Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1855-1866.doi: 10.3724/SP.J.1006.2024.34191

• RESEARCH NOTES • Previous Articles     Next Articles

Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO

YU Quan-Xin(), YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng*()   

  1. Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Engineering Research Center for Sugarcane / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2023-11-14 Accepted:2024-01-31 Online:2024-07-12 Published:2024-02-23
  • Contact: *E-mail: xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2019132G)

Abstract:

Calmodulin-like (CML), one of the calcium signal receptor proteins unique to plants, is involved in plant growth and development and in response to environmental signal transduction. However, the response of CML to Sugarcane mosaic virus (SCMV) infection in sugarcane (Saccharum spp. hybrid) has not been reported. In the present study, a CML gene was cloned from a Badila (S. officinarum) and designated as ScCML13. The open reading frame (ORF) of ScCML13 gene is 519 bp in length and encodes a protein with 172 aa in length. Bioinformatics analysis showed that ScCML13 was a stable hydrophilic lipoprotein in with no transmembrane domain and contains 4 Ca2+-binding EF-hand domains. Phylogenetic tree analysis showed that the ScCML13 protein differentiated in monocotyledon and dicotyledon plants and in monocotyledonous C3 and C4 plants. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments indicated that ScCML13 interacted with P3N-PIPO, the movement protein of SCMV. Subcellular localization assays demonstrated that ScCML13 was localized to the endoplasmic reticulum and nucleus, whereas the co-localization assays showed that ScCML13 interfered with the localization of SCMV-P3N-PIPO to plasma membrane or plasmodesmata. The RT-qPCR showed that ScCML13 gene was mainly expressed in sugarcane leaves, but relatively low in internodes and roots. The ScCML13 gene was significantly up-regulated at 2 h upon SCMV infection, and then down-regulated to the levels compared with the control group, while up-regulated at the later stage of infection.

Key words: calmodulin-like protein, Sugarcane mosaic virus, P3N-PIPO, protein interaction

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Strategy
ScCML13-F ATGAGTTTCAACCAGTCTACTGTCAAG 基因克隆
ScCML13-R CTAGTAGCCATAGCTAGTCCTCCT Gene cloning
221-ScCML13-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGTTTCAACCAGTCTAC 亚细胞定位及双分子荧光互补载体构建
Vectors generation for subcellular localization and BiFC
221-ScCML13-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGTAGCCATAGCTAGTCCTCC
pPR3-ScCML13-F GCAGAGTGGCCATTACGATGAGTTTCAACCAGTCTACT 酵母双杂交载体构建
pPR3-ScCML13-R ATTCTCGAGAGGCCGCTAGTAGCCATAGCTAGTCCT Vector generation for Y2H
ScCML13-qF TCGAGGAGTTTGAGCACATGATGAC 定量PCR
ScCML13-qR TTACACCCAGCTCTTTGGCAATCC Real-time-qPCR
Actin-qF CTGGAATGGTCAAGGCTGGT 内参基因[64]
Actin-qR TCCTTCTGTCCCATCCCTACC Reference gene[64]
eEF-1α-qF TTCACACTTGGAGTGAAGCAGAT 内参基因[65]
eEF-1α-qR GACTTCCTTCACAATCTCATCATAA Reference gene[65]
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测[66]
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV[66]

Fig. 1

CML13 homology comparison and ScCML13 protein domain analysis of monocotyledon species ScCML13: Saccharum officinarum (OR575430); SbCML13: Sorghum bicolor (XP_021307808.1); LrCML13: Lolium rigidum (XP_ 047066070.1); BdCML13: Brachypodium distachyon (XP_003562666.1); OsCML13: Oryza sativa (NP_001409202.1). ScCML13 contains 4 typical EF-hand domains, i.e., EF-hand I (31-59), EF-hand II (67-95), EF-hand III (104-132), and EF-hand IV (140-168), all of which are 29 aa in length."

Fig. 2

Phylogenetic tree of ScCML13 and CMLs proteins from other plant species ScCML13: Saccharum officinarum (OR575430). The red box, the green box, and the yellow box indicate the subgroup I-1, the subgroup I-2, and the group II, respectively."

Fig. 3

Interaction between ScCML13 and SCMV-P3N-PIPO by Y2H assay Yeast cotransformants with pNubG-Fe65 plus pTSU2-APP or pNubG-Fe65 plus pPR3-N were used as the positive or negative controls, respectively. DDO+X-Gal: synthetic defined yeast minimal medium lacking Leu and Trp but plus the 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside (X-Gal); QDO+X-Gal: synthetic defined yeast minimal medium lacking Leu, Trp, His, and Ade but plus the X-Gal."

Fig. 4

Protein-protein interaction between ScCML13 and SCMV-P3N-PIPO by BiFC assay A: the C-terminal half of YFP was fused to the N-terminal of SCMV-P3N-PIPO to generate P3N-PIPO-YC, while the N-terminal half of YFP was fused to the C-terminal of ScCML13 to generate ScCML13-YN; B: the C-terminal half of YFP was fused to the N-terminal of ScCML13 to generate ScCML13-YC, while the N-terminal half of YFP was fused to the C-terminal of SCMV-P3N-PIPO to generate P3N-PIPO-YN. Bar: 25 μm."

Fig. 5

Localization of ScCML13 in tobacco epidermal cells and its co-localization with SCMV-P3N-PIPO A: the location of ScCML13 in the epidermal cells of tobacco. B: separately positioned for SCMV-P3N-PIPO and white arrows point to PD. C: the co-location of ScCML13 and SCMV-P3N-PIPO. ScCML13-YFP was labeled with green pseudo-color, SCMV-P3N-PIPO-CFP with purple pseudo-color, HDEL-mCherry with endoplasmic reticulum and H2B-mCherry with nuclear. The white arrow points to the SCMV-P3NPIPO-CFP fluorescence signal, which is significantly different from that when positioned alone. Bar: 25 μm."

Fig. 6

Tissue-specific expression analysis of ScCML13 gene in sugarcane and its expression pattern in response to SCMV infection A: the tissue-specific expression analysis of ScCML13 gene in sugarcane. B: the expression pattern of ScCML13 gene in response to SCMV infection. The error line is the standard error (n = 3) for each group of treatments. Different lowercase letters on the column indicate significant differences at P < 0.05 by Student’s t-test."

[1] 张跃彬, 邓军, 胡朝晖. “十三五”我国蔗糖产业现状及“十四五”发展趋势. 中国糖料, 2022, 44(1): 71-76.
Zhang Y B, Deng J, Hu C H. The 13th Five-Year Plan of cane sugar industry in China and development trend of the 14th Five-Year Plan. Sugar Crops China, 2022, 44(1): 71-76 (in Chinese with English abstract).
[2] 刘晓雪, 曹付珍, 李凯, 高三基. 全球蔗糖产业竞争力比较及中国提升路径探讨: 基于巴西、澳大利亚、泰国、印度的比较分析. 价格理论与实践, 2021, (12): 12-17.
Liu X X, Cao F Z, Li K, Gao S J. Comparison of global sucrose industry competitiveness and China’s improvement path discussion: a comparative analysis based on Brazil, Australia, Thailand, and India. Price: Theory Practice, 2021, (12): 12-17 (in Chinese with English abstract)
[3] Arruda P. Perspective of the sugarcane industry in Brazil. Trop Plant Biol, 2011, 4: 3-8.
[4] Viswanathan R, Balamuralikrishnan M. Impact of mosaic infection on growth and yield of sugarcane. Sugar Technol, 2005, 7: 61-65.
[5] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[6] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52 (in Chinese with English abstract).
[7] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shang X K, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613 (in Chinese with English abstract).
[8] 冯小艳, 沈林波, 王文治, 杨本鹏, 王勤南, 周峰, 王俊刚, 熊国如, 张树珍. 中国甘蔗主要杂交亲本病毒性病害的分子鉴定. 分子植物育种, 2018, 16: 6729-6737.
Feng X Y, Shen L B, Wang W Z, Yang B P, Wang Q N, Zhou F, Wang J G, Xiong G R, Zhang S Z. Molecular identification of viral diseases in major sugarcane hybrid parents in China. Mol Plant Breed, 2018, 16: 6729-6737 (in Chinese with English abstract).
[9] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评. 植物病理学报, 2018, 48: 389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394 (in Chinese with English abstract).
[10] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28 (in Chinese with English abstract).
[11] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45: 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45: 135-140 (in Chinese with English abstract).
[12] Akbar S, Yao W, Qin L, Yuan Y, Powell C A, Chen B, Zhang M. Comparative analysis of sugar metabolites and their transporters in sugarcane following Sugarcane mosaic virus (SCMV) infection. Int J Mol Sci, 2021, 22: 13574.
[13] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
[14] Lu G L, Wang Z T, Xu F, Pan Y B, Grisham M P, Xu L P. Sugarcane mosaic disease: characteristics, identification and control. Microorganisms, 2021, 9: 1984.
[15] 许东林, 周国辉, 沈万宽, 邓海华. 侵染甘蔗的高粱花叶病毒遗传多样性分析. 作物学报, 2008, 34: 1916-1920.
doi: 10.3724/SP.J.1006.2008.01916
Xu D L, Zhou G H, Shen W K, Deng H H. Genetic diversity of Sorghum mosaic virus infecting sugarcane. Acta Agron Sin, 2008, 34: 1916-1920 (in Chinese with English abstract).
[16] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[17] Yao W, Ruan M H, Qin L F, Yang C Y, Chen R K, Chen B S, Zhang M Q. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017, 8: 104.
[18] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
[19] Li Y Q, Liu R Y, Zhou T, Fan Z F. Genetic diversity and population structure of Sugarcane mosaic virus. Virus Res, 2013, 171: 242-246.
[20] Wu L J, Zu X F, Wang S X, Chen Y H. Sugarcane mosaic virus: long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
[21] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究. 作物学报, 2023, 49: 2472-2484.
doi: 10.3724/SP.J.1006.2023.24244
Yu Q X, Yang Z T, Zhang H, Cheng G Y, Zhou Y S, Jiao W D, Zeng K, Luo T X, Huang G Q, Zhang M Q, Xu J S. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO. Acta Agron Sin, 2023, 49: 2472-2484 (in Chinese with English abstract).
[22] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
[23] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep, 2015, 16: 995-1004.
doi: 10.15252/embr.201540509 pmid: 26113364
[24] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016, 44: 7618-7629.
doi: 10.1093/nar/gkw441 pmid: 27185887
[25] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2020, 225: 2122-2139.
[26] Wei T Y, Zhang C W, Hong J, Xiong R Y, Kasschau K D, Zhou X P, Carrington J C, Wang A M. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010, 6: e1000962.
[27] DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signalling. Biochem J, 2009, 425: 27-40.
doi: 10.1042/BJ20091147 pmid: 20001960
[28] 曾后清, 张亚仙, 汪尚, 张夏俊, 王慧中, 杜立群. 植物钙/钙调素介导的信号转导系统. 植物学报, 2016, 51: 705-723.
doi: 10.11983/CBB15201
Zeng H Q, Zhang Y X, Wang S, Zhang X J, Wang H Z, Du L Q. Calcium/calmodulin-mediated signal transduction system in plants. Chin Bull Bot, 2016, 51: 705-723 (in Chinese with English abstract).
[29] Aldon D, Mbengue M, Mazars C, Galaud J P. Calcium signalling in plant biotic interactions. Int J Mol Sci, 2018, 19: 665.
[30] Wang Y J, Gong Q, Wu Y Y, Huang F, Ismayil A, Zhang D F, Li H G, Gu H Q, Ludman M, Fátyol K, Qi Y J, Yoshioka K, Hanley-Bowdoin L, Hong Y G, Liu Y L. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe, 2021, 29: 1393-1406.
doi: 10.1016/j.chom.2021.07.003 pmid: 34352216
[31] Zeng H Q, Xu L Q, Singh A, Wang H Z, Du L Q, Poovaiah B W. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci, 2015, 6: 600.
doi: 10.3389/fpls.2015.00600 pmid: 26322054
[32] 郑仲仲, 沈金秋, 潘伟槐, 潘建伟. 植物钙感受器及其介导的逆境信号途径. 遗传, 2013, 35: 875-884.
Zheng Z Z, Shen J Q, Pan W H, Pan J W. Calcium sensors and their stress signaling pathways in plants. Hereditas (Beijing), 2013, 35: 875-884 (in Chinese with English abstract).
[33] Day I S, Reddy V S, Shad Ali G, Reddy A S. Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol, 2002, 3: research0056.
[34] Makiyama R K, Fernandes C A, Dreyer T R, Moda B S, Matioli F F, Fontes M R, Maia I G. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein. Int J Biol Macromol, 2016, 92: 1288-1297.
doi: S0141-8130(16)31143-6 pmid: 27514444
[35] McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol, 2003, 159: 585-598.
[36] Villalobo A, González-Muñoz M, Berchtold M W. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci, 2019, 76: 2299-2328.
doi: 10.1007/s00018-019-03062-z pmid: 30877334
[37] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10: 383-389.
[38] Wang L X, Liu Z G, Han S K, Liu P, Sadeghnezhad E, Liu M J. Growth or survival: what is the role of calmodulin-like proteins in plant? Int J Biol Macromol, 2023, 242: 124733.
[39] Zeng H Q, Zhu Q Q, Yuan P G, Yan Y, Yi K K, Du L Q. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. Plant Cell Environ, 2023, 46: 3680-3703.
[40] 曾后清, 张夏俊, 张亚仙, 汪尚, 皮二旭, 王慧中, 杜立群. 植物类钙调素生理功能的研究进展. 中国科学: 生命科学, 2016, 46: 705-715.
Zeng H Q, Zhang X J, Zhang Y X, Wang S, Pi E X, Wang H Z, Du L Q. Physiological functions of calmodulin-like proteins in plants. Sci Sin (Vitae), 2016, 46: 705-715 (in Chinese with English abstract).
[41] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol, 2007, 7: 4.
pmid: 17263873
[42] Li C L, Meng D, Zhang J H, Cheng L L. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple (Malus×domestica). Plant Physiol Biochem, 2019, 139: 600-612.
[43] Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y, Cho M J. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA, 1999, 96: 766-771.
doi: 10.1073/pnas.96.2.766 pmid: 9892708
[44] Anandalakshmi R, Marathe R, Ge X, Herr J M Jr, Mau C, Mallory A, Pruss G, Bowman L, Vance V B. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science, 2000, 290: 142-144.
doi: 10.1126/science.290.5489.142 pmid: 11021800
[45] Jeon E J, Tadamura K, Murakami T, Inaba J I, Kim B M, Sato M, Atsumi G, Kuchitsu K, Masuta C, Nakahara K S. rgs-CaM detects and counteracts viral RNA silencing suppressors in plant immune priming. J Virol, 2017, 91: e00761-e00717.
[46] Ascencio-Ibáñez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol, 2008, 148: 436-454.
doi: 10.1104/pp.108.121038 pmid: 18650403
[47] Kamal H, Minhas F A, Tripathi D, Abbasi W A, Hamza M, Mustafa R, Khan M Z, Mansoor S, Pappu H R, Amin I. βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh- CML11) in Gossypium hirsutum. PLoS One, 2019, 14: e0225876.
[48] Li F F, Zhao N, Li Z H, Xu X B, Wang Y Q, Yang X, Liu S S, Wang A M, Zhou X P. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog, 2017, 13: e1006213.
[49] Chen D, Zhang H Y, Hu S M, Tian M Y, Zhang Z Y, Wang Y, Sun L Y, Han C G. The P1 protein of Wheat yellow mosaic virus exerts RNA silencing suppression activity to facilitate virus infection in wheat plants. Plant J, 2023, 116: 1717-1736.
[50] Endres M W, Gregory B D, Gao Z, Foreman A W, Mlotshwa S, Ge X, Pruss G J, Ecker J R, Bowman L H, Vance V. Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog, 2010, 6: e1000729.
[51] Li F F, Huang C J, Li Z H, Zhou X P. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin- like protein to repress RDR6 expression. PLoS Pathog, 2014, 10: e1003921.
[52] Liu C Y, Zhang J, Wang J, Liu W N, Wang K, Chen X, Wen Y X, Tian S R, Pu Y D, Fan G J, Ma X Z, Sun X C. Tobacco mosaic virus hijacks its coat protein-interacting protein IP-L to inhibit NbCML30, a calmodulin-like protein, to enhance its infection. Plant J, 2022, 112: 677-693.
[53] Liu D D, Yang Q Y. Expression patterns of NbrgsCaM family genes in Nicotiana benthamiana and their potential roles in development and stress responses. Sci Rep, 2020, 10: 9652.
[54] Nakahara K S, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada T S, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew R W, Uyeda I. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA, 2012, 109: 10113-10118.
doi: 10.1073/pnas.1201628109 pmid: 22665793
[55] Shen L, Yang S, Guan D Y, He S L. CML13 acts positively in pepper immunity against Ralstonia solanacearum infection forming feedback loop with CabZIP63. CaInt J Mol Sci, 2020, 21: 4186.
[56] Tadamura K, Nakahara K S, Masuta C, Uyeda I. Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection. Plant Signal Behav, 2012, 7: 1548-1551.
doi: 10.4161/psb.22369 pmid: 23073002
[57] Xu B, Cheval C, Laohavisit A, Hocking B, Chiasson D, Olsson T S G, Shirasu K, Faulkner C, Gilliham M. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. New Phytol, 2017, 215: 77-84.
doi: 10.1111/nph.14599 pmid: 28513846
[58] Yong Chung H, Lacatus G, Sunter G. Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology, 2014, 460-461: 108-118.
doi: 10.1016/j.virol.2014.04.034 pmid: 25010276
[59] Huang C P, Sede A R, Elvira-González L, Yan Y, Rodriguez M E, Mutterer J, Boutant E, Shan L B, Heinlein M. dsRNA-induced immunity targets plasmodesmata and is suppressed by viral movement proteins. Plant Cell, 2023, 35: 3845-3869.
[60] Xiang S Y, Wang J, Wang X Y, Ma X Z, Peng H R, Zhu X, Huang J, Ran M, Ma L S, Sun X C. A chitosan-coated lentinan-loaded calcium alginate hydrogel induces broad-spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin- like (CML) protein 3. Plant Cell Environ, 2023, 46: 3592-3610.
[61] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract).
[62] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341 (in Chinese with English abstract).
[63] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1722-1733.
doi: 10.3724/SP.J.1006.2020.04030
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1722-1733 (in Chinese with English abstract).
[64] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499
[65] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative rt-PCR. PLoS One, 2014, 9: e97469.
[66] Xu J S, Deng Y Q, Cheng G Y, Zhai Y S, Peng L, Dong M, Xu Q, Yang Y Q. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301.
[67] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681 (in Chinese with English abstract).
[68] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[69] Wang A M. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[70] Diekmann Y, Pereira-Leal J B. Evolution of intracellular compartmentalization. Biochem J, 2012, 449: 319-331.
[71] Wang A M. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol, 2021, 48: 10-16.
[72] Chai M Z, Wu X Y, Liu J H, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020, 94: e01898-e01819.
[73] Boevink P, Oparka K J. Virus-host interactions during movement processes. Plant Physiol, 2005, 138: 1815-1821.
pmid: 16172094
[74] Ueki S, Citovsky V. To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant, 2011, 4: 782-793.
doi: 10.1093/mp/ssr060 pmid: 21746703
[75] Kumar G, Dasgupta I. Variability, functions and interactions of plant virus movement proteins: what do we know so far? Microorganisms, 2021, 9: 695.
[76] De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci, 2014, 5: 138.
doi: 10.3389/fpls.2014.00138 pmid: 24795733
[77] Lucas W J. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology, 2006, 344: 169-184.
pmid: 16364748
[78] Maule A J. Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol, 2008, 11: 680-686.
doi: 10.1016/j.pbi.2008.08.002 pmid: 18824402
[79] Maule A, Faulkner C, Benitez-Alfonso Y. Plasmodesmata “in communicado”. Front Plant Sci, 2012, 3: 30.
doi: 10.3389/fpls.2012.00030 pmid: 22645579
[80] Tucker E B, Boss W F. Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol, 1996, 111: 459-467.
doi: 10.1104/pp.111.2.459 pmid: 12226302
[81] Holdaway-Clarke T L, Walker N A, Hepler P K, Overall R L. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta, 2000, 210: 329-335.
doi: 10.1007/PL00008141 pmid: 10664140
[82] Dong M, Cheng G, Peng L, Xu Q, Yang Y, Xu J. Transcriptome analysis of sugarcane response to the infection by Sugarcane steak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
[1] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[2] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[3] DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653.
[4] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng. Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[5] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
[6] XU Bin, CAO Shao-Yu, SU Tian, PENG Meng-Ling, LYU Xia, LI Zhen-Lin, ZHANG Guo-Ping, XU Jun-Qiang. Interactions between CMLs and NPG1 and related proteins in pollen germination of Brassica oleracea L. var. capitata [J]. Acta Agronomica Sinica, 2022, 48(11): 2934-2944.
[7] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[8] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[9] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[10] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[11] YANG Sha,LI Yan,GUO Feng,ZHANG Jia-Lei,MENG Jing-Jing,LI Meng,WAN Shu-Bo,LI Xin-Guo. Screening of AhCaM-Interactive Proteins in Peanuts Using Yeast Two Hybrid System [J]. Acta Agron Sin, 2015, 41(07): 1056-1063.
[12] LIU Rong-Bang,CHEN Ming,GUO Meng-Meng,SI Qing-Lin,GAO Shi-Qing,XU Zhao-Shi,LI Lian-Cheng,MA You-Zhi,YIN Jun. Characterization and Functional Analysis of a Small GTP-binding Protein AtRAB Interacting with H+-Pyrophosphatase AVP1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2014, 40(10): 1756-1766.
[13] ZHANG Xiao-Hong,XU Peng-Bo,GUO Meng-Meng,XU Zhao-Shi,LI Lian-Cheng,CHEN Ming,MA You-Zhi. Characteristic and Function Analysis of a Copper Ion Binding Protein, AtBCB Interacting with G Protein α Subunit GPA1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2013, 39(11): 1952-1961.
[14] WANG Xin-Dong,CHEN Liang,ZHANG Zeng-Yan. Interaction between Wheat Resistance-related Kinase TiDPK1 and BYDV Coat Protein [J]. Acta Agron Sin, 2013, 39(10): 1720-1726.
[15] TANG Qing-Lin,XU Jun-Qiang,SONG Ming,WANG Zhi-Min. Expression of Floral Meristem Identity Gene AP1 in vitro and Validation of Interaction between AP1 and FLC in Brassica juncea Coss. (Mustard) [J]. Acta Agron Sin, 2012, 38(07): 1328-1333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!