Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 103-116.doi: 10.3724/SP.J.1006.2025.44056

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of SSR markers and database based on genomes of sugarcane and its relatives

KUANG Bo-Wen1,2(), WEI Ni1,2, LIU Jin-Dian1,2, CHEN Mei-Yan1,2, MAO Xing-Jie1,2, DUAN Wei-Xing3,*(), YANG Xi-Ping1,2,*()   

  1. 1State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
    2National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    3Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530004, Guangxi, China
  • Received:2024-04-03 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: duanweixing84@126.com; E-mail: xipingyang@gxu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1200204);Guangxi Science and Technology Major Program(GK-AA22117002);Chongzuo Science and Technology Project(CK20220619);Guangxi Universities Introduce Overseas High-level Talents “Hundred Talent Program”, and the Guangxi University Student Innovation and Entrepreneurship Training Program(202110593243)

Abstract:

Sugarcane (Saccharum spp. hybrid) is an important crop for both sugar production and bioenergy. However, due to the complexity of the sugarcane genome, research in its population genetics has lagged behind other crops. Currently, the reference genome for sugarcane still requires significant improvements. The development of SSR (Simple Sequence Repeat) markers and databases based on the genomes of sugarcane and its relatives will be instrumental in advancing population genetics research. In this study, we identified SSRs from the genomes of three sugarcane species (Saccharum spontaneum, Saccharum officinarum, and Saccharum spp. hybrid) and two related species (Miscanthus sinensis and Sorghum bicolor). We quantified and categorized the SSRs for each genome, selecting those with high polymorphism for the genetic diversity analysis of 104 sugarcane-related materials. A total of 1,860,645 SSRs were identified across the five genomes, with mononucleotide, dinucleotide, and trinucleotide repeats being the most common. Synteny analysis of SSRs across the genomes revealed the evolutionary relationships among species, with the kinship order from closest to most distant being: R570, Saccharum officinarum, Saccharum spontaneum, Miscanthus sinensis, and Sorghum bicolor. Genetic diversity analysis using SSR and InDel markers showed that Banmao 92-105 was the first to diverge from other samples, with Saccharum spontaneum forming a distinct group, Saccharum robustum and Saccharum officinarum clustering together, and Saccharum spp. hybrid forming its own separate group. Additionally, we developed a web-based database for sugarcane SSRs, which includes the identified SSRs from the five genomes, along with corresponding primers and other related information. This study provides a valuable molecular tool for sugarcane research and breeding efforts.

Key words: sugarcane, SSR marker, database, whole genome re-sequencing

Table 1

Materials of sugarcane and related germplasm for whole genome resequencing"

品种名称
Variety name
物种
Species
来源
Origin
51NG3 Saccharum robustum 中国广西Guangxi, China
福建大野Fujiandaye Saccharum robustum 中国广西Guangxi, China
NG57-012 Saccharum robustum 美国USA
IN84-045 Saccharum robustum 美国USA
IS76-184 Saccharum robustum 美国USA
NG77-043 Saccharum officinarum 美国USA
IJ76-470 Saccharum officinarum 美国USA
Hawaiian Original Saccharum officinarum 美国USA
NG77-042 Saccharum officinarum 美国USA
IJ76-324 Saccharum officinarum 美国USA
CP88-1762 Saccharum spp. hybrid 中国广西Guangxi, China
桂糖42 Guitang 42 Saccharum spp. hybrid 中国广西Guangxi, China
POJ2878 Saccharum spp. hybrid 中国广西Guangxi, China
Q158 Saccharum spp. hybrid 中国广西Guangxi, China
新台糖25 ROC25 Saccharum spp. hybrid 中国广西Guangxi, China
云蔗89-7 Yunzhe 89-7 Saccharum spp. hybrid 中国广西Guangxi, China
SP79-9 Saccharum spontaneum 中国云南Yunnan, China
IN84089 Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
IND81013 Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
SES4A Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
SES517 Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
红高粱Honggaoliang Sorghum bicolor 美国国家生物技术信息中心National Center for Biotechnology Information, USA
斑茅87-36 Banmao 87-36 Erianthus arundinaceum 中国广西Guangxi, China
HBW-1 Narenga porphyrocoma 中国广西Guangxi, China
NG77-022 Miscanthus floridulus 美国国家生物技术信息中心National Center for Biotechnology Information, USA

Table 2

Information of reference genomes"

基因型
Genotype
物种
Species
AP85-441 割手密种Saccharum spontaneum
LA-purple 热带种Saccharum officinarum
R570 栽培种Saccharum spp. hybrid
DH1 Miscanthus sinensis
BTx623 高粱Sorghum bicolor

Table 3

Information of verify materials"

基因型
Genotype
物种
Species
福建大野Fujiandaye 大茎野生种Saccharum robustum
崖城一号Yacheng 1 割手密种Saccharum spontaneum
桂林竹蔗Guilinzhuzhe 热带种Saccharum officinarum
云蔗71-545 Yunzhe 71-545 栽培种Saccharum spp. hybrid
斑茅87-36 Banmao 87-36 斑茅Erianthus arundinaceum

Table 4

Distribution of SSRs in different regions of genomes"

物种
Species
割手密种
Saccharum spontaneum
热带种
Saccharum officinarum
栽培种
Saccharum spp. hybrid

Miscanthus sinensis
高粱
Sorghum bicolor
基因组大小Genome size (Mb) 3141 6805 427 2079 709
SSR总数Total SSR number (K) 476 959 67 242 116
基因组中SSR密度 Density of SSR in genomes (No. Mb-1) 152 141 157 117 164
基因区域SSR密度 Density of SSR in the genes (No. Mb-1) 199 189 177 206 284
外显子区域SSR密度 Density of SSR in the exons (No. Mb-1) 138 133 118 166 245

Table 5

Screening and polymorphism analysis of SSRs"

物种
Species
SSR数量 SSR number 多态性信息量
Polymorphism
information
content (PIC)
平均等位基因数
Average
number of
alleles
PIC大于0.5的SSR数量
SSR numbers (PIC > 0.5)
去重前
Before filtering
去重后
After filtering
(%)
重测序数据
可检测
Detected in
resequencing data
具有多态性
Polymorphic SSR
割手密种
Saccharum spontaneum
475,899 288,390 (61%) 103,493 76,457 0.034-0.970 4.14 64,812
热带种
Saccharum officinarum
959,080 441,994 (46%) 183,098 133,053 0.007-0.960 3.88 117,697
栽培种
Saccharum spp. hybrid
67,219 43,172 (64%) 17,326 11,092 0.013-0.960 6.53 9900
高粱
Sorghum bicolor
116,124 72,566 (62%) 9723 1382 0.011-0.940 3.45 955

Miscanthus floridulus
242,323 162,686 (67%) 15,042 2499 0.012-0.880 3.77 1171

Fig. 1

Distribution of SSRs on chromosomes A: Saccharum spontaneum; B: Saccharum officinarum. a: haploid chromosomes; b: density of SSRs in the genome; c: density of SSRs in whole genome resequencing data; d: density of polymorphic SSRs; e: density of different SSRs motif types (No. Mb−1)."

Table 6

SSRs deduplication removal in each genome"

物种
Species
初始SSR数量
Raw SSRs number
保留SSR数量
Retained SSRs number
占比
Proportion (%)
栽培种Saccharum spp. hybrid 67,219 52,418 84
Miscanthus floridulus 242,323 175,647 79
高粱Sorghum bicolor 116,124 82,258 78
割手密种Saccharum spontaneum 475,899 252,458 57
热带种Saccharum officinarum 959,080 394,732 45

Fig. 2

Interspecific and intraspecific SSRs synteny in genomes of sugarcane and its relatives A: homologous chromosomes of Saccharum spontaneum using chromosome 1 as an example; B: homologous chromosomes of Saccharum officinarum using chromosome 1 as an example; C: chromosomes of different species."

Table 7

Information of SSRs synteny between species"

物种
Species
高粱
Sorghum bicolor

Miscanthus sinensis
割手密种
Saccharum
spontaneum
热带种
Saccharum
officinarum
栽培种
Saccharum spp. hybrid
高粱Sorghum bicolor
Miscanthus sinensis 1962
割手密种Saccharum spontaneum 2323 10,993
热带种Saccharum officinarum 3521 15,382 80,127
栽培种Saccharum spp. hybrid 1280 3221 14,751 35,865

Table 8

Density of SSRs motif types (No. Mb−1)"

物种
Species
割手密种
Saccharum
spontaneum
栽培种
Saccharum spp. hybrid
热带种
Saccharum
officinarum
高粱
Sorghum
bicolor

Miscanthus
sinensis
单核苷酸Mono 66.22 75.48 60.35 69.18 51.18
二核苷酸Di 34.30 34.60 34.93 40.65 30.76
三核苷酸Tri 36.78 31.12 31.30 32.33 23.73
四核苷酸Tetra 2.73 3.03 2.46 5.69 1.27
五核苷酸Penta 1.02 1.52 1.22 1.10 0.43
六核苷酸Hexa 0.86 0.97 0.91 0.82 0.60

Table 9

Information of 21 molecular markers used in genotyping of sugarcane germplasm"

引物名称
Primer name
基序类型
Motif type
引物序列
Primer sequence (5°-3°)
1D15 (GT)6 F: ACTTCGTAGCATCCCTGTTC
R: TCACCATACGTAATAGTGGC
2A43 (TC)11 F: AGTCGTGCTAAACATAAGCC
R: ATGTCGACAGTCAGCCATTA
2A63 (AGAA)12 F: CATTTGTATTCAACGAGCAC
R: CGTGCAGGAATGAAGAACCT
2B56 (AGAA)5 F: CATTTGTATTCAACGAGCAC
R: CGTGCAGGAATGAAGAACCT
2C63 (AGAA)12 F: CATTTGTATTCAACGAGCAC
R: CGTGCAGGAATGAAGAACCT
2D38 (TCT)11 F: CAGGTTTCCAGTGCCTTACG
R: ATTGAGTCCACAACCAGCTG
2D94 (AGC)7 F: CTGTAAAGCCCGAGTCACTG
R: TCGATGGCGTACAATCACTA
3B87 (CT)7 F: GTCCTCGATTGGCCTGTCAA
R: GTGTACGGGGTTCAGATCTT
4A61 (A)14 F: CGGGATTCCTTACAAACTCA
R: GACGGACGTCCTGAGCATTA
4B15 (CT)9 F: AGGTATACATGCTCAAGTGC
R: GGCACGAAGAATAGCACTTC
5A15 (AAC)6 F: TAGCCGGTGGTTTCGAACAC
R: GTGCCTGAACCGTGATTAGG
5A39 (TG)38 F: ATTTCCTCAGTTGGCAACTC
R: CACGGCCATTGCTAATTTTC
5B17 (AC)20 F: CACGGCCATTGCTAATTTTC
R: ATTTCCTCAGTTGGCAACTC
5D17 (AAC)6 F: TAGCCGGTGGTTTCGAACAC
R: CGTGCCTGAACCGTGATTAG
5D36 (GTTG)7 F: ACTCGGAATTTCGATGTGGC
R: CGAATCCACTCGTACATGCA
IRG2 A/AACACAAACCTATGTCCATGAACATAAA F: TTGCTTACAGTTTAGTTTCGTGGC
R: ACCCAAGTGAGTACATGTTTAGGC
IRG4 A/AGAGGGTGGTTCT F: TTGCATGTCTAAGGATTTGGCAAG
R: GCAAAGAGAGCAAAAGAGTCATCA
IRG5 T/TCTGGCTACGAGCAAGCTGCTCTCCAGGCTATATCCTTCCTGCA F: GGGATTGAAATTGAAGTTCCCTGT
R: TGCACTGAACTACACCCTCAAAAT
ID_1 A/AAGTTCATCTGGAATAGTCATGCTCCTCCAA F: AAACTTGATTCCGGCAGCCTTTA
R: CAAAGACTATGTGTGTGCTTGTCT
ID_4 T/TTACTATAAGAGTCA F: AGGCTTGTAGCCTCCCAAAAGATG
R: GGTTAACTGCACAACTGAGACCAA
ID_6 C/CCTACAATCCTCCGGGAGAGCTGTGGCATCATCCTCA F: ATATCCAAAGTCCTCATCCGATCC
R: TGATGGGTTCTTCACACTACCAAT

Fig. 3

Electrophoresis validation of SSRs A: results of primer 2A43; B: results of primer 5A15. M: 500 bp DNA Ladder; 1: Fujiandaye (Saccharum robustum); 2: Yacheng 1 (Saccharum spontaneum); 3: Guilinzhuzhe (Saccharum officinarum); 4: Yunzhe 71-545 (Saccharum spp. hybrid); 5: Banmao 87-36 (Erianthus arundinaceum)."

Fig. 4

UPGMA dendrogram of cluster result of sugarcane and its relatives"

Fig. 5

Main functions of the SSRs database for genomes of sugarcane and its relatives A: Home page; B: SSR marker page; C: SSR analysis page; D: species description page; E: JBrowse function page; F: BLAST page."

[1] 陈如凯, 林彦铨, 张木清. 现代甘蔗育种的理论与实践. 北京: 中国农业出版社, 2003.
Chen R K, Lin Y Q, Zhang M Q. Theory and Practice of Modern Sugarcane Breeding. Beijing: China Agriculture Press, 2003 (in Chinese).
[2] Goldemberg J, Coelho S T, Guardabassi P. The sustainability of ethanol production from sugarcane. Energy Policy, 2008, 36: 2086-2097.
[3] 董广蕊, 石佳仙, 侯藹玲, 张积森. 甘蔗基因组研究进展. 生物技术, 2018, 28: 296-301.
Dong G R, Shi J X, Hou A L, Zhang J S. Advances of research on Saccharum L. genomics. Biotechnology, 2018, 28: 296-301 (in Chinese with English abstract).
[4] Kim C, Lee T H, Compton R O, Robertson J S, Pierce G J, Paterson A H. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. Plant Mol Biol, 2013, 81: 139-147.
[5] 王海莲, 管延安, 张华文, 杨延兵, 秦岭. 高粱基因组学研究进展. 基因组学与应用生物学, 2009, 28: 549-556.
Wang H L, Guan Y A, Zhang H W, Yang Y B, Qin L. Advances in the study on sorghum genomics. Genom Appl Biol, 2009, 28: 549-556 (in Chinese with English abstract).
[6] Zhang G B, Ge C X, Xu P P, Wang S K, Cheng S N, Han Y B, Wang Y C, Zhuang Y B, Hou X W, Yu T, Xu X T, Deng S H, Li Q Q, Yang Y Q, Yin X R, Wang W D, Liu W X, Zheng C X, Sun X Z, Wang Z L, Ming R, Dong S T, Ma J X, Zhang X S, Chen C X. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nat Plants, 2021, 7: 608-618.
[7] 方静平, 阙友雄, 陈如凯. 甘蔗属起源及其与近缘属进化关系研究进展. 热带作物学报, 2014, 35: 816-822.
Fang J P, Que Y X, Chen R K. A review of Saccharum origin and its evolutionary relationship with related Genera. Chin J Trop Crops, 2014, 35: 816-822 (in Chinese with English abstract).
[8] Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Van Sluys M A, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann J C, van der Vossen E, Henry R, Schmutz J, D’Hont A. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9: 2638.
[9] Healey A L, Garsmeur O, Lovell J T, Shengquiang S, Sreedasyam A, Jenkins J, Plott C B, Piperidis N, Pompidor N, Llaca V, Metcalfe C J, Doležel J, Cápal P, Carlson J W, Hoarau J Y, Hervouet C, Zini C, Dievart A, Lipzen A, Williams M, Boston L B, Webber J, Keymanesh K, Tejomurthula S, Rajasekar S, Suchecki R, Furtado A, May G, Parakkal P, Simmons B A, Barry K, Henry R J, Grimwood J, Aitken K S, Schmutz J, D’Hont A. The complex polyploid genome architecture of sugarcane. Nature, 2024, 628: 804-810.
[10] Zhang J S, Zhang X T, Tang H B, Zhang Q, Hua X T, Ma X K, Zhu F, Jones T, Zhu X G, Bowers J, Wai C M, Zheng C F, Shi Y, Chen S, Xu X M, Yue J J, Nelson D R, Huang L X, Li Z, Xu H M, Zhou D, Wang Y J, Hu W C, Lin J S, Deng Y J, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L M, Yu L, Xin Y H, Ge L F, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W P, Ma Y H, Ma P P, Lyu M J, Chen F M, Zheng G Y, Xu J S, Yang Z H, Deng F, Chen X Q, Liao Z Y, Zhang X X, Lin Z C, Lin H, Yan H S, Kuang Z, Zhong W M, Liang P P, Wang G F, Yuan Y, Shi J X, Hou J X, Lin J X, Jin J J, Cao P J, Shen Q C, Jiang Q, Zhou P, Ma Y Y, Zhang X D, Xu R R, Liu J, Zhou Y M, Jia H F, Ma Q, Qi R, Zhang Z L, Fang J P, Fang H K, Song J J, Wang M J, Dong G R, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X P, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q Y, Wang J P, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
[11] Mitros T, Session A M, James B T, Wu G A, Belaffif M B, Clark L V, Shu S Q, Dong H X, Barling A, Holmes J R, Mattick J E, Bredeson J V, Liu S Y, Farrar K, Głowacka K, Jeżowski S, Barry K, Chae W B, Juvik J A, Gifford J, Oladeinde A, Yamada T, Grimwood J, Putnam N H, De Vega J, Barth S, Klaas M, Hodkinson T, Li L G, Jin X L, Peng J H, Yu C Y, Heo K, Yoo J H, Ghimire B K, Donnison I S, Schmutz J, Hudson M E, Sacks E J, Moose S P, Swaminathan K, Rokhsar D S. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Plant Cell, 2020, 11: 5442.
[12] 周胜芳, 夏豫川, 刘钰, 邓春莉, 孙蕾, 任羽. 石斛SSR分子标记的研究进展. 分子植物育种, 2023, 21: 1239-1254.
Zhou S F, Xia Y C, Liu Y, Deng C L, Sun L, Ren Y. Advances in SSR molecular markers of Dendrobium. Plant Cell, 2023, 21: 1239-1254 (in Chinese with English abstract).
[13] 陈跃进, 张桂权, 卢永根. 利用微卫星分子标记法研究水稻亲缘关系. 湖南农业大学学报(自然科学版), 2007, 33: 258-261.
Chen Y J, Zhang G Q, Lu Y G. Genetic relationship of rice based on STMS analysis. J Hunan Agric Univ (Nat Sci), 2007, 33: 258-261 (in Chinese with English abstract).
[14] 郭衍龙, 郭承亮, 周广成, 袁国保, 耿月明, 王世才, 王清华. 利用SSR标记分析24份玉米种质亲缘关系. 中国种业, 2014, (12): 48-49.
Guo Y L, Guo C L, Zhou G C, Yuan G B, Geng Y M, Wang S C, Wang Q H. Genetic relationship analysis of 24 maize germplasm by SSR markers. China Seed Ind, 2014, (12): 48-49 (in Chinese).
[15] Wang H Y, Wang X E, Chen P D, Liu D J. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J Genet Genomics, 2007, 34: 623-633.
[16] 胡杨, 李赟, 黄有总, 刘平武. 利用SSR与RAPD分子标记评估甘蔗品种的遗传多样性. 基因组学与应用生物学, 2016, 35: 2494-2503.
Hu Y, Li Y, Huang Y Z, Liu P W. Genetic diversity evaluation of sugarcane varieties using SSR and RAPD markers. Genom Appl Biol, 2016, 35: 2494-2503 (in Chinese with English abstract).
[17] 汪洲涛, 游倩, 高世武, 王春风, 李竹, 马晶晶, 阙友雄, 许莉萍, 罗俊. 甘蔗品种的AFLP和SSR标记鉴定及其应用. 作物学报, 2018, 44: 723-736.
Wang Z T, You Q, Gao S W, Wang C F, Li Z, Ma J J, Que Y X, Xu L P, Luo J. Identification of sugarcane varieties by AFLP and SSR markers and its application. Acta Agron Sin, 2018, 44: 723-736 (in Chinese with English abstract).
[18] 单红丽, 李文凤, 黄应昆, 王晓燕, 张荣跃, 李婕, 尹炯, 仓晓燕. 甘蔗抗褐锈病基因定位亲本间多态性SSR标记筛选. 核农学报, 2019, 33: 2119-2125.
Shan H L, Li W F, Huang Y K, Wang X Y, Zhang R Y, Li J, Yin J, Cang X Y. Screening of polymorphic SSR molecular markers between resistant and susceptible parents for localization of brown rust resistance gene. J Nucl Agric Sci, 2019, 33: 2119-2125 (in Chinese with English abstract).
[19] 徐超华, 刘新龙, 毛钧, 刘洪博, 林秀琴, 陆鑫, 苏火生. 基于SSR分子标记数据构建割手密核心种质库. 湖南农业大学学报(自然科学版), 2020, 46: 657-663.
Xu C H, Liu X L, Mao J, Liu H B, Lin X Q, Lu X, Su H S. Construction of a core-collection of Saccharum spontaneum based on SSR molecular markers. J Hunan Agric Univ (Nat Sci), 2020, 46: 657-663 (in Chinese with English abstract).
[20] Pan Y B. Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci, 2010, 1: 87-94.
[21] Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics, 2017, 33: 2583-2585.
[22] Quinlan A R, Hall I M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 26: 841-842.
[23] Gu Z G, Gu L, Eils R, Schlesner M, Brors B. Circlize Implements and enhances circular visualization in R. Bioinformatics, 2014, 30: 2811-2812.
[24] Gu Z G, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 2016, 32: 2847-2849.
[25] Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016, 4: e2584.
[26] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
[27] Shen W, Le S, Li Y, Hu F Q. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One, 2016, 11: e0163962.
[28] Langmead B, Trapnell C, Pop M, Salzberg S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10: R25.
[29] Boratyn G M, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden T L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinf, 2019, 20: 405.
[30] Zhang Z H, Deng Y J, Tan J, Hu S N, Yu J, Xue Q Z. A genome- wide microsatellite polymorphism database for the indica and Japonica rice. DNA Res, 2007, 14: 37-45.
[31] 吕远大, 李坦, 石丽, 张晓林, 赵涵. 基于全基因组重测序信息开发玉米H99自交系特异分子标记. 作物学报, 2014, 40: 191-197.
Lyu Y D, Li T, Shi L, Zhang X L, Zhao H. Next-generation sequencing for molecular marker development in maize inbred H99. Acta Agron Sin, 2014, 40: 191-197 (in Chinese with English abstract).
[32] 崔婷, 王长彪, 韩斌, 赵兴华, 刘江, 任永康, 牛瑜琦, 唐朝晖. “中国春”小麦全基因组中特异SSR标记的发掘及其分布特征. 山西农业科学, 2017, 45: 877-880.
Cui T, Wang C B, Han B, Zhao X H, Liu J, Ren Y K, Niu Y Q, Tang Z H. Excavation and distribution characteristics of specific SSR markers in genome-wide of “Chinese spring” wheat. J Shanxi Agric Sci, 2017, 45: 877-880 (in Chinese with English abstract).
[33] 李珂, 王宇龙, 李栋, 史新娥, 杨公社, 于太永. 畜禽泛基因组研究进展. 畜牧兽医学报, 2023, 54: 3595-3604.
Li K, Wang Y L, Li D, Shi X E, Yang G S, Yu T Y. Advances in pan-genome study of livestock and poultry. Acta Vet Zootechnica Sin, 2023, 54: 3595-3604 (in Chinese with English abstract).
[34] Zhao X Y, Tian Y L, Yang R H, Feng H P, Ouyang Q J, Tian Y, Tan Z Y, Li M F, Niu Y L, Jiang J H, Shen G L, Yu R Q. Coevolution between simple sequence repeats (SSRs) and virus genome size. BMC Genomics, 2012, 13: 435.
[35] Behura S K, Severson D W. Motif mismatches in microsatellites: insights from genome-wide investigation among 20 insect species. DNA Res, 2015, 22: 29-38.
[36] 林恩文, 林榕榕, 陈钦常, 雷雯, 徐秀明, 方静平. 龙眼全基因组和转录本序列SSR位点的鉴定. 福建农林大学学报(自然科学版), 2022, 51: 493-501.
Lin E W, Lin R R, Chen Q C, Lei W, Xu X M, Fang J P. SSR loci analysis in genome and transcriptome of Longan. J Fujian Agric For Univ (Nat Sci Edn), 2022, 51: 493-501 (in Chinese with English abstract).
[37] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res, 2000, 10: 967-981.
[38] Lawson M J, Zhang L Q. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol, 2006, 7: R14.
[39] Yu J K, Rota M L, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics, 2004, 271: 742-751.
[40] Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328-2336.
[41] Biswas M K, Chai L J, Mayer C, Xu Q, Guo W W, Deng X X. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Mol Biol Rep, 2012, 39: 5373-5386.
[42] 李雪. 苜蓿种质资源表型和SSR分子标记遗传多样性研究. 宁夏大学硕士学位论文, 宁夏银川, 2020.
Li X. Study on Genetic Diversity of Alfalfa (Medicago sativa) Germplasm Phenotypes and SSR Molecular Markers. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2020 (in Chinese with English abstract).
[43] Grivet L, Daniels C, Glaszmann J C, D’Hont A. A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobot Res Appl, 2004, 2: 9.
[44] D’Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res, 2005, 109: 27-33.
[45] Zhang J S, Zhang Q, Li L T, Tang H B, Zhang Q, Chen Y, Arrow J, Zhang X T, Wang A Q, Miao C Y, Ming R. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol J, 2019, 17: 264-274.
[46] 蔡斌, 李成慧, 姚泉洪, 周军, 陶建敏, 章镇. 葡萄全基因组SSR分析和数据库构建. 南京农业大学学报, 2009, 32(4): 28-32.
Cai B, Li C H, Yao Q H, Zhou J, Tao J M, Zhang Z. Analysis of SSRs in grape genome and development of SSR database. J Nanjing Agric Univ, 2009, 32(4): 28-32 (in Chinese with English abstract).
[47] 陈峥. 甘蔗割手密种基因组数据库的构建. 福建农林大学硕士学位论文, 福建福州, 2019.
Chen Z. SGD: the Sugarcane Saccharum spontaneum Genome Database. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2019 (in Chinese with English abstract).
[48] Wang T Y, Wang B Y, Hua X T, Tang H B, Zhang Z Y, Gao R T, Qi Y Y, Zhang Q, Wang G, Yu Z H, Huang Y J, Zhang Z, Mei J, Wang Y H, Zhang Y X, Li Y H, Meng X, Wang Y J, Pan H R, Chen S Q, Li Z, Shi H H, Liu X L, Deng Z H, Chen B S, Zhang M Q, Gu L F, Wang J P, Ming R, Yao W, Zhang J S. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. Nat Plants, 2023, 9: 554-571.
[49] 徐志军, 赵胜, 胡小文, 孔冉, 苏俊波, 刘洋. 基于甘蔗AP85-441和R570基因组参考序列的微卫星位点鉴定和SSR标记开发. 热带作物学报, 2020, 41: 722-729.
Xu Z J, Zhao S, Hu X W, Kong R, Su J B, Liu Y. Development, characterization and speciality of microsatellite markers in AP85-441 and R570 genomic reference sequences. Chin J Trop Crops, 2020, 41: 722-729 (in Chinese with English abstract).
[1] LI Xu-Juan, LI Chun-Jia, TIAN Chun-Yan, KONG Chun-Yan, XU Chao-Hua, LIU Xin-Long. Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(8): 2131-2142.
[2] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng. Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO [J]. Acta Agronomica Sinica, 2024, 50(7): 1855-1866.
[3] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.
[4] CHEN Zhi-Kai, ZHOU Xian-Li, ZHANG Hong-Yan, TENG Chang-Cai, HOU Wan-Wei. SSR association analysis of the protein content of 320 faba bean germplasms [J]. Acta Agronomica Sinica, 2024, 50(11): 2775-2786.
[5] WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125.
[6] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[7] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[8] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[9] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[10] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[11] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[12] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[13] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng. Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[14] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[15] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .