Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 91-102.doi: 10.3724/SP.J.1006.2025.41028
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Min-Hu1,2(), CHANG Hua-Yu1,2, CHEN Zhao-Yan2, REN Zeng2, LIU Ting-Hui3, XING Guo-Fang1,*(
), GUO Gang-Gang2,*(
)
[1] | Badea A, Tucker J R, Sabra A, Netticadan T, Blackwell B, Yu L P, Kodikara C, Wijekoon C. Endogenic phenolic compounds of barley as potential biomarkers related to grain mycotoxin production and cultivar selection. Biology, 2023, 12: 1306. |
[2] | 赵盟, 王春超, 张仁旭, 窦婷语, 裴红红, 郭爱奎, 李姗姗, 吴斌, 刘敏轩, 高佳, 张京, 邢国芳, 王化俊, 孟亚雄, 郭刚刚. 中国大麦育成品种产量相关性状鉴定评价. 植物遗传资源学报, 2022, 23: 1371-1382. |
Zhao M, Wang C C, Zhang R X, Dou T Y, Pei H H, Guo A K, Li S S, Wu B, Liu M X, Gao J, Zhang J, Xing G F, Wang H J, Meng Y X, Guo G G. Evaluation of the yield-related traits of Chinese barley cultivars. J Plant Genet Resour, 2022, 23: 1371-1382 (in Chinese with English abstract). | |
[3] | 邹俊杰. 大麦幼苗叶片营养成分和嫩叶汁粉制备及其提取物抗氧化研究. 西南农业大学硕士学位论文, 重庆, 2002. |
Zou J J. Studies on Nutritional Components in Barley Leaves and Technics of Producing Leaf Juice Powder and Antioxidative Ability of Leaf Extract Solution. MS Thesis of Southwest Agricultural University, Chongqing, China, 2002 (in Chinese with English abstract). | |
[4] | Havlíková L, Šatínský D, Opletal L, Solich P. A fast determination of chlorophylls in barley grass juice powder using HPLC fused-core column technology and HPTLC. Food Anal Method, 2014, 7: 629-635. |
[5] | Naik P K, Swain B K, Singh N P. Production and utilization of hydroponics fodder. Indian J Anim Nutr, 2015, 32: 1-9. |
[6] | 杨金钰. 水培大麦苗生长及饲用营养物质代谢对不同光配方和氮素的响应. 新疆农业大学博士学位论文, 新疆乌鲁木齐, 2022. |
Yang J Y. Responses of Seedling Growth and Feed Nutrient Metabolism of Hydroponic Barley in Different Light Formulas and Nitrogen Level. PhD Dissertation of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2022 (in Chinese with English abstract). | |
[7] | 黄万里. 不同水培时间大麦苗的营养价值测定. 河南科技大学硕士学位论文, 河南洛阳, 2019. |
Huang W L. Determination of Nutritive Value of Barley Green Fodder Cultivated in Hydroponic System. MS Thesis of Henan University of Science and Technology, Luoyang, Henan, China, 2019 (in Chinese with English abstract). | |
[8] | 黄万里, 王建平, 刘宁, 卜登攀. 不同水培时间下大麦苗的营养价值及CNCPS组分. 草业科学, 2019, 36: 1811-1818. |
Huang W L, Wang J P, Liu N, Bu D P. Determination of nutritive value and analysis of the CNCPS contents in barley grass cultivated using a hydroponic system. Pratac Sci, 2019, 36: 1811-1818 (in Chinese with English abstract). | |
[9] | 任澎, 冯娟, 李若诚, 刘建新, 王迪铭. 体外产气法评价水培大麦苗替代苜蓿、燕麦对奶牛瘤胃发酵特性的影响. 中国畜牧杂志, 2022, 58(9): 233-237. |
Ren P, Feng J, Li R C, Liu J X, Wang D M. Evaluation of the barley seedlings replacing alfalfa and oat on rumen fermentation characteristics of dairy cows using gas production method in vitro. Chin J Anim Sci, 2022, 58(9): 233-237 (in Chinese with English abstract). | |
[10] | 刘辉, 王建, 杨刚. 大麦芽对黑羽乌骨鸡产蛋性能的影响. 黑龙江畜牧兽医, 1999, (10): 37. |
Liu H, Wang J, Yang G. Effect of barley malt on the egg-laying performance of black-feathered silkie. Heilongjinag J Anim Sci Vet Med, 1999, (10): 37 (in Chinese). | |
[11] | Zang Y, Richards A T, Seneviratne N, Gutierrez Oviedo F A, Harding R, Ranathunga S, McFadden J W. Replacing conventional concentrates with sprouted barley or wheat: effects on lactational performance, nutrient digestibility, and milk fatty acid profile in dairy cows. J Dairy Sci, 2024, 107: 5529-5541. |
[12] | Nguyen T C T, Obermeier C, Friedt W, Abrams S R, Snowdon R J. Disruption of germination and seedling development in Brassica napus by mutations causing severe seed hormonal imbalance. Front Plant Sci, 2016, 7: 322. |
[13] | Rani H, Bhardwaj R D. Quality attributes for barley malt: “the backbone of beer”. J Food Sci, 2021, 86: 3322-3340. |
[14] | Solgajová M, Dráb Š, Mareček J. Changes in the content of β-glucans during the malting process. J Microb Biotech Food Sci, 2022, 12: e6001. |
[15] | Cornaggia C, Evans D E, Draga A, Mangan D, McCleary B V. Prediction of potential malt extract and beer filterability using conventional and novel malt assays. J Inst Brew, 2019, 125: 294-309. |
[16] | Andriotis V M E, Rejzek M, Barclay E, Rugen M D, Field R A, Smith A M. Cell wall degradation is required for normal starch mobilization in barley endosperm. Sci Rep, 2016, 6: 33215. |
[17] | Sakamoto K, Nagatani A. Nuclear localization activity of phytochrome B. Plant J, 1996, 10: 859-868. |
[18] | Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adám E, Schäfer E, Nagy F. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002, 14: 1541-1555. |
[19] | Zhao Y, Shi H, Pan Y, Lyu M H, Yang Z X, Kou X X, Deng X W, Zhong S W. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell, 2023, 186: 1230-1243. |
[20] | Neumann K, Zhao Y S, Chu J T, Keilwagen J, Reif J C, Kilian B, Graner A. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis. BMC Plant Biol, 2017, 17: 137. |
[21] | Khan W A, Penrose B, Shabala S, Zhang X Q, Cao F B, Zhou M X. Mapping QTL for mineral accumulation and shoot dry biomass in barley under different levels of zinc supply. Int J Mol Sci, 2023, 24: 14333. |
[22] | Tezuka D, Cho H, Tezuka D, Cho H, Onodera H, Linghu Q Y, Chijimatsu T, Hata M, Imai R. Redirecting barley breeding for grass production through genome editing of Photoperiod-H1. Plant Physiol, 2024, 195: 287-290. |
[23] | Schilling R K, Marschner P, Shavrukov Y, Berger B, Tester M, Roy S J, Plett D C. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J, 2014, 12: 378-386. |
[24] | Sivamani E, Bahieldin1 A, Wraith J M, Al-Niemi T, Dyer W E, Ho T D, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci, 2000, 155: 1-9. |
[25] | Tiong J, Sharma N, Sampath R, MacKenzie N, Watanabe S, Metot C, Lu Z J, Skinner W, Lu Y Z, Kridl J, Baumann U, Heuer S, Kaiser B, Okamoto M. Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Front Plant Sci, 2021, 12: 628521. |
[26] | Huang W T, Nie H P, Feng F, Wang J, Lu K, Fang Z M. Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. Plant Sci, 2019, 283: 23-31. |
[27] | Dai X Y, Wang Y Y, Zhang W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot, 2016, 67: 947-960. |
[28] | Alam M S, Kong J R, Tao R F, Ahmed T, Alamin M, Alotaibi S S, Abdelsalam N R, Xu J H. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants (Basel), 2022, 11: 1184. |
[29] | Xu D D, Dondup D, Dou T Y, Wang C C, Zhang R X, Fan C F, Guo A K, Lhundrup N, Ga Z, Liu M X, Wu B, Gao J, Zhang J, Guo G G. HvGST plays a key role in anthocyanin accumulation in colored barley. Plant J, 2023, 113: 47-59. |
[30] | Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904-909. |
[31] | Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354. |
[32] | Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X Q, Angessa T T, Zhou G F, Tan C, Hill C, Wang P H, Schreiber M, Boston L B, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D D, Zhang J, Wang C C, Grimwood J, Schmutz J, Guo G G, Zhang G P, Mochida K, Hirayama T, Sato K, Chalmers K J, Langridge P, Waugh R, Pozniak C J, Scholz U, Mayer K F X, Spannagl M, Li C D, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289. |
[33] | Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q S, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S J, Chapman B, Dai F, Han Y, Li H, Li X, Lin C Y, McCooke J K, Tan C, Wang P H, Wang S B, Yin S Y, Zhou G F, Poland J A, Bellgard M I, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G P, Braumann I, Spannagl M, Li C D, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433. |
[34] | 王其飞. 大麦幼苗和籽粒大小性状的QTL定位及候选基因预测. 华中农业大学博士学位论文, 湖北武汉, 2019. |
Wang Q F. QTL Mapping and Candidate Gene Prediction of Seedling and Grain Size Traits in Barley. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract). | |
[35] | Wu Q, Liu Y F, Xie Z Z, Yu B, Sun Y, Huang J L. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiol, 2022, 189: 1296-1313. |
[36] | Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M. Photoperiod-H1 (ppd-H1) controls leaf size. Plant Physiol, 2016, 172: 405-415. |
[37] | Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1; 2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943. |
[38] | 索宝丽, 王文轩, 张盈盈, 杨开鑫, 齐军仓, 邢瑞, 张前兵. 植物工厂条件下不同营养液配方对大麦苗生长的影响. 中国草地学报, 2023, 45(11): 82-91. |
Suo B L, Wang W X, Zhang Y Y, Yang K X, Qi J C, Xing R, Zhang Q B. Effects of different nutrient solutions on the growth of barley seedlings in plant factories. Chin J Grassland, 2023, 45(11): 82-91 (in Chinese with English abstract). | |
[39] | Oikonomou V K, Huerta M, Sandéhn A, Dreier T, Daguerre Y, Lim H, Berggren M, Pavlopoulou E, Näsholm T, Bech M, Stavrinidou E. eSoil: a low-power bioelectronic growth scaffold that enhances crop seedling growth. Proc Natl Acad Sci USA, 2024, 121: e2304135120. |
[40] | Füllner K, Temperton V M, Rascher U, Jahnke S, Rist R, Schurr U, Kuhn A J. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley. Plant Cell Environ, 2012, 35: 884-892. |
[1] | YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206. |
[2] | PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960. |
[3] | ZHANG Li-Lan, YANG Jun, WANG Rang-Jian. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants [J]. Acta Agronomica Sinica, 2024, 50(4): 871-886. |
[4] | MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372. |
[5] | YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330. |
[6] | MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572. |
[7] | ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183. |
[8] | YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391. |
[9] | WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152. |
[10] | XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015. |
[11] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[12] | QIN Wen-Xuan, BAO Jian-Xi, WANG Yan-Bo, MA Ya-Jie, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study of leaf angle traits and mining of elite alleles from the major loci in maize [J]. Acta Agronomica Sinica, 2022, 48(11): 2691-2705. |
[13] | LI Ting, WANG Ya-Peng, DONG Yuan, GUO Rui-Shi, LI Dong-Mei, TANG Ya-Ling, ZHANG Xing-Hua, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize [J]. Acta Agronomica Sinica, 2022, 48(10): 2451-2462. |
[14] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[15] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
|