Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 62-73.doi: 10.3724/SP.J.1006.2020.91015

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines

ZHANG Xiao-Jun1,2,XIAO Jin3,WANG Hai-Yan3,QIAO Lin-Yi1,LI Xin1,GUO Hui-juan1,CHANG Li-Fang1,ZHANG Shu-Wei1,YAN Xiao-Tao1,CHANG Zhi-Jian1,2,*(),WU Zong-Xin4,*()   

  1. 1 Institute of Crop Science, Shanxi Academy of Agricultural Sciences/Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030006, Shanxi, China
    2 Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture, Taiyuan 030006, Shanxi, China
    3 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    4 Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, Shanxi, China
  • Received:2019-02-16 Accepted:2019-08-09 Online:2020-01-12 Published:2019-07-16
  • Contact: Zhi-Jian CHANG,Zong-Xin WU E-mail:wrczj@126.com;mhdwzx@126.com
  • Supported by:
    This study was supported by the National Key R&D Program of China(2017YFD0100600);Key R&D Program of Shanxi Province(201803D221018-5);Key R&D Program of Shanxi Province(201703D211007);Key R&D Program of Shanxi Province(201803D421020);Shanxi Academy of Agricultural Sciences(YGG17123);Shanxi Academy of Agricultural Sciences(YCX2018D2YS01);Shanxi Key Scientific and Technological Innovation Platform(201605D151002)

Abstract:

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases in wheat production; however, only limited sources of resistance are available in wheat. In this study, we evaluated 119 lines derived from the crosses between wheat and wheat-Thinopyrum partial amphiploids for their resistance to F. graminearum isolate F0609 over six environments during 2016 to 2018 cropping seasons using single floret inoculation method. Among the wheat-Thinopyrum lines tested, 45 were moderately or highly susceptible, with 25%-50% or >50% of the average percentage of diseased spikelets (PDS), 61 were moderately resistant (MR) with 10%-25% of the average PDS, and 13 lines were identified as resistant (R), with the average PDS less than 10%. For the FHB resistance of the 13 resistant lines, CH16387 was superior to ‘Sumai 3’ and ‘Wangshuibai’, the most widely used source of resistance to FHB, CH16371 and CH16379 were superior to ‘Wangshuibai’, and the remaining ten lines were comparable to ‘Wangshuibai’ or ‘Sumai 3’, in terms of number of infected spikelets per spike and percentage of infected spikelets. Furthermore, the average PDS in these resistant lines over the six environments showed a similar distribution, suggesting a relatively stable FHB resistance. The donor parents, wheat-alien partial amphiploids, involved in development of these resistant derivatives, included wheat-Th. intermedium partial amphiploid TAI8045 and wheat-T.ponticum partial amphiploid TAP8430. As both TAI8045 and TAP8430 were resistant, but all the wheat parents were susceptible, it was likely that the resistance to FHB in these lines identified originated from TAI8045 and TAP8430. These derivatives can serve as novel sources to enhance resistance of wheat to FHB.

Key words: wheat, Fusarium head blight, Thinopyrum, genetic improvement, germplasm resources

Supplementary table 1

Responses of the 119 wheat lines derived from Thinopyrum to Fusarium head blight under different environments"

编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
1 苏麦3号
Sumai 3
16.8 3.6 7.9 5.1 4.0 5.1 3.6 16.8 13.2 7.1 1 R
2 望水白
Wangshuibai
13.9 6.1 12.3 9.6 7.5 6.8 6.1 13.9 7.8 9.4 1 R
3 CH16387 8.7 4.9 4.4 4.5 1.3 1.3 1.3 8.7 7.4 4.2**a 1 R
4 CH16371 15.1 7.3 4.6 4.6 2.0 3.0 2.0 15.1 13.1 5.0**b 1 R
5 CH16379 7.0 10.2 7.2 5.1 2.0 4.2 2.0 10.2 8.2 6.0*b 1 R
6 CH16373 10.5 4.2 5.1 4.8 10.0 4.0 4.0 10.5 6.5 6.7 1 R
7 CH16352 7.3 11.6 5.5 4.2 - 6.0 4.2 11.6 7.3 6.7 1 R
8 CH16388 6.5 7.8 14.5 4.0 4.6 2.0 2.0 14.5 12.5 6.7 1 R
9 CH16419 6.5 11.4 6.6 4.8 - 4.0 4.0 11.4 7.4 6.7 1 R
10 CH16367 12.5 9.2 9.3 4.6 2.8 3.0 2.8 12.5 9.7 7.0 1 R
11 CH16378 11.0 5.1 - 4.9 - - 4.9 11.0 6.1 7.1 1 R
12 CH16374 9.4 9.8 8.3 5.4 9.2 3.0 3.0 9.8 6.8 7.5 1 R
13 CH16375 12.4 10.4 7.1 5.3 8.6 2.0 2.0 12.4 10.4 7.6 1 R
14 CH16427 8.4 10.5 - 5.9 - 6.7 5.9 10.5 4.6 7.7 1 R
15 CH16432 5.8 12.1 - 12.7 - 4.6 4.6 12.7 8.1 8.4 1 R
16 CH16390 6.7 17.2 20.0 3.7 9.0 4.0 3.7 20.0 16.3 10.1 2 MR
17 CH16424 - 17.6 - 6.8 - 6.1 6.1 17.6 11.5 10.2 2 MR
18 CH16399 7.1 10.6 - 7.3 - 17.0 7.1 17.0 9.8 10.5 2 MR
19 CH16431 11.9 9.5 - 6.5 - 15.0 6.5 15.0 8.6 10.7 2 MR
20 CH16369 11.3 11.5 14.0 16.0 10.0 3.0 3.0 16.0 13.0 11.0 2 MR
21 CH16389 11.4 14.1 17.6 15.7 5.0 3.0 3.0 17.6 14.6 11.1 2 MR
22 CH1357 11.2 13.3 - 10.0 - 11.0 10.0 13.3 3.3 11.4 2 MR
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
23 CH16423 5.0 12.3 12.0 11.1 23.0 6.0 5.0 23.0 18.0 11.6 2 MR
24 CH16392 16.9 14.9 - 10.0 - 4.6 4.6 16.9 12.2 11.6 2 MR
25 CH16346 24.3 8.1 - 4.1 - 10.0 4.1 24.3 20.2 11.6 2 MR
26 CH16381 15.8 10.2 24.0 8.6 8.0 5.0 5.0 24.0 19.0 11.9 2 MR
27 CH16118 8.5 20.4 - 8.1 - 12.1 8.1 20.4 12.3 12.3 2 MR
28 CH16372 23.7 19.3 14.0 9.1 5.0 3.0 3.0 23.7 20.7 12.3 2 MR
29 CH16368 27.4 11.0 20.0 4.8 12.0 2.0 2.0 27.4 25.4 12.9 2 MR
30 CH16426 24.0 12.0 - 7.1 - 8.8 7.1 24.0 16.9 12.9 2 MR
31 CH16360 13.4 7.1 - 4.7 - 27.0 4.7 27.0 22.3 13.0 2 MR
32 CH16380 10.8 15.8 29.0 18.4 1.0 4.0 1.0 29.0 28.0 13.2 2 MR
33 CH16409 17.6 10.2 - 19.5 - 6.0 6.0 19.5 13.5 13.3 2 MR
34 CH16359 22.6 18.5 8.0 19.1 12.0 2.0 2.0 22.6 20.6 13.7 2 MR
35 CH16417 10.8 12.3 - 12.0 - 20.4 10.8 20.4 9.6 13.9 2 MR
36 CH16408 5.0 28.5 - 13.3 - 8.8 5.0 28.5 23.5 13.9 2 MR
37 CH16376 42.7 6.2 11.0 5.6 15.0 3.0 3.0 42.7 39.7 13.9 2 MR
38 CH1349 24.5 7.5 - 6.8 - 17.0 6.8 24.5 17.7 14.0 2 MR
39 CH1556 24.5 13.3 - 6.3 - 12.1 6.3 24.5 18.2 14.0 2 MR
40 CH16366 11.4 8.0 8.0 23.9 28.0 6.0 6.0 28.0 22.0 14.2 2 MR
41 CH16382 8.7 18.2 26.0 22.8 11.0 5.0 5.0 26.0 21.0 15.3 2 MR
42 CH16391 11.3 13.1 29.0 6.8 29.0 3.0 3.0 29.0 26.0 15.4 2 MR
43 CH16403 23.1 20.9 - 7.1 - 11.0 7.1 23.1 16.1 15.5 2 MR
44 CH16377 14.0 16.9 - 6.2 - 26.0 6.2 26.0 19.8 15.8 2 MR
45 CH16440 23.6 12.6 - 11.0 - 17.6 11.0 23.6 12.6 16.2* 2 MR
46 CH16439 27.8 15.4 - 13.1 - 9.5 9.5 27.8 18.3 16.5 2 MR
47 CH16404 20.2 13.7 14.9 25.4 21.0 4.0 4.0 25.4 21.4 16.5* 2 MR
48 CH16342 29.7 23.7 11.0 9.6 17.0 10.0 9.6 29.7 20.1 16.8*c 2 MR
49 CH16393 17.5 6.7 - 30.8 - 13.3 6.7 30.8 24.1 17.1 2 MR
50 CH16425 21.8 20.5 - 6.5 - 20.2 6.5 21.8 15.3 17.2* 2 MR
51 CH16386 13.3 19.5 21.9 26.4 15.0 8.0 8.0 26.4 18.4 17.3* 2 MR
52 CH16397 8.8 17.4 50.0 8.7 18.0 3.0 3.0 50.0 47.0 17.7 2 MR
53 CH16406 20.4 33.8 - 4.6 - 12.0 4.6 33.8 29.2 17.7 2 MR
54 CH16384 23.9 10.4 13.0 19.6 30.0 10.0 10.0 30.0 20.0 17.8* 2 MR
55 CH16418 23.0 31.0 - 6.1 - 12.0 6.1 31.0 24.9 18.0 2 MR
56 CH16394 31.9 14.7 - 13.1 - 12.5 12.5 31.9 19.5 18.1 2 MR
57 CH16104 29.7 18.7 - 18.4 - 10.0 10.0 29.7 19.7 19.2* 2 MR
58 CH16365 - 26.2 14.0 4.0 46.0 7.0 4.0 46.0 42.0 19.4 2 MR
59 CH16422 18.8 31.9 26.0 6.0 30.0 5.0 5.0 31.9 26.9 19.6*c 2 MR
60 CH16412 14.4 37.3 - 14.9 - 14.0 14.0 37.3 23.3 20.1*c 2 MR
61 CH16430 27.1 17.6 - 28.4 - 11.0 11.0 28.4 17.4 21.0* 2 MR
62 CH16442 30.9 14.5 - 21.4 - 19.5 14.5 30.9 16.4 21.6** 2 MR
63 CH16370 37.5 35.3 7.0 36.9 11.0 3.0 3.0 37.5 34.5 21.8* 2 MR
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
64 CH16416 49.9 8.3 - 7.9 - - 7.9 49.9 42.0 22.0* 2 MR
65 CH16445 26.0 26.2 - 18.8 - 17.6 17.6 26.2 8.6 22.2** 2 MR
66 CH16421 13.4 51.1 - 12.1 - 12.0 12.0 51.1 39.1 22.2* 2 MR
67 CH16420 11.1 40.6 - 26.1 - 11.0 11.0 40.6 29.6 22.2*c 2 MR
68 CH16351 32.0 12.1 - 35.9 - 9.4 9.4 35.9 26.6 22.4* 2 MR
69 CH16341 23.9 16.0 - 18.4 - 32.0 16.0 32.0 16.0 22.6** 2 MR
70 CH16443 27.9 16.3 - 23.9 - - 16.3 27.9 11.6 22.7** 2 MR
71 CH16449 - 25.3 - 20.2 - 23.6 20.2 25.3 5.1 23.0** 2 MR
72 CH16112 30.1 20.3 - 15.0 - 27.0 15.0 30.1 15.1 23.1** 2 MR
73 CH16383 30.6 14.0 - 15.7 - 33.0 14.0 33.0 19.0 23.3**a 2 MR
74 CH16414 40.2 20.3 - 6.7 - 27.1 6.7 40.2 33.4 23.6* 2 MR
75 CH16401 17.1 8.3 85.0 11.4 17.0 3.0 3.0 85.0 82.0 23.6* 2 MR
76 CH16415 21.5 6.7 - 21.4 - 49.0 6.7 49.0 42.3 24.6* 2 MR
77 CH16410 15.0 38.6 - 21.8 - - 15.0 38.6 23.6 25.1* 3 MS
78 CH16435 25.3 - - 19.5 - 31.0 19.5 31.0 11.5 25.2** 3 MS
79 CH16362 38.1 33.9 - 13.0 - 18.0 13.0 38.1 25.0 25.8* 3 MS
80 CH16438 16.9 31.9 - 15.4 - 39.7 15.4 39.7 24.3 26.0** 3 MS
81 CH16348 32.1 41.4 - 18.8 - 13.0 13.0 41.4 28.4 26.3* 3 MS
82 CH16364 18.8 53.6 13.0 8.1 59.0 6.0 6.0 59.0 53.0 26.4* 3 MS
83 CH1364 36.5 21.5 - 31.1 - 17.0 17.0 36.5 19.5 26.6** 3 MS
84 CH16402 33.3 21.5 - 27.4 - 25.0 21.5 33.3 11.9 26.8** 3 MS
85 CH16396 12.2 34.1 35.3 40.0 - 13.0 12.2 40.0 27.9 26.9** 3 MS
86 CH16385 30.0 34.2 - 23.7 - 20.2 20.2 34.2 14.0 27.0** 3 MS
87 CH16343 31.1 60.6 9.0 28.2 - 8.0 8.0 60.6 52.6 27.4* 3 MS
88 CH16433 18.6 47.4 - 18.8 - 26.2 18.6 47.4 28.9 27.8* 3 MS
89 CH16340 28.8 32.3 - 31.1 - 19.1 19.1 32.3 13.2 27.8** 3 MS
90 CH16437 39.7 20.5 - 21.8 - 31.9 20.5 39.7 19.1 28.5** 3 MS
91 CH16407 38.2 43.3 - 18.9 - 14.1 14.1 43.3 29.2 28.6* 3 MS
92 CH16405 26.4 11.4 85.0 9.5 31.0 9.0 9.0 85.0 76.0 28.7* 3 MS
93 CH16354 52.7 12.9 - 30.5 - 19.3 12.9 52.7 39.8 28.8* 3 MS
94 CH16444 38.1 23.1 - 31.0 - 29.0 23.1 38.1 15.0 30.3** 3 MS
95 CH16395 16.8 52.3 91.0 6.0 14.0 2.0 2.0 91.0 89.0 30.4* 3 MS
96 CH16428 33.4 40.2 - 11.3 - 38.4 11.3 40.2 28.9 30.8** 3 MS
97 CH16429 31.8 31.8 - 27.8 - 31.9 27.8 31.9 4.1 30.8** 3 MS
98 CH16413 23.2 44.4 - 24.4 - 31.8 23.2 44.4 21.2 31.0** 3 MS
99 CH16344 38.6 23.1 - 36.0 - 30.0 23.1 38.6 15.5 31.9** 3 MS
100 CH16358 35.6 46.8 - 14.0 - 34.2 14.0 46.8 32.9 32.6** 3 MS
101 CH16441 52.2 19.2 - 31.0 - 30.0 19.2 52.2 33.0 33.1** 3 MS
102 CH16398 30.1 49.8 - 16.5 - 37.5 16.5 49.8 33.3 33.5** 3 MS
103 CH16448 6.1 57.5 - 38.5 - 31.8 6.1 57.5 51.5 33.5* 3 MS
104 CH16447 31.7 37.7 - 40.2 - 27.1 27.1 40.2 13.0 34.2** 3 MS
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
105 CH16363 51.7 79.7 29.0 24.6 20.0 2.0 2.0 79.7 77.7 34.5* 3 MS
106 CH16347 53.9 37.2 - 30.1 - 24.4 24.4 53.9 29.5 36.4** 3 MS
107 CH16446 46.0 41.0 - 28.2 - 34.1 28.2 46.0 17.8 37.3** 3 MS
108 CH16361 62.7 42.8 - 9.0 - - 9.0 62.7 53.7 38.2* 3 MS
109 CH1673 50.8 - 57.0 32.1 - 16.0 16.0 57.0 41.0 39.0** 3 MS
110 CH16436 40.8 46.2 - 23.1 - 51.1 23.1 51.1 28.0 40.3** 3 MS
111 CH16411 17.0 75.4 51.1 24.8 - 39.7 17.0 75.4 58.4 41.6** 3 MS
112 CH16355 47.9 64.0 - 23.2 - 34.1 23.2 64.0 40.8 42.3** 3 MS
113 CH16345 33.4 73.8 - 21.5 - 46.0 21.5 73.8 52.2 43.7** 3 MS
114 CH16400 47.4 80.2 74.9 20.6 - 15.0 15.0 80.2 65.2 47.6** 3 MS
115 CH16357 40.2 54.5 62.7 27.8 - 55.0 27.8 62.7 34.9 48.0** 3 MS
116 CH16356 36.3 58.6 - 37.5 - 60.7 36.3 60.7 24.5 48.3** 3 MS
117 CH16353 53.2 82.1 - 43.1 - 21.1 21.1 82.1 61.0 49.9** 3 MS
118 CH16434 38.4 96.3 - 31.0 - 35.3 31.0 96.3 65.2 50.2** 4 S
119 CH16106 78.4 61.4 - 40.2 - 41.4 40.2 78.4 38.3 55.3** 4 S
120 CH16350 63.8 93.9 - 53.6 - 55.6 53.6 93.9 40.4 66.7** 4 S
121 CH16349 95.0 100.0 - 33.6 - 46.0 33.6 100.0 66.4 68.6** 4 S
122 周麦27
Zhoumai 27
64.3 57.0 63.0 58.6 38.6 53.9 38.6 64.3 25.8 55.9** 4 S
123 Alondra’s 53.1 65.5 63.8 51.7 48.1 61.4 48.1 65.5 17.4 57.3** 4 S

Table 1

Fusarium head blight (FHB) resistance and percentage of diseased spikelet (PDS) in the parents of Thinopyrum-derived wheat lines"

亲本来源
Source of parents
亲本名称
Name of parents
病小穗率 PDS (%) 严重度分级
Severity
degree
抗性评价
FHB
resistance
染色体数目
Number of chromosomes
最小
Min.
最大
Max.
极差
Range
平均
Average
长穗偃麦草Th. ponticum TAP8430 4.4 5.9 1.5 5.4 1 R 56
中间偃麦草Th. intermedium TAI8045 1.1 4.5 3.4 3.3*a 1 R 56
TAI8505 7.0 20.8 13.8 14.6**b 2 MR 56
TAI8335 20.4 65.4 45.0 34.5** 3 MS 56
普通小麦Wheat 太原768 Taiyuan 768 36.0 50.0 14.0 42.1** 3 MS 42
冀麦26 Jimai 26 40.0 52.2 12.2 47.3** 3 MS 42
晋春5号Jinchun 5 48.5 70.0 21.5 58.7** 4 S 42
中8701 Zhong 8701 29.2 84.0 54.8 63.6** 4 S 42
苏麦3号Sumai 3 1.4 24.0 22.6 7.1 1 R 42
望水白Wangshuibai 1.4 28.0 26.6 9.4 1 R 42
周麦27 Zhoumai 27 38.6 64.3 25.7 55.9** 4 S 42
Alondra’s 48.1 65.5 17.4 57.3** 4 S 42

Fig. 1

Responses to Fusarium head blight in the parents (Taiyuan, Shanxi, 2018) "

Table 2

Responses to Fusarium head blight in 119 wheat lines derived from Thinopyrum"

供体亲本Donor parent 系谱来源
Pedigree
品系个数
Number of lines
抗病
R
中抗
MR
中感
MS
感病
S
TAP8430 太原768//冀麦26/TAP8430 Taiyuan 768//Jimai 26/TAP8430 73 1 20 19 4
中8701//冀麦26/TAP8430 Zhong 8701//Jimai 26/TAP8430 2 14 4
中8701//京繁309/TAP8430 Zhong 8701//Jingfan 309/TAP8430 1 2 6
TAI8045 京繁309//晋春5号/TAI8045 Jingfan 309//Jinchun 5/TAI8045 37 8 11 1
太原768//冀麦26/TAI8045 Taiyuan 768//Jimai 26/TAI8045 1 7 4
京繁309//冀麦26/TAI8045 Jingfan 309//Jimai 26/TAI8045 3 2
TAI8335 中8701//晋麦33/TAI8335 Zhong 8701//Jinmai 33/TAI8335 6 1 2
冀麦26//晋麦33/TAI8335 Jimai 26//Jinmai 33/TAI8335 3
TAI8505 太原768//冀麦26/TAI8505 Taiyuan 768//Jimai 26/ATI8505 3 3
合计 Total 119 13 61 41 4

Table 3

Disease resistance of the 13 wheat lines derived from Thinopyrum across different environments "

材料名称
Line
6个环境病小穗率
PDS in six environments (%)
6个环境病小穗率分布
PDS distribution in six environments
染色体数目
Number of chromosomes
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min.
最大
Max.
极差
Range
平均
Average
CH16387 8.7 4.9 4.4 4.5 1.3 1.3 1.3 8.7 7.4 4.2**a 42
CH16371 15.1 7.3 4.6 4.6 2.0 3.0 2.0 15.1 13.1 5.0** b 42
CH16379 7.0 10.2 7.2 5.1 2.0 4.2 2.0 10.2 8.2 6.0* b 42
CH16373 10.5 4.2 5.1 4.8 10.0 4.0 4.0 10.5 6.5 6.7 42
CH16352 7.3 11.6 5.5 4.2 - 6.0 4.2 11.6 7.3 6.7 42
CH16388 6.5 7.8 14.5 4.0 4.6 2.0 2.0 14.5 12.5 6.7 42
CH16419 6.5 11.4 6.6 4.8 - 4.0 4.0 11.4 7.4 6.7 42
CH16367 12.5 9.2 9.3 4.6 2.8 3.0 2.8 12.5 9.7 7.0 42
CH16378 11.0 5.1 - 4.9 - - 4.9 11.0 6.1 7.1 42
CH16374 9.4 9.8 8.3 5.4 9.2 3.0 3.0 9.8 6.8 7.5 42
CH16375 12.4 10.4 7.1 5.3 8.6 2.0 2.0 12.4 10.4 7.6 42
CH16427 8.4 10.5 - 5.9 - 6.7 5.9 10.5 4.6 7.7 42
CH16432 5.8 12.1 - 12.7 - 4.6 4.6 12.7 8.2 8.4 42
苏麦3号Sumai 3 16.8 3.6 7.9 5.1 4.0 5.1 3.6 16.8 13.2 7.1 42
望水白Wangshuibai 13.9 6.1 12.3 9.6 7.5 6.8 6.1 13.9 7.8 9.4 42
周麦27 Zhoumai 27 64.3 57.0 63.0 58.6 38.6 53.9 38.6 64.3 25.7 55.9 42
Alondra’s 53.1 65.5 63.8 51.7 48.1 61.4 48.1 65.5 17.4 57.3 42

Fig. 2

Responses to Fusarium head blight in 13 wheat lines (Taiyuan, Shanxi, 2018) a: resistant wheat lines; b: susceptible wheat lines."

Table 4

Correction coefficients of percentage of diseased spikes in 13 lines resistant to Furarium head blight under different environments"

环境
Environment
2018太原
2018 Taiyuan
2018成都
2018 Chengdu
2018南京
2018 Nanjing
2017太原
2017 Taiyuan
2017南京
2017 Nanjing
2018成都 2018 Chengdu -0.2764*
2018南京 2018 Nanjing 0.0562 -0.0724
2017太原 2017 Taiyuan 0.0398 0.0247 -0.0686
2017南京 2017 Nanjing 0.0818 -0.0851 -0.0264 0.4086**
2016南京 2016 Nanjing 0.2281 0.0080 -0.0756 0.3199* 0.3141*
[1] 程顺和, 张勇, 别同德, 高德荣, 张伯桥 . 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012,28:938-942.
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q . Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu J Agric Sci, 2012,28:938-942 (in Chinese with English abstract).
[2] 曾娟, 姜玉英 . 2012年我国小麦赤霉病暴发原因分析及持续监控与治理对策. 中国植保导刊, 2013,33(4):37-41.
Zeng J, Jiang Y Y . Analysis and continuous monitoring and control countermeasures of wheat FHB disease outbreak in China in 2012. China Plant Protect, 2013,33(4):37-41 (in Chinese with English abstract).
[3] Bai G H, Shaner G . Management and resistance in wheat and barley toFusarium head blight. Annu Rev Phytopathol, 2004,42:135-161.
doi: 10.1146/annurev.phyto.42.040803.140340 pmid: 15283663
[4] Stepient L, Chelkowski J . Fusarium head blight of wheat: pathogenic species and their mycotoxins. World Mycotoxin J, 2010,3:107-119.
doi: 10.1093/gbe/evz225 pmid: 31609418
[5] Gilbert J, Haber S . Overview of some recent research developments inFusarium head blight of wheat. Can J Plant Pathol, 2013,35:149-174.
doi: 10.1080/07060661.2013.772921
[6] 张爱民, 阳文龙, 李欣, 孙家柱 . 小麦抗赤霉病研究现状与展望. 遗传, 2018,40:858-873.
Zhang A M, Yang W L, Li X, Sun J Z . Current status and perspective on research against Fusarium head blight in wheat. Hereditas(Beijing), 2018,40:858-873 (in Chinese with English abstract).
[7] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brule-Babel A . Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2006,112:1465-147.
doi: 10.1007/s00122-006-0249-7
[8] Cuthbert P A, Somers D J, Brule-Babel A . Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2007,114:429-437.
doi: 10.1007/s00122-006-0439-3
[9] Xue S L, Li G Q, Jia H Y, Xu F, Lin F, Tang M Z, Wang Y, An X, Xu H B, Zhang L X, Kong Z X, Ma Z Q . Fine mapping Fhb4, a major QTLs conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2010,121:147-156.
doi: 10.1007/s00122-010-1298-5
[10] Xue S L, Xu F, Tang M Z, Zhou Y, Li G Q, An X, Lin F, Xu H B, Jia H Y, Zhang L X, Kong Z X, Ma Z Q . Precise mappingFhb5, a major QTLs conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet, 123:1055-1063.
doi: 10.1007/s00122-011-1647-z pmid: 21739138
[11] Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S . Molecular cytogenetic characterization of alien introgressions with geneFhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008,117:1155-1166.
doi: 10.1007/s00122-008-0853-9
[12] Cainong J C, Bockus W W, Feng Y G, Chen P D, Qi L L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S . Chromosome engineering, mapping, and transferring of resistance toFusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet, 2015,128:1019-1027.
doi: 10.1007/s00122-015-2485-1 pmid: 25726000
[13] Guo J, Zhang X L, Hou Y L, Cai J J, Shen X R, Zhou T T, Xu H H, Ohm H W, Wang H W, Li A F, Han F P, Wang H G, Kong L R . High-density mapping of the major FHB resistance geneFhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015,128:2301-2316.
doi: 10.1007/s00122-015-2586-x pmid: 26220223
[14] Bai G H, Kolb F L, Shaner G, Domier L L . Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology, 1999,89:343-348.
doi: 10.1094/PHYTO.1999.89.4.343 pmid: 18944781
[15] 中华人民共和国农业行业标准NY/T 1443.4-2007, 小麦病虫性评价技术规范, 第4部分: 小麦抗赤霉病评价技术规范.
Agricultural Standard of the People’s Republic of China, NY/T 1443.4-2007. Rules for Resistance Evaluation of Wheat to Diseases and Insect Pests, Part 4. Rule for Resistance Evaluation to Wheat Scab (in Chinese).
[16] Han F P, Fedak G, Benabdelmouna A, Armstrong K C, Ouellet T . Characterization of six wheat ×Thinopyrum intermedium derivativesby GISH, RFLP and multicolor GISH. Genome, 2003,46:490-495.
doi: 10.1139/g03-032 pmid: 12834067
[17] Zhang L, Luo P G, Ren Z L, Zhang H Y . Controlling fusarium head blight of wheat (Triticum aestivum L.) with genetics. Adv Biosci Biotech, 2011,2:263-270.
doi: 10.3835/plantgenome2015.04.0028 pmid: 27898754
[18] Wang X E, Chen P D, Liu D J, Zhang P, Zhou B, Friebe B, Gill B S . Molecular cytogenetic characterization ofRoegneria ciliaris chromosome additions in common wheat. Theor Appl Genet, 2001,102:651-657.
doi: 10.1007/s001220051693
[19] 王林生, 张雅莉, 南广慧 . 普通小麦-大赖草易位系T5AS-7Lr.7LrS分子细胞遗传学鉴定. 作物学报, 2018,44:1442-1447.
doi: 10.3724/SP.J.1006.2018.01442
Wang L S, Zhang Y L, Nan G H . Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation line T5AS-7Lr.7LrS. Acta Agron Sin, 2018,44:1442-1447 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01442
[20] 丁春邦, 周永红 . 小麦族拟鹅观草属研究进展. 四川农业大学学报, 2004,22:269-273.
Ding C B, Zhou Y H . Advances in research on Pseudoroegneria in the tribe Triticeae. J Sichuan Agric Univ, 2004,22:269-273 (in Chinese with English abstract).
[21] 王益, 康厚扬, 原红军, 蒋云, 张海琴, 周永红 . 普通小麦与华山新麦草衍生后代的农艺性状和细胞遗传学研究. 四川农业大学学报, 2008,26:405-410.
Wang Y, Kang H Y, Yuan H J, Jiang Y, Zhang H Q, Zhou Y H . Cytogenetic and morphological studies on the derivative progenies of Triticum aestivum × Psathyrostachys huashanica. J Sichuan Agric Univ, 2008,26:405-410 (in Chinese with English abstract).
[22] 张璐璐, 陈士强, 李海凤, 刘慧萍, 戴毅, 高勇, 陈建民 . 小麦-长穗偃麦草7E抗赤霉病易位系培育. 中国农业科学, 2016,49:3477-3488.
doi: 10.3864/j.issn.0578-1752.2016.18.002
Zhang L L, Chen S Q, Li H F, Liu H P, Dai Y, Gao Y, Chen J M . Development of wheat- Thinopyrum elongatum translocation lines resistant to Fusarium head blight. Sci Agric Sin, 2016,49:3477-3488 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2016.18.002
[23] 丛雯雯, 郭长虹 . 小麦近缘野生植物的赤霉病抗源筛选及其利用. 分子植物育种, 2010,8:1043-1049.
Cong W W, Guo C H . Selection and utilization of resistance sources to Fusarium head blight in wheat wild relatives. Mol Plant Breed, 2010,8:1043-1049 (in Chinese with English abstract).
[24] Li H J, Wang X M . Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics, 2009,36:557-565.
doi: 10.1016/S1673-8527(08)60147-2
[25] Oliver R E, Cai X, Xu S S, Chen X, Stack R W . Wheat-alien species derivatives: a novel source of resistance toFusarium head blight in wheat. Crop Sci, 2005,45:1353-1360.
doi: 10.2135/cropsci2004.0503
[26] Zeng J, Cao W, Fedak G, Sun S, Mccallum B, Fetch T, Xue A, Zhou Y . Molecular cytological characterization of two novel durum-Thinopyrum intermedium partial amphiploids with resistance to leaf rust, stem rust and Fusarium head blight. Hereditas, 2013,150:10-16.
doi: 10.1111/j.1601-5223.2012.02262.x
[27] Turner M K, De Haan L R, Jin Y, Anderson J . Wheatgrass-wheat partial amphiploids as a novel source of stem rust andFusarium head blight resistance. Crop Sci, 2013,53:1994-2005.
doi: 10.2135/cropsci2012.10.0584
[28] Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F . Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusariumhead blight. J Genet Genomics, 2013,39:103-110.
doi: 10.1016/j.jgg.2011.11.008 pmid: 22361509
[29] Liu Z H, Xu M, Xian Z P, Li X, Chen W Q, Luo P G . Registration of the novel wheat lines L658, L693, L696, and L699, with resistance toFusarium head blight, stripe rust, and powdery mildew. J Plant Regist, 2015,9:121-124.
doi: 10.3198/jpr2014.01.0003crg
[30] Zhang X L, Shen X R, Hao Y F, Cai J J, Ohm H W, Kong LR . A genetic map ofLophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet, 2011,122:263-270.
doi: 10.1007/s00122-010-1441-3
[31] 史文琦, 杨立军, 冯洁, 张旭, 曾凡松, 向礼波, 汪华, 喻大昭 . 小麦赤霉病流行区镰刀菌致病种及毒素化学型分析. 植物病理学报, 2011,41:486-494.
Shi W Q, Yang L J, Feng J, Zhang X, Zeng F S, Xiang L B, Wang H, Yu D Z . Analysis on the population structure of Fusarium pathogenic spp. and its mycotoxin chemotypes in Fusarium head blight epidemic region. Acta Phytopathol Sin, 2011,41:486-494 (in Chinese with English abstract).
[32] 俞刚, 陈利锋, 谢卫平, 柴一秋 . 禾谷镰孢的产毒与致病性. 南京农业大学学报, 2001,24(4):19-23.
Yu G, Chen L F, Xie W P, Chai Y Q . Correlation of trichothecene producing potential to pathogenicity of Fusarium graminearum on wheat. J Nanjing Agric Univ, 2001,24(4):19-23 (in Chinese with English abstract).
[33] 刘易科, 佟汉文, 朱展望, 陈泠, 邹娟, 张宇庆, 焦春海, 高春保 . 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016,36:51-57.
Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao C B . Review on improvement of Fusarium head blight resistance in wheat. J Triticeae Crops, 2016,36:51-57 (in Chinese with English abstract).
[34] 唐洪, 彭恒, 刘明龙, 杨建华, 吴吉林 . 小麦赤霉病田间病情与抽穗扬花期气象条件和病粒率关系. 中国植保导刊, 2012,32(7):10-12.
Tang H, Peng H, Liu M L, Yang J H, Wu J L . Relationships among field condition of wheat scab and climate and percentage of Fusarium infected kernels at the heading and flowering stage. China Plant Protect, 2012,32:10-12 (in Chinese with English abstract).
[35] Mesterhazy A . Types and components of resistance toFusarium head blight of wheat. Plant breed, 1995,114:377-386.
doi: 10.1007/s00122-003-1272-6 pmid: 12768240
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[6] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[9] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[12] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[13] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[14] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[15] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!