Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2180-2195.doi: 10.3724/SP.J.1006.2022.14159
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Chao1,2,3(), YANG Bo1,2, ZHANG Li-Yuan1,2, XIAO Zhong-Chun1,2, LIU Jing-Sen1,2, MA Jin-Qi1,2, LU Kun1,2, LI Jia-Na1,2,*()
[1] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617. |
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract) | |
[2] |
Hedden P. The genes of the Green Revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[3] | Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016, 6: 36452. |
[4] | Johnson J M F, Allmaras R R, Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J, 2006, 98: 622-636. |
[5] |
Swift T A, Fagan D, Benito-Alifonso D, Hill S A, Yallop M L, Oliver T A A, Lawson T, Galan M C, Whitney H M. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytol, 2021, 229: 783-790.
doi: 10.1111/nph.16886 |
[6] |
Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater M M, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. J Exp Bot, 2020, 71: 2479-2489.
doi: 10.1093/jxb/eraa050 pmid: 32067041 |
[7] |
Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369-1369.
doi: 10.3389/fpls.2017.01369 |
[8] |
Li P, Chang T G, Chang S Q, Ouyang X, Qu M G, Song Q F, Xiao L T, Xia S T, Deng Q Y, Zhu X G. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. J Integr Plant Biol, 2018, 60: 1154-1180.
doi: 10.1111/jipb.12738 |
[9] |
Zhang S H, He X Y, Zhao J L, Cheng Y S, Xie Z M, Chen Y H, Yang T F, Dong J F, Wang X F, Liu Q, Liu W, Mao X X, Fu H, Chen Z M, Liao Y P, Liu B. Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Rice, 2017, 10: 44.
doi: 10.1186/s12284-017-0183-0 |
[10] |
Pradhan S, Babar M A, Robbins K, Bai G, Mason R E, Khan J, Shahi D, Avci M, Guo J, Maksud Hossain M, Bhatta M, Mergoum M, Asseng S, Amand P S, Gezan S, Baik B K, Blount A, Bernardo A. Understanding the genetic basis of spike fertility to improve grain number, harvest index, and grain yield in wheat under high temperature stress environments. Front Plant Sci, 2019, 10: 1481.
doi: 10.3389/fpls.2019.01481 pmid: 31850009 |
[11] |
Saito H, Fukuta Y, Obara M, Tomita A, Ishimaru T, Sasaki K, Fujita D, Kobayashi N. Two novel QTLs for the harvest index that contribute to high-yield production in rice (Oryza sativa L.). Rice, 2021, 14: 18.
doi: 10.1186/s12284-021-00456-1 |
[12] |
Luo X, Ma C Z, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J X, Shen J X, Yi B, Fu T D. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16: 379.
doi: 10.1186/s12864-015-1607-0 |
[13] |
Chao H B, Raboanatahiry N, Wang X D, Zhao W G, Chen L, Guo L X, Li B J, Hou D L, Pu S, Zhang L N, Wang H, Wang B S, Li M T. Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L. Breed Sci, 2019, 69: 104-116.
doi: 10.1270/jsbbs.18115 |
[14] |
Porker K, Straight M, Hunt J R. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front Plant Sci, 2020, 11: 994.
doi: 10.3389/fpls.2020.00994 |
[15] |
魏丽娟, 刘瑞影, 张莉, 陈志友, 杨鸿, 霍强, 李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合. 作物学报, 2019, 45: 818-828.
doi: 10.3724/SP.J.1006.2019.84133 |
Wei L J, Liu R Y, Zhang L, Chen Z Y, Yang H, Huo Q, Li J N. Detection of stem height QTL and integration of the loci for plant height-related traits in B. napus. Acta Agron Sin, 2019, 45: 818-828. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84133 |
|
[16] | Silva L, Wang S, Zeng Z B. Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol, 2012, 871: 75. |
[17] | Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. |
[18] |
Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9 |
[19] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[20] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263-265.
pmid: 15297300 |
[21] |
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[22] | 孙伟. 基于多组学联合分析的甘蓝型油菜产量与收获指数调控机制解析. 西南大学硕士学位论文, 重庆, 2020. |
Sun W. Analysis of the Regulation Mechanism of Yield and Harvest Index in Brassica napus Based on Multi-omics. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract) | |
[23] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 |
[24] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 |
[25] |
Liao Y, Smyth G K, Shi W. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 |
[26] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[27] |
孙程明, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析. 作物学报, 2019, 45: 1303-1310.
doi: 10.3724/SP.J.1006.2019.94021 |
Sun C M, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of silique length in rapeseed (Brassica napus L.). Acta Agron Sin, 2019, 45: 1303-1310. (in Chinese with English abstract) | |
[28] |
孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020, 46: 147-153.
doi: 10.3724/SP.J.1006.2020.94060 |
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.). Acta Agron Sin, 2020, 46: 147-153. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94060 |
|
[29] |
Ye J, Yang Y H, Chen B, Shi J Q, Luo M Z, Zhan J P, Wang X F, Liu G H, Wang H Z. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics, 2017, 18: 71.
doi: 10.1186/s12864-016-3402-y |
[30] |
张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析. 作物学报, 2021, 47: 650-659.
doi: 10.3724/SP.J.1006.2021.04136 |
Zhang C, Zhao X Z, Pang C K, Peng M L, Wang X D, Chen F, Zhang W, Chen S, Peng Q, Yi B, Sun C M, Zhang J F, Fu T D. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.). Acta Agron Sin, 2021, 47: 650-659. (in Chinese with English abstract) | |
[31] | Jensen P E, Haldrup A, Zhang S, Scheller H V. The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem, 2004, 279: 24212-24217. |
[32] | Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. Plant Signal Behav, 2017, 12: e1376157. |
[33] |
Wientjes E, van Stokkum I H M, van Amerongen H, Croce R. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys J, 2011, 100: 1372-1380.
doi: 10.1016/j.bpj.2011.01.030 pmid: 21354411 |
[34] |
Li N, Song D J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17: 736-749.
doi: 10.1111/pbi.13011 |
[35] |
Joshi V, Laubengayer K M, Schauer N, Fernie A R, Jander G. Two Arabidopsis threonine aldolases are nonredundant and compete with threonine deaminase for a common substrate pool. Plant Cell, 2006, 18: 3564-3575.
doi: 10.1105/tpc.106.044958 |
[36] |
Schilmiller A L, Stout J, Weng J K, Humphreys J, Ruegger M O, Chapple C. Mutations in the cinnamate-4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J, 2009, 60: 771-782.
doi: 10.1111/j.1365-313X.2009.03996.x |
[37] |
Jung S H, Kim R J, Kim K J, Lee D H, Suh M C. Plastidial and mitochondrial mmalonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. Plant Cell Physiol, 2019, 60: 1239-1249.
doi: 10.1093/pcp/pcz032 pmid: 30796840 |
[38] |
Puttick D, Dauk M, Lozinsky S, Smith M A. Overexpression of a FAD3 desaturase increases synthesis of a polymethylene- interrupted dienoic fatty acid in seeds of Arabidopsis thaliana L. Lipids, 2009, 44: 753-757.
doi: 10.1007/s11745-009-3315-5 pmid: 19548018 |
[39] |
Lu W, Tang X L, Huo Y Q, Xu R, Qi S D, Huang J G, Zheng C C, Wu C A. Identification and characterization of fructose 1,6- bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65-74.
doi: 10.1016/j.gene.2012.04.042 |
[40] | Jeppson S, Mattisson H, Demski K, Lager I. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. J Biol Chem, 2020, 295: 15398-15406. |
[41] | Huai D X, Zhang Y Y, Zhang C Y, Cahoon E B, Zhou Y M. Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in camelina sativa. PLoS One, 2015, 10: e0131755. |
[42] |
Simkin A J, Lopez-Calcagno P E, Davey P A, Headland L R, Lawson T, Timm S, Bauwe H, Raines C A. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J, 2017, 15: 805-816.
doi: 10.1111/pbi.12676 |
[43] |
Yu X H, Cai Y H, Keereetaweep J, Wei K, Chai J, Deng E, Liu H, Shanklin J. Biotin attachment domain-containing proteins mediate hydroxy fatty acid-dependent inhibition of acetyl CoA carboxylase. Plant Physiol, 2021, 185: 892-901.
doi: 10.1093/plphys/kiaa109 |
[44] |
Macho-Rivero M A, Herrera-Rodríguez M B, Brejcha R, Schäffner A R, Tanaka N, Fujiwara T, González-Fontes A, Camacho- Cristóbal J J. Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol, 2018, 59: 841-849.
doi: 10.1093/pcp/pcy026 |
[45] |
Israel D, Khan S, Warren C R, Zwiazek J J, Robson T M. The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit. J Exp Bot, 2021, 72: 5066-5078.
doi: 10.1093/jxb/erab187 |
[46] |
Karlsson P M, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy G, Garab G, Aronsson H, Versaw W K, Spetea C. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J, 2015, 84: 99-110.
doi: 10.1111/tpj.12962 |
[47] | Li N N, Gügel I L, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K. FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol, 2015, 13: e1002053. |
[48] |
Dyson B C, Webster R E, Johnson G N. GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. Ann Bot, 2014, 113: 643-652.
doi: 10.1093/aob/mct298 |
[49] |
Manfield I W, Devlin P F, Jen C H, Westhead D R, Gilmartin P M. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiol, 2007, 143: 941-958.
pmid: 17208962 |
[50] | Jain P, Shah K, Sharma N, Kaur R, Singh J, Vinson C, Rishi V. A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep, 2017, 7: 14343. |
[51] |
Li S J, Fu Q T, Huang W D, Yu D Q. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep, 2009, 28: 683-693.
doi: 10.1007/s00299-008-0666-y |
[52] |
Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 2009, 21: 1747-1761.
doi: 10.1105/tpc.108.062968 |
[53] | Yang W T, Chen S Y, Cheng Y X, Zhang N, Ma Y X, Wang W, Tian H N, Li Y Y, Hussain S, Wang S C. Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis. Plant Signal Behav, 2020, 15: 1744293. |
[54] |
Sato A, Yamamoto K T. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant, 2008, 133: 397-405.
doi: 10.1111/j.1399-3054.2008.01055.x |
[55] |
Qian D, Zhang Z, He J X, Zhang P, Ou X B, Li T, Niu L P, Nan Q, Niu Y, He W L, An L Z, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. J Exp Bot, 2019, 70: 435-446.
doi: 10.1093/jxb/ery385 |
[56] |
Na J K, Kim J K, Kim D Y, Assmann S M. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. J Exp Bot, 2015, 66: 4023-4033.
doi: 10.1093/jxb/erv207 |
[57] | Zhang L L, Shao Y J, Ding L, Wang M J, Davis S J, Liu J X. XBAT31 regulates thermos responsive hypocotyl growth through mediating degradation of the thermosssensor ELF3 in Arabidopsis. Sci Adv, 2021, 7: eabf4427. |
[1] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[2] | LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947. |
[3] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[4] | DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644. |
[5] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[6] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[7] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[8] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[9] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[10] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[11] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[12] | ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137. |
[13] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[14] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[15] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
|