Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2210-2220.doi: 10.3724/SP.J.1006.2022.12037
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XUE Jiao(), LU Dong-Bai(), LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying*()
[1] |
Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.): an updated review. Rice, 2020, 13: 3.
doi: 10.1186/s12284-019-0358-y pmid: 31915945 |
[2] | 章琦. 中国杂交水稻白叶枯病抗性的遗传改良. 中国水稻科学, 2009, 23: 111-119. |
Zhang Q. Genetics and improvement of resistance to bacterial blight in hybrid rice in China. Chin J Rice Sci, 2009, 23: 111-119. (in Chinese with English abstract) | |
[3] | Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacteria-blight disease in rice. Plant Commun, 2021, 2: 100143. |
[4] |
何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉, 刘维. 优质抗病水稻新品种粤农丝苗的选育及应用. 中国稻米, 2014, 20(2): 69-70.
doi: 10.3969/j.issn.1006-8082.2014.02.020 |
He X Y, Liao Y P, Chen Z M, Cheng Y S, Chen Y H, Liu W. Breeding and application of a new rice variety Yuenongsimiao with good quality and disease resistance. China Rice, 2014, 20(2): 69-70. (in Chinese with English abstract) | |
[5] | 陈深, 汪聪颖, 苏菁, 冯爱卿, 朱小源, 曾列先. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44: 217-222. |
Chen S, Wang C Y, Su J, Feng A Q, Zhu X Y, Zeng L X. Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in southern China. J Plant Prot, 2017, 44: 217-222. (in Chinese with English abstract) | |
[6] | 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 3-10. |
Fang Z D, Xu Z G, Guo C J, Yin S Z, Wu S Z, Xu X M, Zhang Q. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China. Acta Phytopathol Sin, 1990, 20(2): 3-10. (in Chinese with English abstract) | |
[7] |
Li H, Richard D. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 |
[8] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 |
[9] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 |
[10] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, De Pristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522 |
[11] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[12] |
Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics, 2017, 33: 3726-3732.
doi: 10.1093/bioinformatics/btx494 pmid: 29036272 |
[13] | Van Ooijen J W. MapQTL® 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species. Netherlands, 2009. p 59. |
[14] |
Arends D, Prins P, Jansen R C, Broman K W. R/QTL: high- throughput multiple QTL mapping. Bioinformatics, 2010, 26: 2990-2992.
doi: 10.1093/bioinformatics/btq565 pmid: 20966004 |
[15] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918 |
|
[16] |
Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742.
doi: 10.1093/genetics/124.3.735 pmid: 1968874 |
[17] | 张月雄, 梁海福, 秦钢, 马增凤, 岑贞陆, 刘驰, 罗同平, 韦敏益, 李振经, 李容柏, 黄大辉. 籼稻品种9311抗白叶枯基因鉴定和定位. 分子植物育种, 2018, 16: 460-465. |
Zhang Y X, Liang H F, Qin G, Ma Z F, Cen Z L, Liu C, Luo T P, Wei M Y, Li Z J, Li R B, Huang D H. Identification and mapping of a bacterial blight resistance gene in indica cv. 9311. Mol Plant Breed, 2018, 16: 460-465. (in Chinese with English abstract) | |
[18] | Kim S M, Reinke R F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS One, 2019, 14: e0211775. |
[19] | Chen S, Wang C, Yang J, Chen B, Wang W, Su J, Feng A, Zeng L, Zhu X. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep, 2020, 10: 12642. |
[20] |
Zhang F, Huang L Y, Zhang F, Ali J, Cruz C V, Zhuo D L, Du Z L, Li Z K, Zhou Y L. Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics, 2015, 16: 111.
doi: 10.1186/s12864-015-1329-3 pmid: 25765449 |
[21] |
Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. Sci China Life Sci, 2021, 64: 51-65.
doi: 10.1007/s11427-020-1699-4 |
[22] | Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife, 2016, 5: e19605. |
[23] |
Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255.
doi: 10.1101/gad.1416306 |
[24] | Yang B, Sugio A, White F F. Os8N3 is a host disease- susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508. |
[25] |
Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ, 2011, 34: 1958-1969.
doi: 10.1111/j.1365-3040.2011.02391.x |
[26] |
Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14resistance allele to bacterial blight from wild rice. Plant J, 2015, 84: 694-703.
doi: 10.1111/tpj.13042 |
[27] |
Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White F F, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26: 497-515.
doi: 10.1105/tpc.113.119255 |
[28] |
Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015, 8: 290-302.
doi: 10.1016/j.molp.2014.10.010 |
[29] |
Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F, Yin Z. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.
doi: 10.1038/nature03630 |
[30] |
Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
doi: 10.1073/pnas.95.4.1663 |
[31] | Zhang B, Zhang H, Li F, Ouyang Y, Yuan M, Li X, Xiao J, Wang S. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Commun, 2020, 1: 100088. |
[32] | Ji C, Ji Z, Liu B, Cheng H, Liu H, Liu S, Yang B, Chen G. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun, 2020, 1: 100087. |
[33] |
Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370 |
[34] |
Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527.
doi: 10.1046/j.1365-313X.2003.01976.x |
[35] | Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants, 2017, 3: 17009. |
[36] |
Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33: 735-749.
doi: 10.1093/plcell/koaa045 |
[37] |
Holmes E C, Chen Y C, Mudgett M B, Sattely E S. Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell, 2021, 33: 750-765.
doi: 10.1093/plcell/koaa052 |
[38] |
Lee B J, Kim S K, Choi S B, Bae J, Kim K J, Kim Y J, Paek K H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett, 2009, 583: 2315-2320.
doi: 10.1016/j.febslet.2009.06.028 |
[39] |
Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 2002, 14: 1093-1107.
doi: 10.1105/tpc.010436 |
[40] | He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat. Front Plant Sci, 2020, 11: 574775. |
[41] |
Peng Y, Zhang Y, Gui Y, An D, Liu J, Xu X, Li Q, Wang J, Wang W, Shi C, Fan L, Lu B, Deng Y, Teng S, He Z. Elimination of a retrotransposon for quenching genome instability in modern rice. Mol Plant, 2019, 12: 1395-1407.
doi: S1674-2052(19)30205-9 pmid: 31228579 |
[42] |
Nidumukkala S, Tayi L, Chittela R K, Vudem D R, Khareedu V R. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol, 2019, 39: 395-407.
doi: 10.1080/07388551.2019.1566204 pmid: 30714414 |
[43] |
Zhang Q. Genetics and improvement of bacterial blight resistance of hybrid rice in China. Rice Sci, 2009, 16: 83-92.
doi: 10.1016/S1672-6308(08)60062-1 |
[44] | Quibod I L, Atieza-Grande G, Oreiro E G, Palmos D, Nguyen M H, Coronejo S T, Aung E E, Nugroho C, Roman-Reyna V, Burgos M R, Capistrano P, Dossa S G, Onaga G, Saloma C, Cruz C V, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME J, 2020, 14: 492-505. |
[45] |
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19: 21-33.
doi: 10.1038/nrg.2017.82 |
[1] | ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227. |
[2] | HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. |
[3] | ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299. |
[4] | WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324. |
[5] | CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338. |
[6] | WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389. |
[7] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[8] | SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: a case study of Hunan province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420. |
[9] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[10] | ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904. |
[11] | ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027. |
[12] | LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040. |
[13] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[14] | ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065. |
[15] | CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582. |
|