Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1496-1517.doi: 10.3724/SP.J.1006.2023.24159
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Chun-Min1(), LI Wei-Xi2, LI Fang-Jun1, TIAN Xiao-Li1,*(), LI Zhao-Hu1
[1] |
Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under N starvation and resupply. Int J Mol Sci, 2020, 21: 1500.
doi: 10.3390/ijms21041500 |
[2] |
Xu G H, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450 |
[3] |
Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
doi: 10.1146/arplant.2018.69.issue-1 |
[4] |
Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M Y, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139 |
[5] |
Wang H D, Wan Y F, Buchner P, King R, Ma H X, Hawkesford M J. Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum. J Exp Bot, 2020, 71: 4531-4546.
doi: 10.1093/jxb/eraa210 |
[6] |
Bai H, Euring D, Volmer K, Janz D, Polle A. The nitrate transporter (NRT) gene family in poplar. PLoS One, 2013, 8: e72126.
doi: 10.1371/journal.pone.0072126 |
[7] |
Tahir M M, Wang H, Ahmad B, Liu Y, Fan S, Li K, Lei C, Shah K, Li S H, Zhang D. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Sci Hortic, 2021, 275: 109642.
doi: 10.1016/j.scienta.2020.109642 |
[8] |
Wang X L, Cai X F, Xu C X, Wang Q H. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. Plant Physiol Biochem, 2020, 158: 297-307.
doi: 10.1016/j.plaphy.2020.11.017 |
[9] | Bouguyon E, Brun F, Meynard D, Kubes M, Pervent M, Léran S, Lacombe B, Krouk G, Guiderdoni E, Zazimalova E, Hoyerova K, Nacry P, Gojon A. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants, 2015, 1: 15015. |
[10] |
Buchner P, Hawkesford M J. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER1/ PEPTIDE TRANSPORTER family (NPF) in wheat. J Exp Bot, 2014, 65: 5697-5710.
doi: 10.1093/jxb/eru231 pmid: 24913625 |
[11] |
Fan X R, Naz M, Fan X R, Xuan W, Miller A J, Xu G H. Plant nitrate transporters: from gene function to application. J Exp Bot, 2017, 68: 2463-2475.
doi: 10.1093/jxb/erx011 pmid: 28158856 |
[12] |
Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47: 834-838.
doi: 10.1038/ng.3337 |
[13] |
Huang N C, Liu K H, Lo H J, Tsay Y F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 1999, 11: 1381-1392.
doi: 10.1105/tpc.11.8.1381 pmid: 10449574 |
[14] |
Segonzac C, Boyer J C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell, 2007, 19: 3760-3777.
doi: 10.1105/tpc.106.048173 pmid: 17993627 |
[15] |
Filleur S, Dorbe M F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett, 2001, 489: 220-224.
doi: 10.1016/s0014-5793(01)02096-8 pmid: 11165253 |
[16] | Gu C S, Zhang X X, Jiang J F, Guan Z Y, Zhao S, Fang W M, Liao Y, Chen S M, Chen F D. Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake. Sci Rep, 2014, 4: e5833. |
[17] |
Barbier-Brygoo H, Angeli D A, Filleur S, Frachisse J M, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol, 2011, 62: 25-51.
doi: 10.1146/annurev-arplant-042110-103741 pmid: 21275645 |
[18] |
Lezhneva L, Kiba T, Feriabourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J, 2014, 80: 230-241.
doi: 10.1111/tpj.12626 |
[19] |
Du X Q, Wang F L, Li H, Jing S, Yu M, Li J G, Wu W H, Kudla J, Wang Y. The transcription factor MYB59 regulates K+/NO3- translocation in the Arabidopsis response to low K+ stress. Plant Cell, 2019, 31: 699-714.
doi: 10.1105/tpc.18.00674 |
[20] |
Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell, 2011, 23: 1945-1957.
doi: 10.1105/tpc.111.083618 |
[21] |
Xia X D, Fan X R, Wei J, Feng H M, Qu H Y, Xie D, Miller A J, Xu G H. Rice nitrate transporter OsNPF2.4 functions in low- affinity acquisition and long-distance transport. J Exp Bot, 2015, 66: 317-331.
doi: 10.1093/jxb/eru425 |
[22] |
Tang Z, Fan X R, Li Q, Feng H M, Miller A J, Shen Q R, Xu G H. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol, 2012, 160: 2052-2063.
doi: 10.1104/pp.112.204461 pmid: 23093362 |
[23] |
Hsu P K, Tsay Y F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol, 2013, 163: 844-856.
doi: 10.1104/pp.113.226563 |
[24] |
Chiu C C, Lin C S, Hsia A P, Su R C, Lin H L, Tsay Y F. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol, 2004, 45: 1139-1148.
pmid: 15509836 |
[25] |
Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 2009, 21: 2750-2761.
doi: 10.1105/tpc.109.067603 |
[26] |
Almagro A, Lin S H, Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell, 2008, 20: 3289-3299.
doi: 10.1105/tpc.107.056788 pmid: 19050168 |
[27] |
Léran S, Garg B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P, Gojon A, Lacombe B. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci Rep, 2015, 5: 7962.
doi: 10.1038/srep07962 |
[28] |
Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, Nacry P. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol, 2016, 172: 1237-1248.
pmid: 27543115 |
[29] |
Chen C Z, Lyu X F, Li J Y, Yi H Y, Gong J M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol, 2012, 159: 1582-1590.
doi: 10.1104/pp.112.199257 |
[30] |
Taochy C, Gaillard I, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier J B, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer J C. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. Plant J, 2015, 83: 466-479.
doi: 10.1111/tpj.2015.83.issue-3 |
[31] |
Li B, Byrt C, Qiu J, Baumann U, Hrmova M, Evrard A, Johnson A A, Birnbaum K D, Mayo G M, Jha D. Identification of a Stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis. Plant Physiol, 2016, 170: 1014-1029.
doi: 10.1104/pp.15.01163 |
[32] | Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo G M, Tester M, Gilliham M, Roy S J. AtNPF2.5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana. Front Plant Sci, 2017, 7: 2013. |
[33] |
Yang G, Tang H, Nie Y, Zhang X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron, 2011, 35: 164-170.
doi: 10.1016/j.eja.2011.06.001 |
[34] | 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学: 生命科学, 2021, 51: 1415-1423. |
Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Sci Sin (Vitae), 2021, 51: 1415-1423. (in Chinese with English abstract) | |
[35] | 孙伊辰. 棉花吸收利用氮素的生理及分子机制研究. 中国农业大学硕士学位论文, 北京, 2019. |
Sun Y C. Investigation of Physiological and Molecular Mechanisms of Nitrogen Uptake and Utilization in Cotton Plant. MS Thesis of China Agricultural University, Beijing, China, 2019. (in Chinese with English abstract) | |
[36] | 高美美. GhNRT2.5基因在棉花低氮胁迫反应中的功能分析. 西南大学硕士学位论文, 重庆, 2020. |
Gao M M. Function Analysis of GhNRT2.5 in Cotton Response to Low Nitrogen Stress. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract) | |
[37] | Subramanian B, Gao S, Lercher M J, Hu S, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 2: 270-275. |
[38] |
Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275 |
[39] |
Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587.
pmid: 17517783 |
[40] |
Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[41] |
Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 2006, 34: 369-373.
pmid: 16845028 |
[42] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed forinteractive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[43] |
An J, Hu P G, Li F J, Wu H H, Shen Y, White J C, Tian X L, Li Z H, Giraldo J P. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano, 2020, 7: 2214-2228.
doi: 10.1039/D0EN00387E |
[44] |
Yang D D, Li F J, Yi F, Eneji A E, Tian X L, Li Z H. Transcriptome analysis unravels key factors involved in response to potassium deficiency and feedback regulation of K+ uptake in cotton roots. Int J Mol Sci, 2021, 22: 3133.
doi: 10.3390/ijms22063133 |
[45] |
Li F J, Wu Q, Liao B P, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696 |
[46] | Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Cali Agric Exp Sta, 1950, 357: 1-39. |
[47] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Met, 2001, 25: 402-408. |
[48] | 袁丁. 5种木本植物 NRT2 基因家族的生物信息学分析与分子进化研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2012. |
Yuan D. Bioinformatical Analysis and Molecular Evolutionary Investigation of NRT2 Gene Family in 5 Woody Plants. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012. (in Chinese with English abstract) | |
[49] |
Kiba T, Feria-Bourrellier A B, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell, 2012, 24: 245-258.
doi: 10.1105/tpc.111.092221 |
[50] |
Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 2007, 19: 1590-1602.
doi: 10.1105/tpc.107.050542 |
[51] |
Wang W, Hu B, Yuan D Y, Liu Y Q, Che R H, Hu Y C, Ou S J, Liu Y X, Zhang Z H, Wang H R, Li H, Jiang Z M, Zhang Z L, Gao X K, Qiu Y H, Meng X B, Liu Y X, Bai Y, Liang Y, Wang Y Q, Zhang L H, Li L G, Sodmergen, Jing H C, Li J Y, Chu C C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30: 638-651.
doi: 10.1105/tpc.17.00809 |
[52] |
Zhao F J, McGrath S P, Meharg A A. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol, 2010, 61: 535-559.
doi: 10.1146/arplant.2010.61.issue-1 |
[53] |
Wen J, Li P F, Ran F, Guo P C, Zhu J T, Yang J, Zhang L L, Chen P, Li J N, Du H. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus. BMC Genomics, 2020, 21: 871.
doi: 10.1186/s12864-020-07274-7 |
[54] |
Wang Q, Liu C H, Dong Q L, Huang D, Li C Y, Li P M, Ma F W. Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDETRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. Int J Mol Sci, 2018, 19: 2761.
doi: 10.3390/ijms19092761 |
[55] |
Steiner H Y, Naider F, Becker J M. The PTR family: a new group of peptide transporters. Mol Microbiol, 1995, 16: 825-834.
pmid: 7476181 |
[56] |
Zhang G B, Yi H Y, Gong J M. The Arabidopsis ethylene/ jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell, 2014, 26: 3984-3998.
doi: 10.1105/tpc.114.129296 |
[57] |
Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA, 2012, 109: 9653-9658.
doi: 10.1073/pnas.1203567109 pmid: 22645333 |
[58] |
Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M. Identification of Arabidopsis NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res, 2015, 128: 679-686.
doi: 10.1007/s10265-015-0710-2 |
[59] |
Wen Z, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29: 2581-2596.
doi: 10.1105/tpc.16.00724 |
[60] |
Krouk G, Lacombe B, Bielach A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 2010, 18: 927-937.
doi: 10.1016/j.devcel.2010.05.008 pmid: 20627075 |
[61] | Zhang L, Ma H J, Chen T T, Pen J, Yu S X, Zhao X H. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One, 2014, 9: e112807. |
[62] | 汪芳珍. 荒漠植物沙芥NAXT家族基因的克隆及其成员PcNPF2.7的功能分析. 兰州大学硕士学位论文, 甘肃兰州, 2021. |
Wang F Z. Cloning of NAXT Homologous Genes and Functional Analysis of One Member PcNPF2.7 in the Xerophyte Pugionium cornutum. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2021. (in Chinese with English abstract) | |
[63] | Goel P, Singh A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS One, 2015, 10: e0143645. |
[64] |
Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 1999, 11: 865-874.
doi: 10.1105/tpc.11.5.865 pmid: 10330471 |
[65] |
Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol Plant, 2013, 6: 1984-1987.
doi: 10.1093/mp/sst068 |
[66] |
Okamoto M, Vidmar J J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol, 2003, 44: 304-317
doi: 10.1093/pcp/pcg036 pmid: 12668777 |
[67] |
Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell, 2008, 20: 2514-2528.
doi: 10.1105/tpc.108.060244 |
[68] |
Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Commun Biol, 2021, 4: 256.
doi: 10.1038/s42003-021-01775-1 |
[69] |
Tang W, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193 |
[70] | Wittkopp P J, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet, 2012, 13: 59-69. |
[1] | XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271. |
[2] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[3] | XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965. |
[4] | YANG Jia-Bao, ZHANG Zhan, ZHOU Zhi-Ming, LYU Xin-Hua, SUN Li. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 426-437. |
[5] | WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61. |
[6] | MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166. |
[7] | CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582. |
[8] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[9] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[10] | YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258. |
[11] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
[12] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[13] | HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089. |
[14] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[15] | MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236. |
|