Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1496-1517.doi: 10.3724/SP.J.1006.2023.24159

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.)

MA Chun-Min1(), LI Wei-Xi2, LI Fang-Jun1, TIAN Xiao-Li1,*(), LI Zhao-Hu1   

  1. 1Crop Chemical Control Research Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2022-07-10 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-24
  • Contact: *E-mail: tianxl@cau.edu.cn
  • Supported by:
    National Major Project for Developing New GM Crops(2011ZX08005-004-008)

Abstract:

Nitrate transporters (NRTs) play an important role in plant nitrogen absorption, utilization, and storage. In this study, 106 GhNRT1/PTR (NPF) (Nitrate transporter 1 (NRT1)/Peptide Transporter (PTR) family (NPF)) and 14 GhNRT2 (Nitrate transporter 2 family) were identified from Gossypium hirsutum L. (TM-1) by HMM software and Blastp method. The conserved domains, phylogenetic relationships, physicochemical properties, subcellular localization, conserved motifs, gene structure, promoter cis-acting elements, and expression patterns of these GhNRTs were analyzed. The results showed that GhNPF had a typical PTR2 (Peptide Transporter 2 family) domain. Two PTR2 and/or other domains were found in individual proteins (GhNPF2.6bD, GhNPF4.1cA, and GhNPF2.14aD), indicating that GhNPF was less evolutionarily conserved. The GhNRT2 had a typical MFS_1 (Major Facilitator Superfamily) domain. Most proteins were located on the cytoplasmic membrane with hydrophobic properties. Phylogenetic analysis showed that these GhNRTs could be divided into 10 groups, and the same group had similar gene structure and motif distribution. The composition of cis-acting elements indicated that the relative expression levels of most GhNRTs could be related to plant hormones, abiotic stress, and light response. In addition, the relative expression patterns of GhNPF were different among the diverse subgroups, but the relative expression patterns of different members in the same subgroup were mostly conserved. GhNRT2 genes were mainly expressed in roots. Moreover, the transcriptome data with salt stress treatment revealed that the relative levels of nearly 1/5 GhNRTs were significantly up-regulated or down-regulated, indicating that they probably function in response to salt stress. Six GhNRTs were selected to detect the response of their expression in roots, young leaves, functional leaves, and old leaves to different NO3- supply levels. The results showed that GhNPF6.3dA and GhNPF7.3aA may have the ability to absorb NO3- with dual affinity, while GhNPF6.2bD may encode high-affinity NO3- transporter. The three may be involved in NO3- unloading in functional leaves and old leaves. These results were different from those reported in plants such as Arabidopsis. In conclusion, the results provide a reference for further functional characterization of nitrate transporters and provide a preliminary basis for the mechanism analysis of nitrogen absorption and utilization in cotton.

Key words: Gossypium hirsutum L., nitrate transporters, GhNPF, GhNRT2, expression pattern

Table 1

Primer sequences for RT-PCR used in this study"

基因名称
Gene name
引物序列
Primer sequence (5'-3')
GhActin9 F: GCCTTGGACTATGAGCAGGA R: AAGAGATGGCTGGAAGAGGA
GhNPF4.6cA F: CCAATCTTCTTCTTTGGCTCTGG R: AGAAGGGCTTGCAGAGAGGTTC
GhNPF6.1aA F: GCTGCCTTCAAGAAACGACA R: GAGTGCTGCCTTATCCAAGC
GhNPF6.2bD F: CTCTTGTGTTTGCTTGGTGGC R: AATGTGCCAGTCCCAAGTGT
GhNPF6.3dA F: CCCAAATCGCTGCAGTGTTT R: CGAAACTGCTTGCTGTGAGGC
GhNPF7.3aA F: GTTGAAGAGCAGAAGAAGGGAAC R: ACCTTGCTCAACGAATAGGGATG
GhNRT2.4aA F: CCAGTGGGGTAGCATGTTTC R: GCTTTCCACGCTCAGACCG

Fig. 1

Phylogenetic relationship of Gossypium hirsutum L. NRT proteins and Arabidopsis thaliana NRT proteins The NRT protein sequences of Gossypium hirsutum L. (120) and Arabidopsis thaliana (60) were compared by Clustal W in MEGA 7.0, and the phylogenetic tree was constructed by adjacency method. Red star represents G. hirsutum NRT, and green triangle represents Arabidopsis NRT. The colored dot represents the substrates of AtNRTs that have been verified, and the main substrates of each subfamily are summarized to form the outer ring."

Fig. 2

Conservative domain analysis of NRT proteins in Gossypium hirsutum L. (A) and Arabidopsis thaliana (B)"

Table 2

Physicochemical properties and subcellular localization prediction of NRT proteins in Gossypium hirsutum L."

基因名称
Gene ID
分子质量
Molecular weight (kD)
等电点
pI
氨基酸数
Number of amino acids
亲水性
Grand average of hydropathicity
脂肪指数
Aliphatic index
不稳定系数Instability index 亚细胞定位
Subcellular localization
GhNPF1.1cD 63.711 9.13 579 0.352 101.93 43.69 plas
GhNPF1.2aA 66.070 8.65 603 0.342 100.15 46.12 plas
GhNPF2.6bA 107.252 8.60 982 0.521 114.58 35.36 plas
GhNPF2.6bD 122.915 9.21 1118 0.438 110.49 37.97 plas
GhNPF2.6aA 61.214 8.61 558 0.369 107.85 34.68 plas
GhNPF2.11aD 66.821 8.91 602 0.200 96.71 30.10 plas
GhNPF2.14aD 93.651 6.76 844 0.302 103.83 39.71 plas
GhNPF2.14bD 65.256 7.88 588 0.353 104.25 35.93 plas
GhNPF3.1dA 54.147 8.45 491 0.281 106.42 37.18 plas
GhNPF3.1aD 64.861 8.48 586 0.220 100.55 30.67 plas
GhNPF3.1cD 65.818 8.37 593 0.210 100.35 32.67 plas
GhNPF4.1aA 57.776 8.52 519 0.327 96.99 34.86 plas
GhNPF4.3bD 65.985 8.46 596 0.255 97.53 35.11 plas
GhNPF4.4aD 64.965 7.52 587 0.341 98.13 37.19 plas
GhNPF4.1cA 119.341 8.99 1078 0.362 102.18 29.89 plas
GhNPF4.6bD 64.247 9.16 582 0.339 102.94 43.31 plas
GhNPF4.6cD 63.787 8.54 580 0.356 101.43 42.33 plas
GhNPF4.6aA 56.049 9.33 511 0.448 102.90 39.84 plas
GhNPF4.7aA 57.238 8.89 519 0.385 97.17 42.30 plas
GhNPF5.2aD 66.315 9.16 594 0.243 98.15 28.95 plas
GhNPF5.4bD 63.908 9.06 578 0.274 102.04 30.58 plas
GhNPF5.7aD 66.067 8.60 594 0.276 106.72 35.40 plas
GhNPF5.9aA 60.359 7.86 542 0.367 101.62 37.62 plas
GhNPF5.10aA 62.338 8.76 571 0.411 104.31 34.02 plas
GhNPF5.10dA 64.148 9.22 579 0.149 91.16 36.18 plas
GhNPF6.1aA 70.503 8.91 634 0.290 99.54 39.06 plas
GhNPF6.2bD 63.343 9.33 582 0.375 98.04 29.66 plas
GhNPF6.3bA 64.680 8.91 586 0.317 105.00 35.83 plas
GhNPF6.4bA 65.734 8.95 595 0.277 106.00 24.31 plas
GhNPF7.1bA 65.353 5.96 598 0.315 99.60 26.46 plas
GhNPF7.2aD 66.711 6.47 600 0.216 94.93 27.77 plas
GhNPF7.3aA 66.570 6.24 599 0.207 95.73 29.23 plas
GhNPF8.1aA 63.838 8.60 569 0.200 96.98 23.26 plas
GhNPF8.2cA 64.192 7.89 576 0.152 93.18 21.88 plas
GhNPF8.3bA 64.679 5.97 584 0.248 93.89 30.46 plas
GhNRT2.4bD 57.456 9.31 530 0.345 87.28 41.81 plas
GhNRT2.4aA 57.526 8.82 532 0.331 88.05 41.58 plas
GhNRT2.3aD 57.938 9.21 536 0.392 86.51 32.60 plas
GhNRT2.2aA 56.878 8.59 526 0.319 87.60 35.91 plas
GhNRT2.5aD 54.632 9.15 506 0.457 94.68 38.68 plas

Fig. 3

Chromosome localization of GhNRTs in Gossypium hirsutum L."

Fig. 4

Conservative motif (left) and gene structure (right) of NRT proteins in Gossypium hirsutum L."

Fig. 5

Analysis of cis-regulatory elements in the promoter regions of GhNRTs"

Fig. 6

Relative expression level of GhNRTs in different organs and tissues of cotton The relative expression level of genes was drawn after the FPKM values normalized by log2 corresponding to each gene. DPA: days post-anthesis."

Fig. 7

Relative expression level of GhNRTs based on the different transcriptomes The relative expression level of genes was plotted using the FPKM values normalized by log2 corresponding to each gene. R1: 1 cm radicle tip; R2: 5 cm lateral root at 3 leaf stage; R3: 2 cm lateral root at 3 leaf stage; R4: young root at 3 leaf stage; L1: young leaf at 2 leaf stage; L2 and L3: young leaf at 3 leaf stage; L4: the functional leaf at 6 leaf stage."

Fig. 8

Response of GhNRTs expression to 200 mmol L-1 NaCl stress The relative expression level of genes was drew after the FPKM values normalized by log2 for each gene. R: lateral root 2 cm at 3 leaf stage; CK: treatment."

Fig. 9

Response of some GhNRTs espression to nitrogen supply levels The relative expression level of genes was calculated by 2-ΔΔCt. The relative expression of GhNRT2.4aA in roots treated with C→S for 0 h was set to 1. C→S: 7.5 mmol L-1→0 mmol L-1NO3-; L→C: 1.39 mmol L-1→7.5 mmol L-1 NO3-; L→C→S: 1.39 mmol L-1→7.5 mmol L-1→0 mmol L-1 NO3-; R: root; YL: young leaf; ML: mature leaf/functional leaf (Leaf 4 counted from top); OL: the old leaf (leaf 1-2 counted from below). The “*” above the bars indicates significant difference at P < 0.05 among the different time points of each part."

Table S1

Summary of identified substrates for NRT transporters in Arabidopsis thaliana and Oryza sativa"

物种
Species
名称
Name
先前名称
Old name
基因名称
Gene ID
底物
Substrates
参考文献
Reference(s)
拟南芥
Arabidopsis thaliana
AtNPF1.1 NRT1.12 At3g16180 NO3- (oocyte); ABA, GA, JA-Ile (yeast) [1-2]
AtNPF1.2 NRT1.11 At1g52190 NO3- (oocyte); GA, JA-Ile (yeast) [1-2]
AtNPF2.3 At3g45680 NO3- (liposome); GA (yeast) [2-3]
AtNPF2.4 At3g45700 GA, JA-Ile (yeast); Cl- (oocyte) [2,4]
AtNPF2.5 At3g45710 ABA, GA (yeast); Cl- (oocyte, yeast) [2,5]
AtNPF2.6 At3g45660 GA, JA-Ile (yeast) [2]
AtNPF2.7 NAXT1 At3g45650 NO3- (liposome); GA, JA-Ile (yeast) [2,6]
AtNPF2.9 NRT1.9 At1g18880 NO3-, 4 MTB (oocyte) [7-8]
AtNPF2.10 GTR1 At3g47960 NO3-, GA, JA-Ile, 4 MTB, 8 MTO (oocyte); GA, JA-Ile (yeast) [2,7,9-11]
AtNPF2.11 GTR2 At5g62680 4 MTB, 8 MTO, NO3-, GA (oocyte) [7,9,11]
AtNPF2.12 NRT1.6 At1g27080 NO3- (oocyte); GA (yeast) [2,12]
AtNPF2.13 NRT1.7 At1g69870 NO3-, 4 MTB (oocyte); GA, JA-Ile (yeast) [2,7,13]
AtNPF2.14 At1g69860 4 MTB (oocyte) [7]
AtNPF3.1 Nitr At1g68570 NO3-, NO2-, GA (oocyte); GA, and JA-Ile (yeast) [2,14-15]
AtNPF4.1 AIT3 At3g25260 ABA, GA, JA-Ile (yeast); GA (oocyte) [2,11,16]
AtNPF4.2 AIT4 At3g25280 ABA, GA (yeast) [2,16]
AtNPF4.5 AIT2 At1g27040 ABA (yeast) [16]
AtNPF4.6 NRT1.2/AIT1 At1g69850 NO3- (oocyte); ABA (yeast, insect cell) [2,16-18]
AtNPF5.1 At2g40460 ABA, GA, JA-Ile (yeast) [2]
AtNPF5.2 PTR3 At5g46050 Dipeptides (yeast); ABA, GA (yeast) [2,19-20]
AtNPF5.3 At5g46040 ABA (yeast) [2]
AtNPF5.5 At2g38100 NO3- (oocyte) [21]
AtNPF5.6 At2g37900 GA (yeast) [2]
AtNPF5.7 At3g53960 ABA, GA, JA-Ile (yeast) [2]
AtNPF5.10 At1g22540 NO3- (oocyte) [21]
AtNPF5.11 At1g72130 NO3- (oocyte) [22]
AtNPF5.12 At1g72140 NO3- (oocyte) [22]
AtNPF5.16 At1g22550 NO3- (oocyte) [22]
AtNPF6.2 NRT1.4 At2g26690 NO3- (oocyte) [23]
AtNPF6.3 NRT1.1 At1g12110 NO3-,auxin (oocyte) [24-26]
AtNPF7.2 NRT1.8 At4g21680 NO3- (oocyte) [27]
AtNPF7.3 NRT1.5 At1g32450 NO3-,K+ (oocyte) [28-29]
AtNPF8.1 PTR1 At3g54140 Dipeptides (oocyte, yeast); JA-Ile (yeast) [2,30-32]
AtNPF8.2 PTR5 At5g01180 Dipeptides (oocyte, yeast); ABA, GA, JA-Ile (yeast) [2,31-32]
AtNPF8.3 PTR2 At2g02040 Dipeptides (yeast); Histidine [33-34]
AtNRT2.1 At1g08090 NO3- (oocyte) [35]
AtNRT2.2 At1g08100 NO3- (oocyte) [35]
AtNRT2.4 At5g60770 NO3- (oocyte) [35]
AtNRT2.5 At1g12940 NO3- (oocyte) [35]
AtNRT2.7 At5g14570 NO3- (oocyte) [35]
水稻
Oryza sativa
OsNPF2.2 OsPTR2 Os12g44100 NO3- (oocyte) [36]
OsNPF2.4 Os03g48180 NO3- (oocyte) [37]
OsNPF7.2 Os02g47090 NO3- (oocyte) [38]
OsNPF7.3 OsPTR6 Os04g50950 Dipeptide (yeast) [39]
OsNPF8.9 OsNRT1 Os03g13274 NO3- (oocyte) [40-41]
OsNRT2.3b Os01g50820 NO3- (oocyte) [42]
[1] Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under N starvation and resupply. Int J Mol Sci, 2020, 21: 1500.
doi: 10.3390/ijms21041500
[2] Xu G H, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[3] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
doi: 10.1146/arplant.2018.69.issue-1
[4] Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M Y, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139
[5] Wang H D, Wan Y F, Buchner P, King R, Ma H X, Hawkesford M J. Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum. J Exp Bot, 2020, 71: 4531-4546.
doi: 10.1093/jxb/eraa210
[6] Bai H, Euring D, Volmer K, Janz D, Polle A. The nitrate transporter (NRT) gene family in poplar. PLoS One, 2013, 8: e72126.
doi: 10.1371/journal.pone.0072126
[7] Tahir M M, Wang H, Ahmad B, Liu Y, Fan S, Li K, Lei C, Shah K, Li S H, Zhang D. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Sci Hortic, 2021, 275: 109642.
doi: 10.1016/j.scienta.2020.109642
[8] Wang X L, Cai X F, Xu C X, Wang Q H. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. Plant Physiol Biochem, 2020, 158: 297-307.
doi: 10.1016/j.plaphy.2020.11.017
[9] Bouguyon E, Brun F, Meynard D, Kubes M, Pervent M, Léran S, Lacombe B, Krouk G, Guiderdoni E, Zazimalova E, Hoyerova K, Nacry P, Gojon A. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants, 2015, 1: 15015.
[10] Buchner P, Hawkesford M J. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER1/ PEPTIDE TRANSPORTER family (NPF) in wheat. J Exp Bot, 2014, 65: 5697-5710.
doi: 10.1093/jxb/eru231 pmid: 24913625
[11] Fan X R, Naz M, Fan X R, Xuan W, Miller A J, Xu G H. Plant nitrate transporters: from gene function to application. J Exp Bot, 2017, 68: 2463-2475.
doi: 10.1093/jxb/erx011 pmid: 28158856
[12] Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47: 834-838.
doi: 10.1038/ng.3337
[13] Huang N C, Liu K H, Lo H J, Tsay Y F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 1999, 11: 1381-1392.
doi: 10.1105/tpc.11.8.1381 pmid: 10449574
[14] Segonzac C, Boyer J C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell, 2007, 19: 3760-3777.
doi: 10.1105/tpc.106.048173 pmid: 17993627
[15] Filleur S, Dorbe M F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett, 2001, 489: 220-224.
doi: 10.1016/s0014-5793(01)02096-8 pmid: 11165253
[16] Gu C S, Zhang X X, Jiang J F, Guan Z Y, Zhao S, Fang W M, Liao Y, Chen S M, Chen F D. Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake. Sci Rep, 2014, 4: e5833.
[17] Barbier-Brygoo H, Angeli D A, Filleur S, Frachisse J M, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol, 2011, 62: 25-51.
doi: 10.1146/annurev-arplant-042110-103741 pmid: 21275645
[18] Lezhneva L, Kiba T, Feriabourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J, 2014, 80: 230-241.
doi: 10.1111/tpj.12626
[19] Du X Q, Wang F L, Li H, Jing S, Yu M, Li J G, Wu W H, Kudla J, Wang Y. The transcription factor MYB59 regulates K+/NO3- translocation in the Arabidopsis response to low K+ stress. Plant Cell, 2019, 31: 699-714.
doi: 10.1105/tpc.18.00674
[20] Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell, 2011, 23: 1945-1957.
doi: 10.1105/tpc.111.083618
[21] Xia X D, Fan X R, Wei J, Feng H M, Qu H Y, Xie D, Miller A J, Xu G H. Rice nitrate transporter OsNPF2.4 functions in low- affinity acquisition and long-distance transport. J Exp Bot, 2015, 66: 317-331.
doi: 10.1093/jxb/eru425
[22] Tang Z, Fan X R, Li Q, Feng H M, Miller A J, Shen Q R, Xu G H. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol, 2012, 160: 2052-2063.
doi: 10.1104/pp.112.204461 pmid: 23093362
[23] Hsu P K, Tsay Y F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol, 2013, 163: 844-856.
doi: 10.1104/pp.113.226563
[24] Chiu C C, Lin C S, Hsia A P, Su R C, Lin H L, Tsay Y F. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol, 2004, 45: 1139-1148.
pmid: 15509836
[25] Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 2009, 21: 2750-2761.
doi: 10.1105/tpc.109.067603
[26] Almagro A, Lin S H, Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell, 2008, 20: 3289-3299.
doi: 10.1105/tpc.107.056788 pmid: 19050168
[27] Léran S, Garg B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P, Gojon A, Lacombe B. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci Rep, 2015, 5: 7962.
doi: 10.1038/srep07962
[28] Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, Nacry P. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol, 2016, 172: 1237-1248.
pmid: 27543115
[29] Chen C Z, Lyu X F, Li J Y, Yi H Y, Gong J M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol, 2012, 159: 1582-1590.
doi: 10.1104/pp.112.199257
[30] Taochy C, Gaillard I, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier J B, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer J C. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. Plant J, 2015, 83: 466-479.
doi: 10.1111/tpj.2015.83.issue-3
[31] Li B, Byrt C, Qiu J, Baumann U, Hrmova M, Evrard A, Johnson A A, Birnbaum K D, Mayo G M, Jha D. Identification of a Stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis. Plant Physiol, 2016, 170: 1014-1029.
doi: 10.1104/pp.15.01163
[32] Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo G M, Tester M, Gilliham M, Roy S J. AtNPF2.5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana. Front Plant Sci, 2017, 7: 2013.
[33] Yang G, Tang H, Nie Y, Zhang X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron, 2011, 35: 164-170.
doi: 10.1016/j.eja.2011.06.001
[34] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学: 生命科学, 2021, 51: 1415-1423.
Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Sci Sin (Vitae), 2021, 51: 1415-1423. (in Chinese with English abstract)
[35] 孙伊辰. 棉花吸收利用氮素的生理及分子机制研究. 中国农业大学硕士学位论文, 北京, 2019.
Sun Y C. Investigation of Physiological and Molecular Mechanisms of Nitrogen Uptake and Utilization in Cotton Plant. MS Thesis of China Agricultural University, Beijing, China, 2019. (in Chinese with English abstract)
[36] 高美美. GhNRT2.5基因在棉花低氮胁迫反应中的功能分析. 西南大学硕士学位论文, 重庆, 2020.
Gao M M. Function Analysis of GhNRT2.5 in Cotton Response to Low Nitrogen Stress. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract)
[37] Subramanian B, Gao S, Lercher M J, Hu S, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 2: 270-275.
[38] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275
[39] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587.
pmid: 17517783
[40] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[41] Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 2006, 34: 369-373.
pmid: 16845028
[42] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed forinteractive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[43] An J, Hu P G, Li F J, Wu H H, Shen Y, White J C, Tian X L, Li Z H, Giraldo J P. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano, 2020, 7: 2214-2228.
doi: 10.1039/D0EN00387E
[44] Yang D D, Li F J, Yi F, Eneji A E, Tian X L, Li Z H. Transcriptome analysis unravels key factors involved in response to potassium deficiency and feedback regulation of K+ uptake in cotton roots. Int J Mol Sci, 2021, 22: 3133.
doi: 10.3390/ijms22063133
[45] Li F J, Wu Q, Liao B P, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696
[46] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Cali Agric Exp Sta, 1950, 357: 1-39.
[47] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Met, 2001, 25: 402-408.
[48] 袁丁. 5种木本植物 NRT2 基因家族的生物信息学分析与分子进化研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2012.
Yuan D. Bioinformatical Analysis and Molecular Evolutionary Investigation of NRT2 Gene Family in 5 Woody Plants. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012. (in Chinese with English abstract)
[49] Kiba T, Feria-Bourrellier A B, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell, 2012, 24: 245-258.
doi: 10.1105/tpc.111.092221
[50] Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 2007, 19: 1590-1602.
doi: 10.1105/tpc.107.050542
[51] Wang W, Hu B, Yuan D Y, Liu Y Q, Che R H, Hu Y C, Ou S J, Liu Y X, Zhang Z H, Wang H R, Li H, Jiang Z M, Zhang Z L, Gao X K, Qiu Y H, Meng X B, Liu Y X, Bai Y, Liang Y, Wang Y Q, Zhang L H, Li L G, Sodmergen, Jing H C, Li J Y, Chu C C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30: 638-651.
doi: 10.1105/tpc.17.00809
[52] Zhao F J, McGrath S P, Meharg A A. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol, 2010, 61: 535-559.
doi: 10.1146/arplant.2010.61.issue-1
[53] Wen J, Li P F, Ran F, Guo P C, Zhu J T, Yang J, Zhang L L, Chen P, Li J N, Du H. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus. BMC Genomics, 2020, 21: 871.
doi: 10.1186/s12864-020-07274-7
[54] Wang Q, Liu C H, Dong Q L, Huang D, Li C Y, Li P M, Ma F W. Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDETRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. Int J Mol Sci, 2018, 19: 2761.
doi: 10.3390/ijms19092761
[55] Steiner H Y, Naider F, Becker J M. The PTR family: a new group of peptide transporters. Mol Microbiol, 1995, 16: 825-834.
pmid: 7476181
[56] Zhang G B, Yi H Y, Gong J M. The Arabidopsis ethylene/ jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell, 2014, 26: 3984-3998.
doi: 10.1105/tpc.114.129296
[57] Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA, 2012, 109: 9653-9658.
doi: 10.1073/pnas.1203567109 pmid: 22645333
[58] Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M. Identification of Arabidopsis NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res, 2015, 128: 679-686.
doi: 10.1007/s10265-015-0710-2
[59] Wen Z, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29: 2581-2596.
doi: 10.1105/tpc.16.00724
[60] Krouk G, Lacombe B, Bielach A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 2010, 18: 927-937.
doi: 10.1016/j.devcel.2010.05.008 pmid: 20627075
[61] Zhang L, Ma H J, Chen T T, Pen J, Yu S X, Zhao X H. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One, 2014, 9: e112807.
[62] 汪芳珍. 荒漠植物沙芥NAXT家族基因的克隆及其成员PcNPF2.7的功能分析. 兰州大学硕士学位论文, 甘肃兰州, 2021.
Wang F Z. Cloning of NAXT Homologous Genes and Functional Analysis of One Member PcNPF2.7 in the Xerophyte Pugionium cornutum. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2021. (in Chinese with English abstract)
[63] Goel P, Singh A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS One, 2015, 10: e0143645.
[64] Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 1999, 11: 865-874.
doi: 10.1105/tpc.11.5.865 pmid: 10330471
[65] Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol Plant, 2013, 6: 1984-1987.
doi: 10.1093/mp/sst068
[66] Okamoto M, Vidmar J J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol, 2003, 44: 304-317
doi: 10.1093/pcp/pcg036 pmid: 12668777
[67] Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell, 2008, 20: 2514-2528.
doi: 10.1105/tpc.108.060244
[68] Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Commun Biol, 2021, 4: 256.
doi: 10.1038/s42003-021-01775-1
[69] Tang W, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[70] Wittkopp P J, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet, 2012, 13: 59-69.
[1] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[2] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[3] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[4] YANG Jia-Bao, ZHANG Zhan, ZHOU Zhi-Ming, LYU Xin-Hua, SUN Li. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 426-437.
[5] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[6] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[7] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[8] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[9] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[10] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[11] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[12] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[13] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[14] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[15] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .