 2009, 35: 211-218.
Gao Y L, Zhu R S, Liu C Y, Li W F, Jiang H W, Li C D, Yao B C, Hu G H, Chen Q S. Establishment of molecular ID in soybean varieties in Heilongjiang. Acta Agron Sin, 2009, 35: 211-218. (in Chinese with English abstract)
[62] 马琳, 刘海珍, 陆徐忠, 倪金龙, 张小娟, 杨剑波. 130份甘蓝型油菜种质分子身份证的构建. 中国油料作物学报, 2013, 35: 231-239.
Ma L, Liu H Z, Lu X Z, Ni J L, Zhang X J, Yang J B. Molecular identity of 130 Brassica napus varieties. Chin J Oil Crops Sci, 2013, 35: 231-239. (in Chinese with English abstract)
[63] Yan J, Zou D, Li C, Zhang Z, Song S, Wang X. SR4R: an integrative SNP resource for genomic breeding and population research in rice. Genom Proteom Bioinform, 2020, 18: 173-185.
doi: 10.1016/j.gpb.2020.03.002
[64] Jiang B, Zhao Y, Yi H, Huo Y, Wu H, Ren J, Ge J, Zhao J, Wang F. PIDS: a user-friendly plant DNA fingerprint database management system. Genes, 2020, 11: 373.
[65] Groeneveld E, Lichtenberg H. The SNPpit-a high performance database system for managing large scale SNP data. PLoS One, 2016, 11: e0164043.
[1] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[2] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[3] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[4] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[5] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[6] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[7] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[8] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[9] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[10] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[11] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[12] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
[13] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[14] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
[15] Zhou-Tao WANG, Qian YOU, Shi-Wu GAO, Chun-Feng WANG, Zhu LI, Jing-Jing MA, You-Xiong QUE, Li-Ping XU, Jun LUO. Identification of Sugarcane Varieties by AFLP and SSR Markers and Its Application [J]. Acta Agronomica Sinica, 2018, 44(05): 723-736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .