Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1926-1937.doi: 10.3724/SP.J.1006.2022.11067

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat

WANG Sha-Sha1(), HUANG Chao1, WANG Qing-Chang1, CHAO Yue-En1,*(), CHEN Feng2,*(), SUN Jian-Guo3, SONG Xiao4   

  1. 1Wheat Research Institute, Henan Academy of Agricultural Sciences / Henan Province Key Laboratory of Wheat Biology, Zhengzhou 450002, Henan, China
    2Agronomy College, National Key Laboratory of Wheat and Corn Crop Sciences / Collaborative Innovation Center of Henan Grain Crops / Agronomy College, Henan Agricultural University, Zhengzhou 450002, Henan, China
    3Department of Agricultural and Rural Affairs of Puyang, Puyang 457000, Henan, China
    4Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2021-07-28 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-22
  • Contact: CHAO Yue-En,CHEN Feng E-mail:shasha0391@126.com;nkychaoyueen@163.com;chf0088@163.com
  • Supported by:
    Henan Province Science Foundation for Youths(202300410527);National Key Laboratory of Wheat and Maize Crop Science in Henan Agricultural University(30500772);National Science Foundation for Young Scientists of China(31801261)

Abstract:

The kernel size affects kernel weight in wheat, and then affects yield. Up to date, the genes related to kernel size have been reported in bread wheat. However, the underlying molecular mechanisms that regulates the size of wheat kernels remains unclear. In this study, the TaGS2 gene related to kernel size was successfully cloned from bread wheat based on in silico cloning and its sequence was analyzed by bioinformatics. Subcellular localization analysis of tobacco indicated that TaGS2 was localized in the nucleus and cytoplasm. Relative expression levels of different tissues showed that the TaGS2 gene was highly expressed at different developmental stages of the kernels. RNA interference vector TaGS2-PLGY-02-RNAi was constructed and transferred into wheat. The results indicated that the relative expression levels of TaGS2 gene was significantly reduced in RNAi transgenic wheat. In addition, the kernel length and width of RNAi transgenic wheat was shortened, and the thousand-kernel weight was reduced as well. Therefore, it was speculated that TaGS2 gene was probably involved in the regulation of wheat kernel size or thousand-kernel weight. This study preliminarily reveals the TaGS2 gene function and provides important genetic resources for the improvement of thousand-kernel weight in wheat breeding program.

Key words: Triticum aestivum L., kernel size, TaGS2 gene, subcellular localization, expression analysis, RNAi interference

Fig. S1

Alignment analysis of TaGS2-2A, TaGS2-2B, and TaGS2-2D genomic DNA sequence in wheat"

Fig. 1

Schematic representation of the structures of TaGS2 gene in bread wheat"

Fig. 2

Bioinformatics analysis of TaGS2 gene in wheat A: domain prediction; B: protein secondary structure prediction; C: transmembrane structure prediction."

Fig. 3

Subcellular localization of TaGS2 protein in wheat"

Fig. 4

Relative expression levels of TaGS2 homoeologous in different tissues of wheat"

Fig. 5

PCR detection of transgenic plants in wheat M: DL2000 marker; 1-14: T1 transgenic plants; 15: wild-type wheat. "

Fig. 6

Relative expression levels of TaGS2 transgenic plants in wheat (RNAi) The significant difference is evaluated by the Student's t-test. * P < 0.05, ** P < 0.01, *** P < 0.001."

Fig. 7

Kernel size of transgenic plants in wheat (RNAi) The significant difference is evaluated by the Student's t-test. * P < 0.05, ** P < 0.01, *** P < 0.001. "

[1] Li X, Liu N, You L, Ke X, Liu H, Huang M, Waddington S R. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security. PLoS One, 2016, 11: e0159061.
doi: 10.1371/journal.pone.0159061
[2] 方良学. 从小麦产量因素的相对重要性谈小麦增产技术途径. 河南农林科技, 1982, (10): 7-9.
Fang L X. The technique of increasing wheat yield from the relative importance of wheat yield elements. Henan Agric For Technol, 1982, (10): 7-9. (in Chinese)
[3] 张煜. 河南省小麦品种产量的遗传改进及相关生物学特性的研究. 河南农业大学博士论文,河南郑州, 2015.
Zhang Y. Genetic Improvement in Grain Yield and Associated Biological Characteristics of Wheat in Henan Province of China. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2015. (in Chinese with English abstract)
[4] Brocklehurst P. Factors controlling grain weight in wheat. Nature, 1977, 266: 348-349.
doi: 10.1038/266348a0
[5] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[6] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352
[7] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[8] Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA, 2013, 110: 3167-3172.
doi: 10.1073/pnas.1300359110
[9] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269.
doi: 10.1038/ng.977
[10] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107
[11] Shomura A, Izawa T K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028.
doi: 10.1038/ng.169
[12] Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol, 2013, 55: 938-949.
doi: 10.1111/jipb.12062
[13] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954.
doi: 10.1038/ng.2327
[14] Zuo J R, Li J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014, 48: 99-118.
doi: 10.1146/annurev-genet-120213-092138
[15] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002
[16] Zhang Z Y, Li J J, Tang Z S, Sun X M, Zhang H L, Yu J P, Yao G H, Li G L, Guo H F, Li J L, Wu H M, Huang H G, Xu Y W, Yin Z G, Qi Y H, Huang R F, Yang W C, Li Z C. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J Exp Bot, 2018, 69: 4723-4737.
doi: 10.1093/jxb/ery256
[17] Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117-129.
[18] Flavio B, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172:1165-1177.
doi: 10.1534/genetics.105.044586
[19] Gegas V C, Aida N, Simon G, James S, Lesley F, Simon O, Liz S, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat. Plant Cell, 2010, 22: 1046-1056.
doi: 10.1105/tpc.110.074153
[20] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[21] Liu G, Jia L J, Lu L H, Qin D D, Zhang J P, Guan P F, Ni Z F, Yao Y Y, Sun Q X, Peng H R. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet, 2014, 127: 2415-2432.
doi: 10.1007/s00122-014-2387-7
[22] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131
[23] Wu X S, Chang X P, Jing R L. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS One, 2012, 7: e31249.
doi: 10.1371/journal.pone.0031249
[24] Zhang L, Zhao Y L, Gao L F, Zhao G Y, Zhou R H, Zhang B S, Jia J Z. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol, 2012, 195: 574-584.
doi: 10.1111/j.1469-8137.2012.04194.x pmid: 22670578
[25] Zhang L Y, Liu D C, Guo X L, Yang W L, Sun J Z, Wang D W, Zhang A. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol, 2010, 52: 996-1007.
doi: 10.1111/j.1744-7909.2010.00967.x
[26] Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95: 1971-1974.
doi: 10.1073/pnas.95.5.1971
[27] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
doi: 10.1007/s00122-010-1437-z
[28] Qin L, Hao C Y, Hou J, Wang Y Q, Li T, Wang L F, Ma Z Q, Zhang X Y. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biol, 2014, 14: 107.
doi: 10.1186/1471-2229-14-107
[29] Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2019, 18: 1330-1342.
doi: 10.1111/pbi.13298
[30] Zhang J P, Liu W H, Yang X M, Gao A N, Li X Q, Wu X Y, Li L H. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol Biol Rep, 2011, 38: 2337-2347.
doi: 10.1007/s11033-010-0367-9
[31] Wang S S, Zhang X F, Chen F, Cui D. A single-nucleotide polymorphism of TaGS5gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci, 2015, 6: 1166.
[32] Ma L, Li T, Hao C Y, Wang Y Q, Chen X H, Zhang X Y. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J, 2016, 14: 1269-1280.
doi: 10.1111/pbi.12492
[33] Hou J, Li T, Wang Y M, Hao C Y, Liu H X, Zhang X Y. ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnol J, 2017, 15: 1533-1543.
doi: 10.1111/pbi.12735
[34] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4 A contributes to grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
doi: 10.1093/jxb/eraa271
[35] Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J, 2015, 83: 312-325.
doi: 10.1111/tpj.12896
[36] Yang J, Zhou Y J, Zhang Y, Hu W G, Zhao H. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genet, 2019, 20: 98.
doi: 10.1186/s12863-019-0800-6
[37] Wang W, Pan Q L, Tian B, He F, Chen Y Y, Bai G H, Akhunova A, Trick H N, Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J, 2019, 100: 251-264
doi: 10.1111/tpj.14440
[38] Yan X F, Zhao L, Ren Y, Z Dong D, Cui D Q, Chen F. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Sci Rep, 2019, 9: 2702.
doi: 10.1038/s41598-019-38570-2
[39] 袁岐, 张春利, 赵婷婷, 许向阳. 植物中GRF转录因子的研究进展. 基因组学与应用生物学, 2017, 36: 3145-3151.
Yuan Q, Zhang C L, Zhao T T, Xu X Y. Research advances of GRF transcription factor in plant. Genom Appl Biol, 2017, 36: 3145-3151. (in Chinese with English abstract)
[1] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[4] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[5] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[8] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[9] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[10] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[11] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[12] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[13] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[14] WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127.
[15] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .