Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1977-1995.doi: 10.3724/SP.J.1006.2022.14131

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L.

ZHANG Tian-Yu(), WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng*()   

  1. School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2021-07-25 Accepted:2021-10-19 Online:2022-08-12 Published:2021-11-02
  • Contact: HUA Ying-Peng E-mail:zhangtianyu010@163.com;yingpenghua@zzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31801923);Key Science and Technology Project of Henan Province(22170004);Key Discipline Project of Zhengzhou University(xkzdjc201905);Special Project for Youth Discipline of Zhengzhou University(XKZDQN202002);Innovation Ecosystem Construction Science and Technology Special Project of National Supercomputing Zhengzhou Center(201400210600)

Abstract:

Proline accumulation is an important metabolic adaptative mechanism of plants under biotic and abiotic stress. P5CS, P5CR, PDH, and P5CDH are key enzymes in the glutamate-dependent proline biosynthesis pathway. Rapeseed, an important oil crop in the world, is often subjected to various biotic and abiotic stresses during its growth and development. However, no systematic analysis of these proline metabolic gene families has been reported in Brassica napus so far. In this study, 10 BnaP5CSs, 6 BnaP5CRs, 8 BnaPDHs, and 3 BnaP5CDHs were identified by using the genomic annotation information of ‘Zhongshuang 11'. Phylogenetically, these gene families were divided into different evolutionary branches, and members of the same subgroups had similar physical and chemical properties, gene / protein structure, and conserved motifs. Evolutionary pressure analysis showed that these genes were subjected to strong purification selection. Cis-acting element analysis revealed that there were common and specific transcriptional regulatory mechanisms among the four kinds of gene families. In this study, rapeseed seedlings were respectively treated with salt stress, low potassium (K), low phosphate (P), and ammonium toxicity, and both shoots and roots were respectively sampled for transcriptomic analysis. The results indicated that the relative expression levels of genes related to proline synthesis were generally up-regulated under the above-mentioned four stresses, whereas the relative expression levels of genes regulating proline degradation were down-regulated under salt and low P stresses. Gene co-expression network analysis demonstrated that BnaC4.P5CS1a and BnaA5.P5CS1 might play central roles in the proline-mediated stress responsive networks in rapeseed. Through bioinformatics identification of proline metabolism gene family and analysis of transcription characteristics under various abiotic stresses, this study will provide a theoretical basis for further study of proline-mediated stress resistance, and will also provide excellent gene resources for genetic improvement of abiotic stress resistance mediated by proline metabolism in Brassica napus.

Key words: Brassica napus, proline metabolism, gene family, transcriptome, nutrient stress

Table 1

Copy number of the four kinds of gene families involving proline metabolism in Arabidopsis and Brassica crops"

基因家族
Gene family
基因名称
Gene name
拟南芥
Arabidopsis thaliana (125 Mb)
白菜
Brassica rapa
(465 Mb)
甘蓝
Brassica oleracea
(485 Mb)
油菜
Brassica napus
(1130 Mb)
P5CS
P5CS1 1 2 3 6
P5CS2 1 2 2 4
P5CR P5CR 1 2 4 6
PDH
PDH1 1 3 4 6
PDH2 1 1 1 2
P5CDH P5CDH 1 1 2 3

Table 2

Molecular characterization of the four kinds of gene families involving proline metabolism in Arabidopsis and B. napus"

基因ID
Gene ID
基因名称
Gene name
区块
Block
蛋白质
长度
Protein length
编码区
长度
CDS
length
DNA
全长
DNA length
外显子/
内含子
Exon/
intron
异义突变Ka 同义突变Ks Ka/Ks 进化时间Divergent time (Mya)
AT2G39800 AtP5CS1 J 717 2154 5156
BnaA03T0194400ZS BnaA3.P5CS1 J 715 2148 4299 18/17 0.035 0.361 0.096 12.04
BnaA04T0253600ZS BnaA4.P5CS1 J 717 2154 4128 19/18 0.032 0.371 0.087 12.36
BnaA05T0063500ZS BnaA5.P5CS1 J 717 2154 4499 17/16 0.021 0.378 0.056 12.62
BnaC03T0227700ZS BnaC3.P5CS1 J 715 2148 4255 18/17 0.035 0.349 0.101 11.64
BnaC04T0069800ZS BnaC4.P5CS1a J 717 2154 4584 18/17 0.021 0.376 0.055 12.54
BnaC04T0569500ZS BnaC4.P5CS1b J 717 2154 4711 19/18 0.030 0.356 0.084 11.87
AT3G55610 AtP5CS2 N 726 2181 5276
BnaA04T0040200ZS BnaA4.P5CS2 N 719 2160 4705 20/19 0.047 0.325 0.145 10.83
BnaA09T0513600ZS BnaA9.P5CS2 N 727 2184 4572 20/19 0.035 0.314 0.110 10.46
BnaC04T0313900ZS BnaC4.P5CS2 N 726 2181 4571 20/19 0.046 0.345 0.133 11.52
BnaC08T0355700ZS BnaC8.P5CS2 N 727 2184 4513 20/19 0.033 0.305 0.110 10.15
AT5G14800 AtP5CR R 276 831 2037
BnaA03T0060400ZS BnaA3.P5CR R 464 1395 3245 10/9 0.100 0.459 0.217 15.29
BnaA10T0212800ZS BnaA10.P5CR R 276 831 1660 7/6 0.062 0.414 0.150 13.81
基因ID
Gene ID
基因名称
Gene name
区块
Block
蛋白质
长度
Protein length
编码区
长度
CDS
length
DNA
全长
DNA length
外显子/
内含子
Exon/
intron
异义突变Ka 同义突变Ks Ka/Ks 进化时间Divergent time (Mya)
BnaC03T0069400ZS BnaC3.P5CR R 276 831 1478 7/6 0.100 0.485 0.206 16.17
BnaC04T0138900ZS BnaC4.P5CRa R 255 768 1258 5/4 0.058 0.427 0.136 14.24
BnaC04T0227600ZS BnaC4.P5CRb R 212 639 1239 5/4 0.101 0.389 0.259 12.98
BnaC09T0514400ZS BnaC9.P5CR R 299 900 1473 6/5 0.067 0.411 0.162 13.69
AT3G30775 AtPDH1 L 499 1500 2921
BnaA02T0358100ZS BnaA2.PDH1 L 498 1497 2651 4/3 0.053 0.547 0.097 18.22
BnaA06T0368500ZS BnaA6.PDH1 L 498 1497 2620 3/2 0.053 0.655 0.081 21.84
BnaA09T0046200ZS BnaA9.PDH1 L 498 1497 2808 4/3 0.066 0.535 0.123 17.84
BnaC02T0481700ZS BnaC2.PDH1 L 498 1497 2589 4/3 0.052 0.532 0.098 17.72
BnaC07T0324000ZS BnaC7.PDH1 L 498 1497 2635 3/2 0.052 0.659 0.079 21.96
BnaC09T0031900ZS BnaC9.PDH1 L 498 1497 3015 4/3 0.068 0.544 0.125 18.13
AT5G38710 AtPDH2 S 476 1431 3144
BnaA04T0103200ZS BnaA4.PDH2 S 466 1401 2586 3/2 0.049 0.421 0.116 14.03
BnaC04T0377900ZS BnaC4.PDH2 S 476 1431 2834 4/3 0.055 0.428 0.130 14.25
AT5G62530 AtP5CDH X 556 1671 4310
BnaA06T0278700ZS BnaA6.P5CDH X 557 1674 3571 15/14 0.026 0.426 0.062 14.20
BnaC02T0533200ZS BnaC2.P5CDH X 394 1185 2861 10/9 0.240 0.740 0.324 24.67
BnaC03T0552600ZS BnaC3.P5CDH X 557 1674 3554 15/14 0.028 0.370 0.076 12.35

Table 3

Molecular characterization of four kinds of gene families involving proline metabolism in Arabidopsis and B. napus"

基因ID
Gene ID
基因名称
Gene name
染色体
Chr.
分子量
MW
等电点
pI
不稳定系数
II
总平均亲水性
GRAVY
亚细胞定位
Subcellular localization
AT2G39800 AtP5CS1 77.70 5.89 33.53 -0.072 chlo
BnaA03T0194400ZS BnaA3.P5CS1 A3 77.32 5.57 37.03 -0.063 chlo
BnaA04T0253600ZS BnaA4.P5CS1 A4 77.69 5.69 36.95 -0.084 chlo
BnaA05T0063500ZS BnaA5.P5CS1 A5 77.82 5.96 35.06 -0.088 chlo
BnaC03T0227700ZS BnaC3.P5CS1 C3 77.42 5.63 37.15 -0.072 chlo
BnaC04T0069800ZS BnaC4.P5CS1a C4 77.74 5.89 34.79 -0.079 chlo
BnaC04T0569500ZS BnaC4.P5CS1b C4 77.57 5.47 35.30 -0.074 chlo
AT3G55610 AtP5CS2 78.87 6.35 33.85 -0.092 chlo
BnaA04T0040200ZS BnaA4.P5CS2 A4 77.76 6.37 33.02 -0.075 chlo
BnaA09T0513600ZS BnaA9.P5CS2 A9 78.73 6.85 33.40 -0.096 chlo
BnaC04T0313900ZS BnaC4.P5CS2 C4 78.44 6.13 32.54 -0.066 chlo
BnaC08T0355700ZS BnaC8.P5CS2 C8 78.71 6.70 34.07 -0.095 chlo
AT5G14800 AtP5CR 28.62 7.81 36.21 0.231 cyto
BnaA03T0060400ZS BnaA3.P5CR A3 50.34 6.87 37.45 0.103 cyto
BnaA10T0212800ZS BnaA10.P5CR A10 28.71 7.91 34.71 0.155 cyto
BnaC03T0069400ZS BnaC3.P5CR C3 28.81 6.00 34.58 0.117 cyto
BnaC04T0138900ZS BnaC4.P5CRa C4 27.08 5.43 32.77 0.060 cyto
BnaC04T0227600ZS BnaC4.P5CRb C4 22.10 5.26 32.32 0.003 cyto
BnaC09T0514400ZS BnaC9.P5CR C9 31.51 8.80 39.13 0.129 cyto
AT3G30775 AtPDH1 54.96 6.41 46.83 -0.184 mito
BnaA02T0358100ZS BnaA2.PDH1 A2 55.20 6.53 44.27 -0.236 mito
BnaA06T0368500ZS BnaA6.PDH1 A6 55.04 6.77 44.62 -0.213 mito
BnaA09T0046200ZS BnaA9.PDH1 A9 54.95 7.29 46.66 -0.183 mito
BnaC02T0481700ZS BnaC2.PDH1 C2 55.08 6.44 45.90 -0.228 mito
基因ID
Gene ID
基因名称
Gene name
染色体
Chr.
分子量
MW
等电点
pI
不稳定系数
II
总平均亲水性
GRAVY
亚细胞定位
Subcellular localization
BnaC07T0324000ZS BnaC7.PDH1 C7 55.11 6.77 44.46 -0.205 mito
BnaC09T0031900ZS BnaC9.PDH1 C9 54.95 7.29 46.47 -0.183 mito
AT5G38710 AtPDH2 53.07 7.16 47.60 -0.185 mito
BnaA04T0103200ZS BnaA4.PDH2 A4 51.76 6.87 51.64 -0.150 mito
BnaC04T0377900ZS BnaC4.PDH2 C4 53.13 8.50 49.41 -0.122 mito
AT5G62530 AtP5CDH 61.77 6.26 34.70 -0.172 mito
BnaA06T0278700ZS BnaA6.P5CDH A6 61.81 6.45 36.19 -0.136 mito
BnaC02T0533200ZS BnaC2.P5CDH C2 45.21 9.31 39.76 -0.159 mito
BnaC03T0552600ZS BnaC3.P5CDH C3 61.86 6.58 36.41 -0.145 mito

Fig. 1

Phylogeny analysis of the four kinds of gene families involving proline metabolism from A. thaliana, B. rapa, B. oleracea, and B. napus Different colors represent different branches of the evolutionary tree, and the numbers on the branches represent evolutionary distances."

Fig. 2

Gene structure of the four kinds of gene families involving proline metabolism in B. napus The green part represents the UTR region, the yellow part represents the exon, and the black line represents the intron."

Fig. 3

Conserved motif analysis of the four kinds of gene families involving proline metabolism in B. napus"

Fig. 4

Enrichment analysis of the cis-acting regulatory elements in the promoter regions of proline metabolism genes in B. napus The size of the bubble represents the number of cis-acting regulatory elements, and the color represents its ratio of the total cis-acting elements."

Fig. 5

Chromosomal location and syntenic analysis between A and C subgenomes of the four kinds of gene families involving proline metabolism in B. napus"

Fig. 6

Syntenic analysis of the four kinds of gene families involving proline metabolism in Arabidopsis, B. rapa, B. oleracea, and B. napus"

Fig. 7

Protein-protein interaction networks of the four kinds of gene families involving proline metabolism in Arabidopsis thaliana"

Fig. S1

Secondary structure of the four kinds of protein families involving proline metabolism in Arabidopsis thaliana and Brassica napus"

Fig. S2

Cell-specific expression patterns of the four kinds of gene families involving proline metabolism in Arabidopsis thaliana"

Fig. 8

Heat map of differential expression profiling of the four kinds of gene families involving proline metabolism in B. napus under salt stress"

Fig. 9

Volcano plots of differential expression of the genes involving proline metabolism in B. napus under salt stress"

Fig. 10

Heat maps of differential expression of the four kinds of gene families involving proline metabolism in B. napus under different nutrient stresses"

Fig. 11

Co-expression analysis of the four kinds of gene families involving proline metabolism in B. napus under different treatments The circular nodes represent the genes, the size of the nodes represents the role of the genes in the network, and the thickness of the lines between the two nodes represents the degree of interaction between the genes."

[1] Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 2018, 495: 286-291.
doi: 10.1016/j.bbrc.2017.11.043
[2] Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as a eukaryotic redox valve. J Exp Bot, 2021, doi: 10.1093/jxb/erab361.
doi: 10.1093/jxb/erab361
[3] Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[4] Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul, 1997, 21: 79-102.
doi: 10.1023/A:1005703923347
[5] Hu C A, Delauney A J, Verma D P. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA, 1992, 89: 9354-9358.
doi: 10.1073/pnas.89.19.9354
[6] Anwar A, Wang K, Wang J, Shi L, Du L, Ye X. Expression of Arabidopsis Ornithine Aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Rep, 2021, 40: 1155-1170.
doi: 10.1007/s00299-021-02699-0 pmid: 33950277
[7] Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids, 2008, 35: 753-759.
doi: 10.1007/s00726-008-0061-6 pmid: 18379856
[8] Szoke A, Miao G H, Hong Z, Verma D P. Subcellular location of delta-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol, 1992, 99: 1642-1649.
doi: 10.1104/pp.99.4.1642 pmid: 16669085
[9] Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J, 2008, 53: 11-28.
doi: 10.1111/j.1365-313X.2007.03318.x
[10] Dobrá J, Vanková R, Havlová M, Burman A J, Libus J, Storchová H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J Plant Physiol, 2011, 168: 1588-1597.
doi: 10.1016/j.jplph.2011.02.009
[11] Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z. Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. Bot Stud, 2017, 58: 10.
doi: 10.1186/s40529-017-0163-0 pmid: 28510193
[12] Fang Y, Coulter J A, Wu J, Liu L, Li X, Dong Y, Ma L, Pu Y, Sun B, Niu Z, Jin J, Zhao Y, Mi W, Xu Y, Sun W. Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress. PLoS One, 2021, 16: e0245494.
doi: 10.1371/journal.pone.0245494
[13] Silva-Ortega C, Ochoa-Alfaro A, Reyes-Agüero J, Aguado- Santacruz G, Jiménez-Bremont J. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem, 2008, 46: 82-92.
doi: 10.1016/j.plaphy.2007.10.011
[14] Signorelli S, Monza J. Identification of Δ-pyrroline 5-carboxylate synthase (P5CS) genes involved in the synthesis of proline in Lotus japonicus. Plant Signal Behav, 2017, 12: e1367464.
doi: 10.1080/15592324.2017.1367464
[15] Dai W, Wang M, Gong X, Liu J H. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytol, 2018, 219: 972-989.
doi: 10.1111/nph.15240
[16] Kishor P, Hong Z, Miao G H, Hu C, Verma D. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-1394.
pmid: 12228549
[17] Giberti S, Funck D, Forlani G. Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol, 2014, 202: 911-919.
doi: 10.1111/nph.12701
[18] Mani S, Van De Cotte B, Van Montagu M, Verbruggen N. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol, 2002, 128: 73-83.
doi: 10.1104/pp.010572
[19] Rizzi Y S, Monteoliva M I, Fabro G, Grosso C L, Laróvere L E, Alvarez M E. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions. Front Plant Sci, 2015, 6: 572.
[20] Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer W B. The role of [delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell, 2004, 16: 3413-3425.
pmid: 15548746
[21] An H, Qi X, Gaynor M, Hao Y, Gebken S C, Mabry M E, McAlvay A C, Teakle G R, Conant G C, Barker M S, Fu T, Yi B, Pires J C. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat Commun, 2019, 10: 2878.
doi: 10.1038/s41467-019-10757-1
[22] Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee S, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H. The high-quality genome of Brassica napus cultivar ‘ZS11' reveals the introgression history in semi-winter morphotype. Plant J, 2017, 92: 452-468.
doi: 10.1111/tpj.13669
[23] Swarbreck D, Wilks C, Lamesch P, Berardini T Z, Garcia- Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res, 2008, 36: D1009-D1014.
doi: 10.1093/nar/gkm965 pmid: 17986450
[24] Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol, 2011, 11: 136.
[25] Song J M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W Z, Cheng Y, Zhang Y, Liu K, Yang Q Y, Chen L L, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34-45.
doi: 10.1038/s41477-019-0577-7
[26] Song J M, Liu D, Xie W Z, Yang Z, Guo L, Liu K, Yang Q Y, Chen L L. BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol J, 2021, 19: 412-414.
doi: 10.1111/pbi.13491
[27] Ostergaard L, King G. Standardized gene nomenclature for the Brassica genus. Plant Methods, 2008, 4: 10.
doi: 10.1186/1746-4811-4-10 pmid: 18492252
[28] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 2012, 40: W597-W603.
[29] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W 587.
[30] Yu C S, Lin C S, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci, 2004, 13: 1402-1406.
doi: 10.1110/ps.03479604
[31] Petersen T, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011, 8: 785-786.
doi: 10.1038/nmeth.1701 pmid: 21959131
[32] Szklarczyk D, Gable A L, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N T, Morris J H, Bork P, Jensen L J, Mering C V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019, 47: D607-D613.
[33] Davidson R, del Campo A M. Combinatorial and computational investigations of Neighbor-Joining bias. Front Genet, 2020, 11: 584785.
doi: 10.3389/fgene.2020.584785
[34] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096
[35] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49: W293-W296.
[36] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[37] Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 2004, 16: 1667-1678.
doi: 10.1105/tpc.021345
[38] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
[39] Kelley L A, Mezulis S, Yates C M, Wass M, Sternberg M N. The Phyre 2 web portal for protein modeling, prediction and analysis. Nat Protoc, 2015, 10: 845-858.
doi: 10.1038/nprot.2015.053
[40] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[41] Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol, 2011, 696: 291-303.
[42] Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109
[43] Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem, 2001, 39: 253-262.
doi: 10.1016/S0981-9428(01)01239-6
[44] Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci, 2006, 11: 535-542.
pmid: 17029932
[45] Parkin I A, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781.
doi: 10.1534/genetics.105.042093
[46] Cheng F, Wu J, Fang L, Wang X. Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci, 2012, 3: 198.
doi: 10.3389/fpls.2012.00198 pmid: 22969786
[47] Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van de Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S, Maere S, Laukens K, Pharazyn A, Ferreira P, Eloy N, Renne C, Meyer C, Faure J, Steinbrenner J, Beynon J, Larkin J, Van de Peer Y, Hilson P, Kuiper M, De Veylder L, Van Onckelen H, Inzé D, Witters E, De Jaeger G. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol, 2010, 6: 397.
doi: 10.1038/msb.2010.53
[48] Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279-1291.
pmid: 16377568
[49] Hooper C M, Castleden I R, Tanz S K, Aryamanesh N, Millar A H. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res, 2017, 45: D1064-D1074.
[50] Hooper C M, Tanz S K, Castleden I R, Vacher M, Small I D, Millar A H. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics, 2014, 30: 3356-3364.
doi: 10.1093/bioinformatics/btu550
[51] Elthon T E, Stewart C R. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol, 1981, 67: 780-784.
doi: 10.1104/pp.67.4.780 pmid: 16661754
[52] Shrestha A, Cudjoe D K, Kamruzzaman M, Siddique S, Fiorani F, Léon J, Naz A A. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis. J Plant Physiol, 2021, 261: 153414.
doi: 10.1016/j.jplph.2021.153414
[53] Cheng L, Li X, Huang X, Ma T, Liang Y, Ma X, Peng X, Jia J, Chen S, Chen Y, Deng B, Liu G. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2013, 70: 252-260.
doi: 10.1016/j.plaphy.2013.05.025
[54] Li X, Tang Y, Li H, Luo W, Zhou C, Zhang L, Lyu J. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Sci, 2020, 299: 110613.
doi: 10.1016/j.plantsci.2020.110613
[55] Verma D, Jalmi S K, Bhagat P K, Verma N, Sinha A K. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J, 2020, 287: 2560-2576.
doi: 10.1111/febs.15157
[56] Veerabagu M, Kirchler T, Elgass K, Stadelhofer B, Stahl M, Harter K, Mira-Rodado V, Chaban C. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression. Mol Plant, 2014, 7: 1560-1577.
doi: 10.1093/mp/ssu074
[57] Fabro G, Kovács I, Pavet V, Szabados L, Alvarez M E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact, 2004, 17: 343-350.
doi: 10.1094/MPMI.2004.17.4.343
[58] Ronde J, Spreeth M H, Cress W A. Effect of antisense L-Δ1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul, 2000, 32: 13-26.
doi: 10.1023/A:1006338911617
[59] Ronde J, Laurie R N, Caetano T, Greyling M M, Kerepesi I. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica, 2004, 138: 123-132.
doi: 10.1023/B:EUPH.0000046806.68554.5b
[60] Göring H, Thien B H. Influence of nutrient deficiency on proline accumulation in the cytoplasm of Zea mays L. seedlings. Biochem Physiol Pflanzen, 1979, 174: 9-16.
doi: 10.1016/S0015-3796(17)30541-3
[61] 王翠平, 华学军, 林彬, 刘爱华. 甘蓝型油菜脯氨酸合成相关同源基因的进化和差异表达分析. 作物学报, 2017, 43: 1480-1488.
Wang C P, Hua X J, Lin B, Liu A H. Evolutionary fate and expression pattern of genes related to proline biosynthesis in Brassica napus. Acta Agron Sin, 2017, 43: 1480-1488. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01480
[1] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[2] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[3] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[4] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[5] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[6] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[7] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[8] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[9] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[10] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[11] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[12] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[13] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[14] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[15] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .