Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2210-2220.doi: 10.3724/SP.J.1006.2022.12037

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’

XUE Jiao(), LU Dong-Bai(), LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying*()   

  1. Rice Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong 510640, Guangzhou, China
  • Received:2021-05-31 Accepted:2022-01-05 Online:2022-09-12 Published:2022-02-15
  • Contact: HE Xiu-Ying E-mail:xuejiao@gdaas.cn;lu010324@163.com;hexiuying@gdaas.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    China Postdoctoral Science Foundation(2020M682639);Special Fund for Science and Technology Innovation Strategy (Construction of High-level Academy of Agricultural Sciences) (Foundation for postdoctoral research of Guangdong Academy of Agricultural Sciences in China, BZ201909);Modern Agricultural Industry Technology System of Guangdong Province, China(2021KJ105);Research and Development Plan of Key Fields in Guangdong Province(2020B0202090003);Natural Science Foundation of Guangdong Province(2018A0303130172);Natural Science Foundation of Guangdong Province(2021A1515110411);Guangzhou Basic and Applied Basic Research Foundation(202102080417);Operation project of Guangdong Provincial Key Laboratory(2020B1212060047);Director foundation of Rice Research Institute of Guangdong Academy of Agricultural Sciences

Abstract:

Bacterial blight is the most devastating bacterial disease to rice, which seriously endangers food security of China and even the world. Mining new resistance genes is an important measure to improve rice resistance to bacterial blight. Yuenong Simiao, was the main rice cultivar with good grain quality and disease resistance in South China. In this study, Yuenong Simiao (YN) and Lijiangxintuanheigu (LTH) were used as parental materials to construct recombinant inbred lines (RILs) and backcross populations. We carried out inoculation identification and gene mapping analysis. Genetic analysis showed that the resistance of YN was controlled by incomplete dominant resistance genes of bacterial blight. Combined the resistance phenotype of recombinant inbred lines with genome resequencing, a resistance QTL qBB-11-1 was identified at the end of the long arm of chromosome 11. Substitution mapping revealed that qBB-11-1 was located between InDel markers P89 and P54 with a physical distance of about 63 kb. There were six candidate genes in this region, and the resistance gene to bacterial blight in YN may be a new gene. It is of great representative significance to explore and utilize the resistance genes of YN in rice breeding for bacterial blight resistance in South China.

Key words: rice, Yuenong Simiao, bacterial blight, resistance, QTLs

Fig. 1

Flow chart for construction of the mapping populations used in this study YN: Yuenong Simiao; LTH: Lijiangxintuanheigu."

Table S1

Polymorphism Indel primers used in fine mapping"

名称
Primer name
引物序列
Sequence (5'-3')
产物大小
Product size (bp)
预期位置(第11染色体)
Excepted position (Chromosome 11)
P5F AAATTGTTGCTTGCAGCCAC 192 22,990,895-22,991,086
P5R CAGTACGGTATTGCAGAGCG
P12F GTACATGACAAGGAGCTCGC 144 23,124,155-23,124,298
P12R AAGCTTGCAATACTGACGGC
P22F GCCTTCAGTTTGATTAATTCTGAGC 180 23,292,791-23,292,970
P22R ATCCAGCCATGTGAGCTACA
P31F CATTGCGCTCCTGTAGTTCC 180 22,539,088-22,539,267
P31R TGCAGCAGGCTATAAATCTCG
P35F TCTGACCACCCGTTAAGCTT 250 22,637,226-22,637,475
P35R ATTTCCATGGCGCTCACATC
P54F GCCGGCCACAACTACTAATC 192 22,959,237-22,959,428
P54R AGAGGGGTTTTATGTCTTGTTTGT
P66F GCAGATGCATGCCGAATG 274 23,418,762-23,419,035
P66R ACGAAAGTGGAAGCAAAGTCA
P67F TGACATGGCTTATCTGGAAGGA 242 23,424,987-23,425,228
P67R CGCCCTAACAATCAGAGAACG
P89F ATGCCCATGATTGTCTTCGT 143 22,896,068-22,896,210
P89R AGTGATGTGACTGGAAAGGGA

Fig. 2

Diagram of substitution mapping for QTLs The white section represents genetic background of recurrent genome; the black section represents substitution segment. M: molecular marker; Q: QTL locus; L1: line 1; L2: line 2."

Fig. 3

Resistance of LTH and YN inoculated with different Xanthomonas oryzae pv. oryzae strains A: the resistance of LTH and YN inoculated with Guangdong type IV Xoo strain and race R1-R9 Xoo strains. LTH: Lijiangxintuanheigu; YN: Yuenong Simiao. B: lesion length of LTH and YN, n = 3."

Fig. 4

Resistance of F1 plants and distribution of lesion length of F2 population from cross of YN and LTH A: the resistance of YN, LTH, and F1 plants inoculated with Guangdong type IV Xoo strain; B: the distribution of lesion length of YN, LTH, and F2 population. YN: Yuenong Simiao; LTH: Lijiangxintuanheigu."

Fig. 5

Distribution of lesion length of F6 recombinant inbred lines (RILs) A: the distribution of lesion length of F6 RILs inoculated with Guangdong type IV Xoo strain in 2019; B: the distribution of lesion length of F6 RILs inoculated with Guangdong type IV Xoo strain in 2020. YN: Yuenong Simiao; LTH: Lijiangxintuanheigu."

Table S2

Re-sequencing data statistics of parental materials and recombinant inbred lines"

样品序号
No.
样品名称
Sample
过滤后的片段数
Clean_reads
过滤后的碱基数
Clean_bases
比对到参考基因组的片段数
Mapping reads
比对率
Mapping rate (%)
平均测序深度
Mean depth
Q30
(%)
亲本Parent YN 41,286,005 12,369,830,844 82,572,010 98.33 28 92.52
亲本Parent LTH 40,239,860 12,056,746,044 80,479,720 98.64 27 92.02
1 H1 15,491,990 2,323,798,500 15,511,482 98.6 6.0174 89.46
2 H2 15,476,470 2,321,470,500 15,509,488 98.54 5.9955 88.1
3 H3 15,323,454 2,298,518,100 15,337,595 99.04 5.9962 89.45
4 H4 15,454,410 2,318,161,500 15,469,882 98.69 6.0159 89.05
5 H5 15,355,562 2,303,334,300 15,379,006 98.72 5.9652 88.88
6 H6 15,493,194 2,323,979,100 15,531,061 98.81 6.0279 89.81
7 H7 15,457,790 2,318,668,500 15,478,468 98.94 6.0448 89.16
8 H8 15,445,140 2,316,771,000 15,457,567 98.81 6.0191 89.04
9 H9 15,486,662 2,322,999,300 15,511,330 98.69 6.0224 87.62
10 H10 15,461,328 2,319,199,200 15,472,062 99.03 6.0563 89.43
11 H11 15,385,914 2,307,887,100 15,428,306 98.77 5.9796 89.75
12 H12 15,416,006 2,312,400,900 15,432,135 98.97 6.0257 89.13
13 H13 15,475,930 2,321,389,500 15,500,273 98.8 6.0267 88.67
14 H15 15,517,236 2,327,585,400 15,526,537 98.69 6.043 88.55
15 H16 15,512,628 2,326,894,200 15,530,534 98.59 6.0252 88.58
16 H17 15,469,918 2,320,487,700 15,482,685 98.79 6.0344 88.66
17 H18 15,499,492 2,324,923,800 15,514,790 98.78 6.0446 88.94
18 H19 15,466,028 2,319,904,200 15,467,191 98.48 5.9965 88.85
19 H20 15,463,762 2,319,564,300 15,477,423 98.82 6.0346 89.09
20 H21 15,477,820 2,321,673,000 15,478,523 98.87 6.0495 88.94
21 H22 15,440,126 2,316,018,900 15,466,902 98.83 6.0151 88.76
22 H23 15,484,862 2,322,729,300 15,500,195 98.73 6.0311 88.4
23 H24 15,456,826 2,318,523,900 15,467,922 99.09 6.0589 87.36
24 H26 15,401,328 2,310,199,200 15,410,304 98.68 5.9915 89.27
25 H27 15,470,830 2,320,624,500 15,487,790 98.69 6.0188 88.64
26 H28 15,479,610 2,321,941,500 15,506,542 98.7 6.0206 88.81
27 H29 15,448,996 2,317,349,400 15,456,445 98.79 6.0263 89.05
28 H30 15,510,002 2,326,500,300 15,533,337 98.48 6.009 88.65
29 H31 15,492,974 2,323,946,100 15,508,560 98.87 6.0455 88.2
30 H32 15,482,612 2,322,391,800 15,500,796 98.55 6.0109 89.74
31 H34 15,475,262 2,321,289,300 15,478,357 98.69 6.0252 87.62
32 H36 15,412,934 2,311,940,100 15,452,458 98.86 6.0017 89.2
33 H37 15,493,652 2,324,047,800 15,499,794 98.79 6.0479 89.11
34 H38 15,479,242 2,321,886,300 15,501,986 98.69 6.0172 87.99
35 H39 15,320,240 2,298,036,000 15,356,918 98.79 5.9589 88.45
36 H40 15,501,160 2,325,174,000 15,507,242 98.57 6.0191 86.97
37 H41 15,461,688 2,319,253,200 15,473,415 98.86 6.0362 86.27
38 H42 15,477,188 2,321,578,200 15,488,787 98.73 6.0266 88.11
39 H43 15,492,078 2,323,811,700 15,494,057 98.81 6.0484 89.35
40 H44 15,250,314 2,287,547,100 15,290,181 98.88 5.9346 88.97
41 H45 15,473,882 2,321,082,300 15,484,725 98.64 6.0187 89.16
42 H46 15,517,276 2,327,591,400 15,528,765 98.67 6.0395 87.99
43 H47 15,453,172 2,317,975,800 15,459,237 98.8 6.0297 88.28
44 H48 15,489,434 2,323,415,100 15,495,543 98.7 6.0307 87.71
45 H49 15,462,920 2,319,438,000 15,472,789 98.67 6.015 88.04
46 H50 15,481,870 2,322,280,500 15,498,737 98.69 6.0249 88.8
47 H51 15,446,500 2,316,975,000 15,467,734 98.61 5.9982 88.35
48 H52 15,639,674 2,345,951,100 15,651,629 98.69 6.0985 94.54
49 H54 15,651,950 2,347,792,500 15,663,166 98.63 6.0969 94.1
50 H57 15,645,264 2,346,789,600 15,647,012 98.76 6.1112 93.65
51 H59 15,638,430 2,345,764,500 15,651,657 98.78 6.1104 94.37
52 H60 15,614,960 2,342,244,000 15,632,471 98.84 6.1009 94.58
53 H61 15,629,070 2,344,360,500 15,634,909 99.06 6.1299 94.44
54 H63 15,636,592 2,345,488,800 15,646,175 98.68 6.0966 94.05
55 H64 15,644,622 2,346,693,300 15,642,704 98.63 6.0982 94
56 H65 15,648,800 2,347,320,000 15,663,287 98.76 6.1104 93.67
57 H66 15,647,578 2,347,136,700 15,648,537 98.71 6.1079 94.1
58 H67 15,644,800 2,346,720,000 15,660,901 98.52 6.0782 93.82
59 H68 15,640,580 2,346,087,000 15,649,980 98.71 6.1007 94.31
60 H69 15,631,256 2,344,688,400 15,630,676 98.84 6.1143 94.1
61 H70 15,655,344 2,348,301,600 15,660,396 98.62 6.0979 93.19
62 H71 15,637,122 2,345,568,300 15,655,204 98.54 6.0778 94.01
63 H72 15,647,880 2,347,182,000 15,666,952 98.76 6.1098 93.9
64 H73 15,664,062 2,349,609,300 15,667,395 98.92 6.1386 93.71
65 H74 15,645,486 2,346,822,900 15,653,871 98.93 6.1304 94.24
66 H75 15,643,542 2,346,531,300 15,639,646 98.66 6.0997 94.1
67 H76 15,631,808 2,344,771,200 15,631,758 98.79 6.1073 93.29
68 H79 15,690,258 2,353,538,700 15,697,408 98.65 6.115 93.66
69 H81 15,636,164 2,345,424,600 15,638,046 98.72 6.1018 94.1
70 H82 15,625,806 2,343,870,900 15,639,584 98.85 6.1112 94.43
71 H83 15,633,660 2,345,049,000 15,645,461 98.52 6.0759 93.71
72 H84 15,636,904 2,345,535,600 15,638,956 98.83 6.117 93.9
73 H85 15,642,282 2,346,342,300 15,655,320 98.68 6.0963 93.87
74 H86 15,654,490 2,348,173,500 15,659,573 98.74 6.1126 93.99
75 H87 15,652,060 2,347,809,000 15,662,526 99.03 6.1434 93.66
76 H88 15,634,468 2,345,170,200 15,632,857 99 6.137 93.6
77 H89 15,628,064 2,344,209,600 15,646,100 98.73 6.0931 93.61
78 H90 15,613,126 2,341,968,900 15,621,725 99.05 6.1289 93.48
79 H91 15,631,012 2,344,651,800 15,639,012 98.51 6.0731 93.75
80 H92 15,642,324 2,346,348,600 15,633,323 98.93 6.1335 93.76
81 H93 15,642,440 2,346,366,000 15,660,336 98.92 6.1261 93.71
82 H94 15,645,192 2,346,778,800 15,657,772 98.76 6.11 94.16
83 H98 15,646,062 2,346,909,300 15,650,958 98.88 6.1242 93.82
84 H99 15,650,152 2,347,522,800 15,649,365 98.99 6.1422 94.03
85 H100 15,639,150 2,345,872,500 15,658,739 98.98 6.1306 93.69
86 H101 15,625,178 2,343,776,700 15,647,386 98.59 6.0769 94.37
87 H102 15,640,788 2,346,118,200 15,657,631 98.86 6.1138 93.52
88 H103 15,620,126 2,343,018,900 15,633,825 98.71 6.0901 94.07
89 H104 15,636,530 2,345,479,500 15,658,275 98.75 6.096 93.42
90 H105 15,647,762 2,347,164,300 15,665,303 98.76 6.1068 93.43
91 H106 15,659,212 2,348,881,800 15,659,800 98.97 6.141 93.46
92 H107 15,648,382 2,347,257,300 15,652,697 98.81 6.1145 93.06
93 H108 15,648,200 2,347,230,000 15,661,329 98.73 6.1037 93.51
94 H109 15,646,448 2,346,967,200 15,653,428 98.65 6.0913 93.02
95 H110 15,639,892 2,345,983,800 15,664,255 98.62 6.0805 93.7
96 H111 15,639,180 2,345,877,000 15,653,438 98.88 6.117 93.92
97 H112 15,570,900 2,335,635,000 15,590,934 98.81 6.0733 93.95
98 H113 15,655,890 2,348,383,500 15,662,863 98.66 6.0954 93.5
99 H114 15,595,976 2,339,396,400 15,597,572 98.91 6.0998 93.58
100 H115 15,650,032 2,347,504,800 15,652,869 98.65 6.0964 93.65
101 H116 15,637,778 2,345,666,700 15,639,850 98.8 6.1104 93.94
102 H117 15,627,588 2,344,138,200 15,627,436 98.72 6.0782 93.5
103 H118 15,632,954 2,344,943,100 15,635,463 98.68 6.093 93.67
104 H119 15,652,736 2,347,910,400 15,663,106 98.86 6.1206 93.24
105 H120 15,647,734 2,347,160,100 15,657,814 98.7 6.098 93.91
106 H121 15,610,346 2,341,551,900 15,632,177 98.78 6.0863 93.81
107 H123 15,598,128 2,339,719,200 15,605,548 98.95 6.1023 93.66
108 H124 15,661,952 2,349,292,800 15,683,765 98.91 6.1315 93.99
109 H126 15,634,596 2,345,189,400 15,654,905 98.8 6.1013 93.39
110 H127 15,641,426 2,346,213,900 15,640,623 98.98 6.1348 93.61
111 H128 15,638,324 2,345,748,600 15,646,106 98.91 6.1211 93.86
112 H129 15,639,444 2,345,916,600 15,656,627 98.67 6.087 93.61
113 H130 15,645,230 2,346,784,500 15,664,921 98.62 6.083 93.69
114 H131 15,657,320 2,348,598,000 15,664,715 98.76 6.1143 93.86
115 H132 15,626,148 2,343,922,200 15,646,163 98.81 6.0919 94.6
116 H133 15,594,338 2,339,150,700 15,619,340 98.85 6.0935 94.4
117 H134 15,667,606 2,350,140,900 15,682,521 98.73 6.1115 93.93
118 H137 15,610,914 2,341,637,100 15,633,228 98.55 6.0621 94.1
119 H138 15,633,870 2,345,080,500 15,654,758 98.52 6.0721 94.23
120 H139 15,645,754 2,346,863,100 15,657,007 98.77 6.1081 93.79
121 H140 15,643,444 2,346,516,600 15,652,698 98.69 6.1006 93.9
122 H143 15,668,084 2,350,212,600 15,664,254 99.05 6.152 93.51
123 H144 15,650,120 2,347,518,000 15,641,978 98.92 6.1292 93.37
124 H145 15,629,292 2,344,393,800 15,655,288 98.64 6.078 93.64
125 H147 15,618,406 2,342,760,900 15,628,197 98.87 6.108 94.1
126 H149 15,567,176 2,335,076,400 15,575,971 98.72 6.068 93.26
127 H150 15,610,896 2,341,634,400 15,628,687 98.88 6.105 94.1
128 H151 15,648,120 2,347,218,000 15,680,342 98.85 6.1138 94.48
129 H152 15,652,574 2,347,886,100 15,661,193 98.81 6.1202 94.15
130 H156 15,598,540 2,339,781,000 15,594,411 98.91 6.1084 94.47
131 H157 15,641,602 2,346,240,300 15,645,884 98.76 6.11 94
132 H158 15,649,562 2,347,434,300 15,662,377 98.65 6.098 93.31
133 H159 15,649,762 2,347,464,300 15,653,101 98.67 6.1004 94.17
134 H160 15,667,296 2,350,094,400 15,685,971 98.83 6.1268 94.86
135 H161 15,479,874 2,321,981,100 15,503,106 98.94 6.0557 94.61
136 H162 15,669,080 2,350,362,000 15,680,629 98.8 6.1252 94.15
137 H163 15,663,032 2,349,454,800 15,687,369 98.65 6.0977 94.02
138 H164 15,618,640 2,342,796,000 15,636,937 98.62 6.0779 94.43
139 H165 15,651,504 2,347,725,600 15,674,063 98.56 6.0867 94.29
140 H167 15,641,368 2,346,205,200 15,643,943 99.13 6.1565 94.1
141 H168 15,641,054 2,346,158,100 15,646,273 98.73 6.1049 93.91
142 H170 15,653,652 2,348,047,800 15,663,488 98.69 6.0982 94.13
143 H171 15,668,812 2,350,321,800 15,669,727 98.67 6.1086 93.92
144 H173 15,675,188 2,351,278,200 15,690,423 98.68 6.1092 93.61
145 H174 15,661,598 2,349,239,700 15,675,575 98.77 6.1183 93.88
146 H175 15,678,796 2,351,819,400 15,702,375 98.66 6.1091 93.52
147 H176 15,282,836 2,292,425,400 15,296,067 98.8 5.9739 93.73
148 H177 15,646,244 2,346,936,600 15,669,119 98.66 6.0892 93.88
149 H178 15,649,544 2,347,431,600 15,641,523 99.04 6.1452 94.04
150 H179 15,670,220 2,350,533,000 15,684,986 98.68 6.109 93.66
151 H180 15,656,016 2,348,402,400 15,678,595 98.56 6.0868 93.54
152 H181 15,638,264 2,345,739,600 15,635,033 98.81 6.1145 94.05
153 H182 15,650,122 2,347,518,300 15,649,913 98.85 6.1254 94.17
154 H183 15,651,268 2,347,690,200 15,678,209 98.96 6.1284 94.37
155 H185 15,630,898 2,344,634,700 15,649,112 98.64 6.0826 93.88
156 H186 15,640,604 2,346,090,600 15,657,203 98.71 6.0953 94.04
157 H187 15,657,112 2,348,566,800 15,669,044 98.63 6.0983 93.74
158 H188 15,636,240 2,345,436,000 15,669,133 98.79 6.0976 94.19
159 H189 15,643,356 2,346,503,400 15,654,838 98.66 6.0974 94.62
160 H190 15,652,924 2,347,938,600 15,660,604 98.92 6.1331 94.28
161 H191 15,695,042 2,354,256,300 15,706,478 98.74 6.1273 94.11
162 H192 15,644,126 2,346,618,900 15,645,792 98.95 6.1331 94.31
163 H193 15,623,734 2,343,560,100 15,634,182 98.76 6.0991 94.4
164 H194 15,630,680 2,344,602,000 15,652,938 98.8 6.1018 93.7
165 H195 15,650,472 2,347,570,800 15,675,014 98.85 6.1214 93.91
166 H196 15,635,660 2,345,349,000 15,636,476 98.85 6.1167 94.36
167 H197 15,649,072 2,347,360,800 15,451,125 97.46 6.029 94.44
168 H198 15,664,890 2,349,733,500 15,655,932 99.14 6.1672 93.4
169 H199 15,650,714 2,347,607,100 15,649,357 98.97 6.138 94.41
170 H200 15,648,178 2,347,226,700 15,608,858 98.44 6.0904 94.28
171 H201 15,623,568 2,343,535,200 15,644,048 98.88 6.105 94.3
172 H202 15,655,202 2,348,280,300 15,670,215 98.8 6.1064 93.67
173 H203 15,630,476 2,344,571,400 15,633,295 98.71 6.0925 94.17
174 H204 15,623,138 2,343,470,700 15,646,851 98.73 6.0866 94.19
175 H205 15,636,116 2,345,417,400 15,644,750 98.99 6.1314 93.89
176 H206 15,653,604 2,348,040,600 15,660,700 98.71 6.1089 94.34
177 H207 15,649,960 2,347,494,000 15,680,180 98.6 6.0856 94.24
178 H208 15,661,136 2,349,170,400 15,683,500 98.56 6.0858 93.89
179 H209 15,610,030 2,341,504,500 15,332,494 96.78 5.9537 94.12
180 H210 15,654,376 2,348,156,400 15,657,864 98.77 6.1164 94.15
181 H212 15,652,044 2,347,806,600 15,660,112 98.71 6.106 94.42
182 H213 15,653,384 2,348,007,600 15,660,249 98.74 6.1086 94.43
183 H214 15,651,164 2,347,674,600 15,663,555 99.04 6.143 93.54
184 H215 15,659,508 2,348,926,200 15,666,902 99.09 6.1535 93.34
185 H216 15,660,744 2,349,111,600 15,676,333 98.66 6.1021 94.03
186 H217 15,649,024 2,347,353,600 15,658,283 98.63 6.0947 94.08
187 H219 15,675,696 2,351,354,400 15,688,144 98.64 6.1053 93.85
188 H221 15,681,920 2,352,288,000 15,694,734 98.52 6.0938 93.5
189 H222 15,643,696 2,346,554,400 15,641,059 98.83 6.1195 94.57
190 H224 15,660,482 2,349,072,300 15,669,870 98.52 6.0854 93.98
191 H226 15,568,560 2,335,284,000 15,605,633 98.86 6.0763 94.83
192 H228 15,673,176 2,350,976,400 15,690,824 98.66 6.106 93.78
193 H229 15,603,246 2,340,486,900 15,640,022 98.66 6.0634 94.32
194 H230 15,659,000 2,348,850,000 15,673,369 98.8 6.119 93.93
195 H231 15,667,432 2,350,114,800 15,679,878 98.77 6.0944 93.03
196 H233 15,662,366 2,349,354,900 15,669,469 98.85 6.1248 93.79
197 H234 15,661,674 2,349,251,100 15,663,993 98.91 6.1353 93.89
198 H235 15,654,314 2,348,147,100 15,672,686 98.76 6.112 94.34
199 H236 15,634,786 2,345,217,900 15,649,252 98.78 6.1026 93.84
200 H237 15,611,814 2,341,772,100 15,615,622 98.66 6.0782 94.13
201 H239 15,634,354 2,345,153,100 15,105,480 95.58 5.9076 93.68
202 H241 15,676,060 2,351,409,000 15,690,051 98.51 6.0856 93.87
203 H243 15,660,830 2,349,124,500 15,673,318 98.8 6.1119 93.62
204 H244 15,670,498 2,350,574,700 15,675,790 98.57 6.0916 93.35
205 H245 15,659,226 2,348,883,900 15,665,592 98.85 6.1206 93.7
206 H246 15,670,462 2,350,569,300 15,680,641 98.56 6.0909 93.65
207 H247 15,668,920 2,350,338,000 15,683,429 98.72 6.109 93.88
208 H248 15,635,022 2,345,253,300 15,651,802 98.78 6.0945 93.89
209 H250 15,669,354 2,350,403,100 15,679,927 98.71 6.1069 93.54
210 H251 15,673,576 2,351,036,400 15,674,961 98.71 6.1122 93.72
211 H252 15,662,336 2,349,350,400 15,671,138 98.83 6.1197 93.69
212 H253 15,654,108 2,348,116,200 15,663,577 98.97 6.1361 93.93
213 H254 15,679,174 2,351,876,100 15,691,062 98.64 6.1008 93.9
214 H255 15,663,020 2,349,453,000 15,669,247 98.62 6.0945 93.95
215 H256 15,664,826 2,349,723,900 15,684,969 98.53 6.0795 93.28
216 H257 15,654,254 2,348,138,100 15,660,761 98.97 6.1318 93.8
217 H258 15,674,924 2,351,238,600 15,697,749 98.73 6.1128 93.74
218 H259 15,604,474 2,340,671,100 15,613,775 98.8 6.0887 93.98
219 H260 15,645,904 2,346,885,600 15,661,109 98.79 6.1062 94.11
220 H261 15,671,928 2,350,789,200 15,691,047 98.9 6.1279 93.5
221 H263 15,620,536 2,343,080,400 15,259,979 96.56 5.9559 93.79
222 H264 15,710,820 2,356,623,000 15,719,500 98.72 6.1275 93.65
223 H265 15,658,198 2,348,729,700 15,664,847 98.72 6.1067 93.09
224 H266 15,666,460 2,349,969,000 15,680,524 98.73 6.1077 93.71
225 H267 15,665,356 2,349,803,400 15,675,541 98.82 6.1181 93.97
226 H268 15,533,834 2,330,075,100 15,572,106 98.83 6.0505 94.33
227 H269 15,662,386 2,349,357,900 15,667,395 99.09 6.1537 93.62
228 H270 15,654,894 2,348,234,100 15,677,947 98.73 6.0981 93.45
229 H273 15,657,610 2,348,641,500 15,648,655 99.01 6.1427 93.61
230 H274 15,664,354 2,349,653,100 15,684,094 98.82 6.1172 93.06
231 H275 15,669,548 2,350,432,200 15,689,131 98.77 6.1121 93.31
232 H276 15,645,546 2,346,831,900 15,668,720 98.88 6.1141 93.28
233 H277 15,678,368 2,351,755,200 15,692,919 98.86 6.1295 93.45
234 H278 15,672,870 2,350,930,500 15,692,324 98.78 6.1095 93.5
235 H279 15,668,886 2,350,332,900 15,675,589 98.93 6.1339 92.89
236 H280 15,648,124 2,347,218,600 15,655,673 98.76 6.1024 93.04
237 H281 15,611,140 2,341,671,000 15,629,063 99.06 6.124 93.68
238 H282 15,632,346 2,344,851,900 15,648,038 98.74 6.0915 93.61
239 H283 15,089,756 2,263,463,400 15,101,965 98.65 5.8726 93.71
240 H284 15,637,950 2,345,692,500 15,645,880 99.06 6.1348 93.76
241 H285 15,475,310 2,321,296,500 15,490,493 98.52 6.0019 88.59
242 H286 15,454,668 2,318,200,200 15,470,682 98.55 5.9964 87.32
243 H287 15,486,574 2,322,986,100 15,498,060 98.74 6.0336 88.51
244 H288 15,492,436 2,323,865,400 15,489,435 98.45 6.0059 88.45
245 H289 15,457,178 2,318,576,700 15,448,380 98.72 6.0253 87.88
246 H290 15,499,286 2,324,892,900 15,508,411 98.63 6.026 88.31
247 H291 15,476,282 2,321,442,300 15,490,455 98.75 6.0303 88.55
248 H292 15,464,520 2,319,678,000 15,466,322 98.44 5.9919 88.14
249 H293 15,472,686 2,320,902,900 15,475,667 98.63 6.016 87.88
250 H294 15,506,534 2,325,980,100 15,509,096 99.03 6.0814 86.93
251 H295 15,452,046 2,317,806,900 15,454,026 98.74 6.0231 88.29
252 H296 15,492,176 2,323,826,400 15,497,367 98.85 6.0501 88.57
253 H297 15,472,356 2,320,853,400 15,484,332 98.65 6.0177 88.29
254 H298 15,470,458 2,320,568,700 15,475,757 98.66 6.0195 88.02
255 H302 15,489,532 2,323,429,800 15,484,363 98.85 6.0526 87.71
256 H303 15,488,776 2,323,316,400 15,498,192 98.55 6.0118 87.47
257 H306 15,462,642 2,319,396,300 15,475,136 98.78 6.0278 88.28
258 H307 15,466,746 2,320,011,900 15,467,360 98.53 6.003 87.73
259 H308 15,452,280 2,317,842,000 15,286,299 97.5 5.9307 88.4
260 H310 15,468,054 2,320,208,100 15,445,741 98.56 6.0162 88.23
261 H311 15,443,720 2,316,558,000 15,444,869 98.66 6.0091 87.76
262 H312 15,476,324 2,321,448,600 15,484,090 98.53 6.0034 88.09
263 H313 15,475,090 2,321,263,500 15,474,286 98.99 6.0621 88.6
264 H314 15,393,142 2,308,971,300 15,401,466 98.62 5.9822 87.96
265 H316 15,473,580 2,321,037,000 15,476,778 98.66 6.0233 87.79
266 H317 15,465,420 2,319,813,000 15,477,794 98.75 6.026 88.19
267 H318 15,473,524 2,321,028,600 15,383,147 98 5.9761 88.31
268 H320 15,495,818 2,324,372,700 15,499,030 98.69 6.0348 89.14
269 H321 15,479,294 2,321,894,100 15,486,240 98.87 6.0499 88.71
270 H322 15,495,452 2,324,317,800 15,490,372 99 6.0736 88.46
271 H323 15,471,244 2,320,686,600 15,450,926 98.94 6.0598 88.26
272 H326 15,478,156 2,321,723,400 15,491,864 98.57 6.0094 88.55
273 H327 15,473,938 2,321,090,700 15,489,143 98.61 6.0106 88.52
274 H328 15,484,622 2,322,693,300 15,490,554 98.53 6.0089 88.83
275 H329 15,467,558 2,320,133,700 15,474,935 98.68 6.0209 88.34
276 H330 15,514,650 2,327,197,500 15,532,834 98.56 6.0211 89.01
277 H331 15,470,634 2,320,595,100 15,475,265 98.63 6.0156 88.24
278 H332 15,640,898 2,346,134,700 15,631,661 98.61 6.081 90.56
279 H333 15,619,272 2,342,890,800 15,624,938 98.82 6.0946 90.03
280 H334 15,613,988 2,342,098,200 15,615,176 98.8 6.092 90.25
281 H337 15,504,816 2,325,722,400 15,510,120 98.84 6.0496 91.03
282 H338 15,647,170 2,347,075,500 15,661,579 99 6.1434 95.21
283 H339 15,601,652 2,340,247,800 15,612,141 98.85 6.0894 90.46
284 H340 15,626,172 2,343,925,800 15,644,228 98.54 6.0587 90.92

Table S3

Statistical results of genetic linkage maps"

遗传连锁群
Chr.
标记个数
No. of markers
Bin标记个数
No. of bins
连锁群总长度
Length of linkage (cM)
平均遗传距离
Bin interval (cM)
LG1 4734 286 169.35 0.59
LG2 1530 296 243.34 0.82
LG3 4850 254 142.33 0.56
LG4 607 140 169.06 1.21
LG5 4969 406 228.86 0.56
LG6 349 112 139.07 1.24
LG7 768 160 152.43 0.95
LG8 1022 161 133.46 0.83
LG9 708 165 128.62 0.78
LG10 2128 211 142.78 0.68
LG11 3206 334 177.9 0.53
LG12 1002 189 176.76 0.94

Fig. 6

LOD profile from MQMmapping on chromosome 11 A: location of resistance QTL in 2019; B: location of resistance QTL in 2020; the X-axis is the genetic distance, unit is centi-Morgan (cM), the Y-axis is the LOD score. The selected QTL has an LOD greater than 3.0."

Table 1

Significant QTLs associated with disease resistance on chromosome 11 in 2019 and 2020"

年份
Year
遗传距离
Genetic distance (cM)
染色体位置
Position in Chr.11 (bp)
LOD值
LOD value
解释群体表型变异率
PVE (%)
2019 13.63 23,158,464 5.81 9.0
2019 12.46 23,134,243 4.93 7.7
2019 12.80 23,152,825 4.50 7.1
2019 13.13 22,960,073 3.71 5.9
2020 13.63 23,158,464 5.96 9.3
2020 12.46 23,134,243 5.90 9.2
2020 12.80 23,152,825 5.31 8.3
2020 13.13 22,960,073 3.55 5.6

Fig. 7

Fine mapping of qBB-11-1 Fine mapping of qBB-11-1 by substitution mapping method. H64 and H68 represent plants with disease resistance to Xoo in F6 RILs, H87, and H253 represent plants that are susceptible in F6 RILs, BC2F2 (from H64) represents the population obtained through LTH/H64//LTH inbreeding. BC2F3 (From H64) represents the population of BC2F2 resistant and susceptible individuals through inbreeding respectively. BC2F2 (from H253) represents the population obtained through YN/H253//YN inbreeding. BC2F3 (From H253) represents the population of BC2F2 resistant and susceptible individuals through inbreeding respectively. 1#, 2#, 3#, 4#, and 5# represent the lines in BC2F2; 1-1# represents the lines in BC2F3 derived from 1#. 2-1#, 2-2#, 2-3#, 2-4#, and 2-5# represent the lines in BC2F3 derived from 2#. 3-1# represents the lines in BC2F3 derived from 3#. 4-1#, 4-2#, 4-3#, and 4-4# represent the lines in BC2F3 derived from 4#. 5-1# represents the lines in BC2F3 derived from 5#. BC1F3 (From H87) represents the susceptible population of YN/H87 after continuous inbreeding. BC1F3 (From H68) represents the resistant population of LTH/H68 after continuous inbreeding. CEN: centromere; TEL: telomere; P31, P35, P89, P54, P5, P12, P22, P66, and P67 represent Indel molecular markers designed in the interval; YN Homo: homozygous genotype of Yuenong Simiao; LTH Homo: homozygous genotype of Lijiangxintuanheigu. Hetero: heterozygous genotype. Using the length of YN lesion as control, t-test was used to calculate the P-value. *** and ** indicate significant differences at the 0.001 and 0.01 probability levels, respectively. No. plants: the number of plants corresponding to the genotype."

[1] Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.): an updated review. Rice, 2020, 13: 3.
doi: 10.1186/s12284-019-0358-y pmid: 31915945
[2] 章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111-119.
Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111-119. (in Chinese with English abstract)
[3] Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacteria-blight disease in rice. Plant Commun, 2021, 2: 100143.
[4] 何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉, 刘维. 优质抗病水稻新品种粤农丝苗的选育及应用. 中国稻米, 2014, 20(2): 69-70.
doi: 10.3969/j.issn.1006-8082.2014.02.020
He X Y, Liao Y P, Chen Z M, Cheng Y S, Chen Y H, Liu W. Breeding and application of a new rice variety Yuenongsimiao with good quality and disease resistance. China Rice, 2014, 20(2): 69-70. (in Chinese with English abstract)
[5] 陈深, 汪聪颖, 苏菁, 冯爱卿, 朱小源, 曾列先. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44: 217-222.
Chen S, Wang C Y, Su J, Feng A Q, Zhu X Y, Zeng L X. Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in southern China. J Plant Prot, 2017, 44: 217-222. (in Chinese with English abstract)
[6] 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 3-10.
Fang Z D, Xu Z G, Guo C J, Yin S Z, Wu S Z, Xu X M, Zhang Q. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China. Acta Phytopathol Sin, 1990, 20(2): 3-10. (in Chinese with English abstract)
[7] Li H, Richard D. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324
[8] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170
[9] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352
[10] Danecek P, Auton A, Abecasis G, Albers C A, Banks E, De Pristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[11] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[12] Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics, 2017, 33: 3726-3732.
doi: 10.1093/bioinformatics/btx494 pmid: 29036272
[13] Van Ooijen J W. MapQTL® 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species. Netherlands, 2009. p 59.
[14] Arends D, Prins P, Jansen R C, Broman K W. R/QTL: high- throughput multiple QTL mapping. Bioinformatics, 2010, 26: 2990-2992.
doi: 10.1093/bioinformatics/btq565 pmid: 20966004
[15] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918
[16] Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742.
doi: 10.1093/genetics/124.3.735 pmid: 1968874
[17] 张月雄, 梁海福, 秦钢, 马增凤, 岑贞陆, 刘驰, 罗同平, 韦敏益, 李振经, 李容柏, 黄大辉. 籼稻品种9311抗白叶枯基因鉴定和定位. 分子植物育种, 2018, 16: 460-465.
Zhang Y X, Liang H F, Qin G, Ma Z F, Cen Z L, Liu C, Luo T P, Wei M Y, Li Z J, Li R B, Huang D H. Identification and mapping of a bacterial blight resistance gene in indica cv. 9311. Mol Plant Breed, 2018, 16: 460-465. (in Chinese with English abstract)
[18] Kim S M, Reinke R F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS One, 2019, 14: e0211775.
[19] Chen S, Wang C, Yang J, Chen B, Wang W, Su J, Feng A, Zeng L, Zhu X. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep, 2020, 10: 12642.
[20] Zhang F, Huang L Y, Zhang F, Ali J, Cruz C V, Zhuo D L, Du Z L, Li Z K, Zhou Y L. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics, 2015, 16: 111.
doi: 10.1186/s12864-015-1329-3 pmid: 25765449
[21] Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. Sci China Life Sci, 2021, 64: 51-65.
doi: 10.1007/s11427-020-1699-4
[22] Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife, 2016, 5: e19605.
[23] Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255.
doi: 10.1101/gad.1416306
[24] Yang B, Sugio A, White F F. Os8N3 is a host disease- susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
[25] Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ, 2011, 34: 1958-1969.
doi: 10.1111/j.1365-3040.2011.02391.x
[26] Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14resistance allele to bacterial blight from wild rice. Plant J, 2015, 84: 694-703.
doi: 10.1111/tpj.13042
[27] Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White F F, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26: 497-515.
doi: 10.1105/tpc.113.119255
[28] Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015, 8: 290-302.
doi: 10.1016/j.molp.2014.10.010
[29] Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F, Yin Z. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.
doi: 10.1038/nature03630
[30] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
doi: 10.1073/pnas.95.4.1663
[31] Zhang B, Zhang H, Li F, Ouyang Y, Yuan M, Li X, Xiao J, Wang S. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Commun, 2020, 1: 100088.
[32] Ji C, Ji Z, Liu B, Cheng H, Liu H, Liu S, Yang B, Chen G. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun, 2020, 1: 100087.
[33] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[34] Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527.
doi: 10.1046/j.1365-313X.2003.01976.x
[35] Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants, 2017, 3: 17009.
[36] Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33: 735-749.
doi: 10.1093/plcell/koaa045
[37] Holmes E C, Chen Y C, Mudgett M B, Sattely E S. Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell, 2021, 33: 750-765.
doi: 10.1093/plcell/koaa052
[38] Lee B J, Kim S K, Choi S B, Bae J, Kim K J, Kim Y J, Paek K H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett, 2009, 583: 2315-2320.
doi: 10.1016/j.febslet.2009.06.028
[39] Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002, 14: 1093-1107.
doi: 10.1105/tpc.010436
[40] He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat. Front Plant Sci, 2020, 11: 574775.
[41] Peng Y, Zhang Y, Gui Y, An D, Liu J, Xu X, Li Q, Wang J, Wang W, Shi C, Fan L, Lu B, Deng Y, Teng S, He Z. Elimination of a retrotransposon for quenching genome instability in modern rice. Mol Plant, 2019, 12: 1395-1407.
doi: S1674-2052(19)30205-9 pmid: 31228579
[42] Nidumukkala S, Tayi L, Chittela R K, Vudem D R, Khareedu V R. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol, 2019, 39: 395-407.
doi: 10.1080/07388551.2019.1566204 pmid: 30714414
[43] Zhang Q. Genetics and improvement of bacterial blight resistance of hybrid rice in China. Rice Sci, 2009, 16: 83-92.
doi: 10.1016/S1672-6308(08)60062-1
[44] Quibod I L, Atieza-Grande G, Oreiro E G, Palmos D, Nguyen M H, Coronejo S T, Aung E E, Nugroho C, Roman-Reyna V, Burgos M R, Capistrano P, Dossa S G, Onaga G, Saloma C, Cruz C V, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME J, 2020, 14: 492-505.
[45] Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19: 21-33.
doi: 10.1038/nrg.2017.82
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[4] WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324.
[5] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[6] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[7] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[8] SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: a case study of Hunan province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420.
[9] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[10] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[11] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[12] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[13] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[14] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[15] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!