Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 287-300.doi: 10.3724/SP.J.1006.2025.44121
• REVIEW • Next Articles
XIE Ling-li1,2, LI Yong-Ling2, XU Ben-bo1,2,*, ZHANG Xue-kun1,2
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613–617.
[2] 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8): 1–7.
[3] 王瑞元. 2022年我国粮油产销和进口情况. 中国油脂, 2023, 48(6): 1–7.
[4] 霍治国, 范雨娴, 杨建莹, 尚莹. 中国农业洪涝灾害研究进展. 应用气象学报, 2017, 28: 641–653.
[5] 李继军, 陈雅慧, 周志华, 王艺瑾, 姚璇, 郭亮. 植物对涝渍胁迫的适应机制研究进展. 植物科学学报, 2023, 41: 835–846.
[6] 俄有浩, 马玉平. 农田涝渍灾害研究进展. 自然灾害学报, 2022, 31(4): 12–30.
[7] 杨海云, 艾雪莹, Batool Maria, 刘芳, 蒯婕, 王晶, 汪波, 周广生. 油菜响应水分胁迫的生理机制及栽培调控措施研究进展. 华中农业大学学报, 2021, 40(2): 6–16.
[8] 张佩, 吴洪颜, 江海东, 高苹, 徐敏. 长江中下游油菜春季湿渍害灾损风险评估研究. 气象与环境科学, 2019, 42(1): 11–17. [9] Wang Z Y, Han Y L, Luo S, Rong X M, Song H X, Jiang N, Li C W, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Front Plant Sci, 2022, 13: 1048227. [10] Kreibich H, Van Loon A F, Schröter K, Ward P J, Mazzoleni M, Sairam N, Abeshu G W, Agafonova S, AghaKouchak A, Aksoy H, Alvarez-Garreton C, Aznar B, Balkhi L, Barendrecht M H, Biancamaria S, Bos-Burgering L, Bradley C, Budiyono Y, Buytaert W, Capewell L, Carlson H, Cavus Y, Couasnon A, Coxon G, Daliakopoulos I, de Ruiter M C, Delus C, Erfurt M, Esposito G, François D, Frappart F, Freer J, Frolova N, Gain A K, Grillakis M, Grima J O, Guzmán D A, Huning L S, Ionita M, Kharlamov M, Khoi D N, Kieboom N, Kireeva M, Koutroulis A, Lavado-Casimiro W, Li H Y, LLasat M C, Macdonald D, Mård J, Mathew-Richards H, McKenzie A, Mejia A, Mendiondo E M, Mens M, Mobini S, Mohor G S, Nagavciuc V, Ngo-Duc T, Thao Nguyen Huynh T, Nhi P T T, Petrucci O, Nguyen H Q, Quintana-Seguí P, Razavi S, Ridolfi E, Riegel J, Sadik M S, Savelli E, Sazonov A, Sharma S, Sörensen J, Arguello Souza F A, Stahl K, Steinhausen M, Stoelzle M, Szalińska W, Tang Q H, Tian F Q, Tokarczyk T, Tovar C, Van Thu Tran T, Van Huijgevoort M H J, van Vliet M T H, Vorogushyn S, Wagener T, Wang Y L, Wendt D E, Wickham E, Yang L, Zambrano-Bigiarini M, Blöschl G, Di Baldassarre G. The challenge of unprecedented floods and droughts in risk management. Nature, 2022, 608: 80–86. [11] Kundzewicz Z, Su B D, Wang Y J, Xia J, Huang J L, Jiang T. Flood risk and its reduction in China. Adv Water Resour, 2019, 130: 37–45. [12] Voesenek L A C J, Bailey-Serres J. Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol, 2013, 16: 647–653.
[13] 刘园, 刘布春, 梅旭荣. 区域粮食产量因灾损失评估之长江流域灾情-产量模型再检验. 中国农业气象, 2023, 44: 1114–1126. [14] Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot, 2000, 51: 89–97. [15] Wang C Y, Yan Z K, Wang Z K, Batool M, El-Badri A M, Bai F, Li Z, Wang B, Zhou G S, Kuai J. Subsoil tillage promotes root and shoot growth of rapeseed in paddy fields and dryland in Yangtze River Basin soils. Eur J Agron, 2021, 130: 126351.
[16] 祖祎祎. 为“两熟”变“三熟”提供更多模式. 农民日报, 2023-05-26(8).
[17] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选. 作物学报, 2023, 49: 3162–3175.
[18] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894–903.
[19] 张学昆, 范其新, 陈洁, 李加纳, 王汉中. 不同耐湿基因型甘蓝型油菜苗期对缺氧胁迫的生理差异响应.中国农业科学, 2007, 40: 485–491. [20] Cheng Y, Gu M, Cong Y, Zou C S, Zhang X K, Wang H Z. Combining ability and genetic effects of germination traits of Brassica napus L. under waterlogging stress condition. Agric Sci China, 2010, 9: 951–957. [21] Li X H, Zhou X, Wang G J, Yang T W, Nie Z N, Shi H F, Hu L Y, Yao X. Identification of growth stages sensitive to waterlogging during seedling emergence and establishment for winter oilseed rape (Brassica napus). Int J Agric Biol, 2019, 22: 1513‒1523. [22] Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci, 2019, 10: 62. [23] Bailey-Serres J, Lee S C, Brinton E. Waterproofing crops: effective flooding survival strategies. Plant Physiol, 2012, 160: 1698–1709.
[24] 何激光, 官春云, 李凤阳, 阴长发. 不同渍水处理对油菜产量及生理特性的影响. 作物研究, 2011, 25: 313–315. [25] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by application of uniconazole: Effects on morphological characteristics, hormones and photosynthesis. Field Crops Res, 1998, 59: 121–127.
[26] 张宇, 蒋跃林. 花期渍水胁迫对冬油菜生长及产量的影响. 农学学报, 2014, 4(10):24–27. [27] Kozlowski T T. Plant responses to flooding of soil. BioScience, 1984, 34: 162–167.
[28] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制. 作物学报, 2024, 50: 1015–1029. [29] Wan L, Hu C, Chen C, Zhang L Y, Ma N, Zhang C L. Foliar K application delays leaf senescence of winter rapeseed (Brassica napus L.) under waterlogging. Oil Crop Sci, 2017, 2: 1–12.
[30] 高华东, 晏军, 苏荣瑞, 刘凯文, 周守华. 渍水对油菜抽薹期叶片光合参数及产量的影响. 湖北农业科学, 2018, 57(10): 39–44. [31] Li J J, Xie T J, Chen Y H, Zhang Y T, Wang C F, Jiang Z, Yang W N, Zhou G S, Guo L, Zhang J. High-throughput unmanned aerial vehicle-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. J Exp Bot, 2022, 73: 5264–5278.
[32] 宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170–176. [33] Voesenek L A C J, Armstrong W, Bögemann G M, McDonald M P, Colmer T D. A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Funct Plant Biol, 1999, 26: 87–93. [34] Hong B, Zhou B Q, Peng Z C, Yao M Y, Wu J J, Wu X P, Guan C Y, Guan M. Tissue-specific transcriptome and metabolome analysis reveals the response mechanism of Brassica napus to waterlogging stress. Int J Mol Sci, 2023, 24: 6015.
[35] 林贤青, 沈惠聪, 季吟秋, 周伟军. 油菜渍害若干生理问题的探讨. 浙江农业大学学报, 1993, 19: 19–23.
[36] 王琼, 张春雷, 李光明, 李玲. 渍水胁迫对油菜根系形态与生理活性的影响. 中国油料作物学报, 2012, 34: 157–162. [37] Li J J, Zhang Y T, Chen Y H, Wang Y J, Zhou Z H, Tu J X, Guo L, Yao X. The roles of cell wall polysaccharides in response to waterlogging stress in Brassica napus L. root. BMC Biol, 2024, 22: 191.
[38] 宋楚崴, 曹宏鑫, 张文宇, 张伟欣, 陈魏涛, 冯春焕, 葛思俊. 施肥和花期渍水胁迫对油菜产量及其形成影响的模型研究. 中国农业科学, 2018, 51: 662–674. [39] Ploschuk R A, Miralles D J, Colmer T D, Ploschuk E L, Striker G G. Waterlogging of winter crops at early and late stages: impacts on leaf physiology, growth and yield. Front Plant Sci, 2018, 9: 1863.
[40] 刘秋霞, 任涛, 韩上, 李小坤, 丛日环, 武际, 鲁剑巍. 苗期渍水对直播冬油菜产量和农学利用率的影响及油菜在不同氮肥施用下的响应. 中国油料作物学报, 2020, 42: 594–602.
[41] 朱建强, 程伦国, 吴立仁, 刘伟. 油菜持续受渍试验研究. 农业工程学报, 2005, 21(增刊1): 63‒67. [42] Han C J, Wang Q, Zhang H B, Wang S H, Song H D, Hao J M, Dong H Z. Light shading improves the yield and quality of seed in oil-seed peony (Paeonia ostii Feng Dan). J Integr Agric, 2018, 17: 1631–1640.
[43] 尹亚军, 张翔宇, 张喻. 油菜籽成熟过程中主要营养成分变化研究. 食品工业科技, 2015, 36(5): 339–342. [44] Wollmer A C, Pitann B, Mühling K H. Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J Agron Crop Sci, 2018, 204: 165–174. [45] Xu M Y, Ma H Q, Zeng L, Cheng Y, Lu G Y, Xu J S, Zhang X K, Zou X L. The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crops Res, 2015, 180: 238–245. [46] Zhu B, Yu J, Shi H M, Yue K X, Lu J X, Zhang T. Effects of waterlogging stress on rapeseed yield, oil content, fatty acid composition, and transcriptome differences. Plant Growth Regul, 2023, 101: 769–779. [47] Bailey-Serres J, Voesenek L A C J. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol, 2008, 59: 313–339. [48] Zhang X C, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H L, Zhou M X. A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor Appl Genet, 2017, 130: 1559–1568. [49] Steffens B, Kovalev A, Gorb S N, Sauter M. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. Plant Cell, 2012, 24: 3296–3306. [50] Greenway H, Armstrong W, Colmer T D. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot, 2006, 98: 9–32. [51] Sasidharan R, Hartman S, Liu Z G, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek L A C J. Signal dynamics and interactions during flooding stress. Plant Physiol, 2018, 176: 1106–1117. [52] Yuan L B, Dai Y S, Xie L J, Yu L J, Zhou Y, Lai Y X, Yang Y C, Xu L, Chen Q F, Xiao S. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiol, 2017, 173: 1864–1880. [53] Pan J W, Sharif R, Xu X W, Chen X H. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci, 2021, 11: 627331. [54] Basu S, Kumar G, Kumari N, Kumari S, Shekhar S, Kumar S, Rajwanshi R. Reactive oxygen species and reactive nitrogen species induce lysigenous aerenchyma formation through programmed cell death in rice roots under submergence. Environ Exp Bot, 2020, 177: 104118.
[55] 陶霞, 李慧琳, 万林, 周琴, 江海东. 叶面喷施吲哚乙酸对油菜蕾薹期渍水的缓解效应. 中国油料作物学报, 2015, 37: 55–61. [56] Ruperti B, Botton A, Populin F, Eccher G, Brilli M, Quaggiotti S, Trevisan S, Cainelli N, Guarracino P, Schievano E, Meggio F. Flooding responses on grapevine: a physiological, transcriptional, and metabolic perspective. Front Plant Sci, 2019, 10: 339. [57] Kaur G, Singh G, Motavalli P P, Nelson K A, Orlowski J M, Golden B R. Impacts and management strategies for crop production in waterlogged or flooded soils: a review. Agron J, 2020, 112: 1475–1501. [58] Zhou C P, Bai T, Wang Y, Wu T, Zhang X Z, Xu X F, Han Z H. Morpholoical and enzymatic responses to waterlogging in three Prunus species. Sci Hortic, 2017, 221: 62–67. [59] Peng Y Q, Zhu J, Li W J, Gao W, Shen R Y, Meng L J. Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Sci Hortic, 2020, 261: 108977. [60] Drew M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and Anoxia. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 223–250.
[61] 钟雪花, 杨万年, 吕应堂. 淹水胁迫下对烟草、油菜某些生理指标的比较. 武汉植物学研究, 2002, 20: 395–398.
[62] 童晋, 詹高淼, 王新发, 刘贵华, 华玮, 王汉中. 油菜柠檬酸合酶基因的克隆及在逆境下的表达. 作物学报, 2009, 35: 33–40. [63] Xu B B, Cheng Y, Zou X L, Zhang X K. Ethanol content in plants of Brassica napus L. correlated with waterlogging tolerance index and regulated by lactate dehydrogenase and citrate synthase. Acta Physiol Plant, 2016, 38: 81. [64] Mustroph A, Albrecht G. Fermentation metabolism in roots of wheat seedlings after hypoxic pre-treatment in different anoxic incubation systems. J Plant Physiol, 2007, 164: 394–407.
[65] 罗裳, 王志远, 李长威, 蒋娜, 韩永亮, 荣湘民, 杨兰. 过氧化钙缓解冬油菜苗期渍害胁迫的效应研究. 浙江大学学报(农业与生命科学版), 2023, 49: 516–525. [66] Habibi F, Liu T, Shahid M A, Schaffer B, Sarkhosh A. Physiological, biochemical, and molecular responses of fruit trees to root zone hypoxia. Environ Exp Bot, 2023, 206: 105179. [67] Bai T H, Yin R, Li C Y, Ma F W, Yue Z Y, Shu H R. Comparative analysis of endogenous hormones in leaves and roots of two contrasting malus species in response to hypoxia stress. J Plant Growth Regul, 2011, 30: 119–127. [68] Sauter M. Root responses to flooding. Curr Opin Plant Biol, 2013, 16: 282–286. [69] Steffens B, Wang J X, Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta, 2006, 223: 604–612. [70] Druege U, Hilo A, Pérez-Pérez J M, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei M R. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann Bot, 2019, 123: 929–949. [71] Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci, 2014, 5: 495. [72] Singh P, Jaiswal S, Kushwaha A, Gahlowt P, Mishra V, Tripathi D K, Singh S P, Gupta R, Singh V P. Peroxynitrite is essential for aerenchyma formation in rice roots under waterlogging conditions. Planta, 2023, 258: 2. [73] Mignolli F, Barone J O, Vidoz M L. Root submergence enhances respiration and sugar accumulation in the stem of flooded tomato plants. Plant Cell Environ, 2021, 44: 3643–3654. [74] Kendrick M D, Chang C R. Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol, 2008, 11: 479–485. [75] Nguyen T N, Tuan P A, Mukherjee S, Son S, Ayele B T. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J Exp Bot, 2018, 69: 4065–4082. [76] Mhimdi M, Pérez-Pérez J M. Understanding of adventitious root formation: what can we learn from comparative genetics? Front Plant Sci, 2020, 11: 582020. [77] Visser E, Cohen J D, Barendse G, Blom C, Voesenek L. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm.. Plant Physiol, 1996, 112: 1687–1692. [78] Negi S, Ivanchenko M G, Muday G K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J, 2008, 55: 175–187. [79] Lewis D R, Negi S, Sukumar P, Muday G K. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development, 2011, 138: 3485–3495. [80] Zhao P X, Zhang J, Chen S Y, Zhang Z S, Wan G Y, Mao J L, Wang Z, Tan S T, Xiang C B. ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. Cell Rep, 2023, 42: 112565.
[81] 金南飞, 徐正圆, 叶玲珍, 沈秋芳, 张国平. 植物根系形态和解剖结构响应渍水胁迫的研究进展. 浙江大学学报(农业与生命科学版), 网络首发[2024-04-09], https://link.cnki.net/urlid/33.1247.S.20240408.1014.004.
[82] 赵婷, 李琴, 潘学军, 花秀芬, 张文娥. 陆生植物对淹水胁迫的适应机制. 植物生理学报, 2021, 57: 2091–2103. [83] Kim Y H, Hwang S J, Waqas M, Khan A L, Lee J H, Lee J D, Nguyen H T, Lee I J. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci, 2015, 6: 714.
[84] 孔妤, 王忠, 顾蕴洁, 汪月霞. 植物根内通气组织形成的研究进展. 植物学通报, 2008, 25: 248–253. [85] Drew M C, Jackson M B, Giffard S C, Campbell R. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta, 1981, 153: 217–224. [86] Geng S Y, Lin Z Q, Xie S P, Xiao J Z, Wang H Y, Zhao X, Zhou Y Y, Duan L S. Ethylene enhanced waterlogging tolerance by changing root architecture and inducing aerenchyma formation in maize seedlings. J Plant Physiol, 2023, 287: 154042. [87] Hartman S, Sasidharan R, Voesenek L A C J. The role of ethylene in metabolic acclimations to low oxygen. New Phytol, 2021, 229: 64–70. [88] Yamauchi T, Tanaka A, Tsutsumi N, Inukai Y, Nakazono M. A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants, 2020, 9: 610. [89] Hattori Y, Nagai K, Furukawa S, Song X J, Kawano R, Sakakibara H, Wu J Z, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460: 1026–1030. [90] Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA, 2008, 105: 16814–16819. [91] Liu P Q, Sun F, Gao R, Dong H S. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Mol Biol, 2012, 79: 609–622. [92] Yang S H, Choi D. Characterization of genes encoding ABA 8’hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem Biophys Res Commun, 2006, 350: 685–690.
[93]杨毅, 叶世英, 满建国. “十三五”期间我国油菜遗传育种研究进展—基于“十三五”国家重点研发计划“七大农作物育种”重点专项实施情况分析. 中国油料作物学报, 2024, 46: 703–711.
[94] 聂立璇, 姚璇, 汪吴凯, 贺江江, 李亦骁, 杨特武. 油菜胚根伸长期耐渍性鉴定及不同耐性品种质膜透性对渍水的反应. 植物生理学报, 2021, 57: 1946–1954.
[95] 孙文韬, 张志浩, 张古月, 任广鑫, 于澄宇. 耐渍甘蓝型油菜(Brassica napus)种质筛选与评价. 西北农业学报, 2023, 32: 855–865.
[96] 许晶, 曾柳, 徐明月, 程勇, 张学昆, 邹锡玲. 油菜耐渍性种质资源筛选与评价. 中国油料作物学报, 2014, 36: 748–754.
[97] 李云, 付三雄, 戚存扣. 油菜苗期耐淹性快速筛选方法的建立及验证. 中国油料作物学报, 2012, 34: 256–261.
[98] 唐章林, 王霖, 张娅茹, 朱丽, 唐钟林, 荆蓉蓉, 李阳阳. 甘蓝型油菜种质资源苗期耐湿性综合评价与筛选. 西南大学学报(自然科学版), 2022, 44(12): 19–28.
[99] 陈娟妮, 梁颖. 长江流域主要甘蓝型油菜品种苗期耐湿性鉴定. 中国生态农业学报, 2011, 19: 626–630.
[100] 李浩杰, 柴靓, 蒲晓斌, 张锦芳, 蒋俊, 崔成, 张雪花, 蒋梁材. 室内水淹和田间模拟湿害对甘蓝型油菜耐湿性鉴定. 西南农业学报, 2016, 29: 1250–1256.
[101] 卢庆善, 孙毅, 华泽田. 农作物杂种优势. 北京: 中国农业科学技术出版社, 2001. [102] Liu W W, Zhang Y L, He H, He G M, Deng X W. From hybrid genomes to heterotic trait output: Challenges and opportunities. Curr Opin Plant Biol, 2022, 66: 102193. [103] Slatko B E, Gardner A F, Ausubel F M. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol, 2018, 122: e59. [104] Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, Xie W Z, Cheng Y F, Zhang Y T, Liu K D, Yang Q Y, Chen L L, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34–45. [105] Song J M, Liu D X, Xie W Z, Yang Z Q, Guo L, Liu K D,Yang Q Y, Chen L L. BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol J, 2021, 19: 412–414.
[106] 丛野, 程勇, 邹崇顺, 张学昆, 王汉中. 甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析. 作物学报, 2009, 35: 1462–1467.
[107] 金岩, 吕艳艳, 付三雄, 戚存扣. 甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析. 作物学报, 2014, 40: 1964–1972. [108] Li Z, Mei S F, Mei Z, Liu X L, Fu T D, Zhou G S, Tu J X. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 2014, 197: 341–353. [109] Ding X Y, Xu J S, Huang H, Qiao X, Shen M Z, Cheng Y, Zhang X K. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.). J Integr Agric, 2020, 19: 1974–1983. [110] Guo Y Y, Kuang L H, Xu Y, Yan T, Jiang L X, Dong J, Wu D Z. Construction of a worldwide core collection of rapeseed and association analysis for waterlogging tolerance. Plant Growth Regul, 2022, 98: 321–328. [111] Zou X L, Tan X Y, Hu C W, Zeng L, Lu G Y, Fu G P, Cheng Y, Zhang X K. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. Int J Mol Sci, 2013, 14: 2637–2651. [112] Zou X L, Zeng L, Lu G Y, Cheng Y, Xu J S, Zhang X K. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L. J Integr Agric, 2015, 14: 1723–1734.
[113] 赵绪涛, 柳海东, 李开祥, 徐亮, 杜德志. 基于3个甘蓝型春油菜Pol CMS的优良恢复系选育. 中国油料作物学报, 2021, 43: 961–970.
[114]许玲, Liu Hui, Yan Guijun, Wallace Cowling, 周伟军, 路战远. 油料作物育种的分子工具和技术创新. 浙江大学学报(农业与生命科学版), 2023, 49: 445–453. [115] Hang Q, Farooq M A, Zhang K N, Ahsan Ayyaz A, Wan G L, Si Y Q, Hannan F, Zhou W J. Genome modification improves abiotic stress tolerance in oilseed rape (Brassica napus L.) and responds to climate change. J Zhejiang Univ (Agric & Life Sci), 2024, 50: 280–294. [116] ISAAA. Global status of commercialized biotech/GM crops 2018: biotech crops continue to help meet the challenges of increased population and climate change. Ithaca, New York: ISAAA, 2019. [117] ISAAA. Global status of commercialized biotech/GM crops 2019: Africa leads progree in biotech crop adoption with doubled number of planting countries in 2019. Ithaca, New York: ISAAA, 2020.
[118] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1–7. [119] Cao Y R, Yan X Y, Ran S Y, Ralph J, Smith R A, Chen X P, Qu C M, Li J N, Liu L Z. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. Plant Cell Environ, 2022, 45: 248–261. [120] Liu J, Liu J, Deng L B, Liu H M, Liu H F, Zhao W, Zhao Y W, Sun X C, Fan S H, Wang H Z, Hua W. An intrinsically disordered region-containing protein mitigates the drought-growth trade-off to boost yields. Plant Physiol, 2023, 192: 274–292. [121] Song M, Bin L H, Huang S H, Hu S W, An R, Wei S H, Mu J X, Zhang Y F. Identification of nuclear pore complexes (NPCs) and revealed outer-ring component BnHOS1 related to cold tolerance in B. napus. Int J Biol Macromol, 2022, 223: 1450–1461. [122] Li J J, Iqbal S, Zhang Y T, Chen Y H, Tan Z D, Ali U, Guo L. Transcriptome analysis reveals genes of flooding-tolerant and flooding-sensitive rapeseeds differentially respond to flooding at the germination stage. Plants, 2021, 10: 693.
[123] 李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因预测. 作物学报, 2019, 45: 1806–1821.
[124] 黄郢, 翟璐, 谢伶俐, 徐劲松, 张学昆, 许本波. 甘蓝型油菜MAP70基因家族全基因组鉴定与表达分析. 植物科学学报, 2023, 41: 647–656. [125] Lv Y Y, Fu S X, Chen S, Zhang W, Qi C K. Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Crop J, 2016, 4: 199–211.
[126] 吕艳艳, 付三雄, 陈松, 张维, 戚存扣. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性. 作物学报, 2015, 41: 565–573.
[127] 黄郢. 渍水对不同耐渍性油菜根部细胞骨架发育的影响及关键基因的筛选. 长江大学硕士学位论文, 湖北荆州, 2023. |
[1] | LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393. |
[2] | CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195. |
[3] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[4] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[5] | XU Yi, ZHANG Li-Lan, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Genomics and genetic improvement in main bast fiber crops: advances and perspectives [J]. Acta Agronomica Sinica, 2021, 47(6): 997-1019. |
[6] | XIANG Hong-Tao, LI Wan, ZHENG Dian-Feng, WANG Shi-Ya, HE Ning, WANG Man-Li, YANG Chun-Jie. Effects of uniconazole and waterlogging stress in seedling stage on the physio logy and yield in adzuki bean [J]. Acta Agronomica Sinica, 2021, 47(3): 494-506. |
[7] | LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223. |
[8] | WANG Shi-Ya, ZHENG Dian-Feng, FENG Nai-Jie, LIANG Xi-Long, XIANG Hong-Tao, FENG Sheng-Jie, JIN Dan, LIU Mei-Ling, MU Bao-Min. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000. |
[9] | ZHANG Xiao-Jun,XIAO Jin,WANG Hai-Yan,QIAO Lin-Yi,LI Xin,GUO Hui-juan,CHANG Li-Fang,ZHANG Shu-Wei,YAN Xiao-Tao,CHANG Zhi-Jian,WU Zong-Xin. Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines [J]. Acta Agronomica Sinica, 2020, 46(01): 62-73. |
[10] | YU Qi,FENG Nai-Jie,WANG Shi-Ya,ZUO Guan-Qiang,ZHENG Dian-Feng. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress [J]. Acta Agronomica Sinica, 2019, 45(7): 1080-1089. |
[11] | Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343. |
[12] | WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111. |
[13] | LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766. |
[14] | JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489. |
[15] | TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126. |
|