Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 91-102.doi: 10.3724/SP.J.1006.2025.41028

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and genome-wide association study of specialized seedling grass barley cultivars

MA Min-Hu1,2(), CHANG Hua-Yu1,2, CHEN Zhao-Yan2, REN Zeng2, LIU Ting-Hui3, XING Guo-Fang1,*(), GUO Gang-Gang2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University / Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Jinzhong 030801, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs / National Major Scienti?c Project of Crop Genetic Resources and Genetic Improvement, Beijing 100081, China
    3Ganzi Tibetan Autonomous Prefecture Institute of Agricultural Sciences, Ganzi 626000, Sichuan, China
  • Received:2024-04-16 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: sxauxgf@126.com; E-mail: guoganggang@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD2301301-1);Modern Agro-Industry Technology Research System of Shanxi Province(Minor Crops, 2023CYJSTX03-19);National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding (in Preparation)(202204010910001-06);China Agriculture Research System of MOF and MARA(CARS-05)

Abstract:

Seedling grass factories represent an innovative strategy to ensure a consistent year-round forage supply for herbivores. This study was conducted to assess the conversion efficiency of seedling grass and to identify loci governing biomass in a diverse collection of 124 Chinese barley breeding varieties and germplasm. Our results indicate that following barley seed germination, the biomass of seedling grass in hydroponic systems undergoes exponential growth, leveling off after seven days. Within the plant factory setting, we have pinpointed ten varieties with superior conversion rate for seedling grass, including Dongqing 16 and Zaqing 6. A negative correlation was detected between the biomass of seedling grass and the thousand-kernel weight of the seeds. Genome-wide association studies revealed twelve QTL loci linked to seedling grass biomass, and eight candidate genes implicated in biomass regulation were predicted. This research not only identifies high-conversion varieties suitable for production in barley seedling grass factories but also lays the groundwork for genetically enhancing barley varieties specifically for seedling grass production.

Key words: barley seedling grass, biomass regulatory loci, genome-wide association study

Table S1

Barley cultivars and origin"

编号
Number
品种
Cultivar
类型
Type
皮裸
Hull/naked
棱型
Row
原产地
Origin
1 皖饲麦1号 Wansimai 1 饲用大麦 Feed barley 皮 Hull 6 安徽 Anhui
2 皖饲麦2号 Wansimai 2 饲用大麦 Feed barley 皮 Hull 6 安徽 Anhui
3 中饲麦1号 Zhongsimai 1 饲用大麦 Feed barley 皮 Hull 6 北京 Beijing
4 甘青6号 Ganqing 6 青稞 Qingke barley 裸 Naked 6 甘肃 Gansu
5 黄青1号 Huangqing 1 青稞 Qingke barley 裸 Naked 6 甘肃 Gansu
6 垦啤2号 Kenpi 2 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
7 垦啤3号 Kenpi 3 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
8 甘啤2号 Ganpi 2 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
9 甘啤3号 Ganpi 3 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
10 甘啤5号 Ganpi 5 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
11 甘啤6号 Ganpi 6 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
12 甘垦啤7号 GanKenpi 7 啤用大麦 Malting barley 皮 Hull 2 甘肃 Gansu
13 甘青9 Ganqing 9 食饲兼用Barley for food and feed 裸 Naked 6 甘肃 Gansu
14 垦啤麦2号 Kenpimai 2 啤用大麦 Malting barley 皮 Hull 6 黑龙江 Heilongjiang
15 垦啤麦3号 Kenpimai 3 啤用大麦 Malting barley 皮 Hull 2 黑龙江 Heilongjiang
16 垦啤麦5号 Kenpimai 5 啤用大麦 Malting barley 皮 Hull 6 黑龙江 Heilongjiang
17 垦啤麦6号 Kenpimai 6 啤用大麦 Malting barley 皮 Hull 2 黑龙江 Heilongjiang
18 垦啤麦9号 Kenpimai 9 啤用大麦 Malting barley 皮 Hull 6 黑龙江 Heilongjiang
19 龙啤麦2号 Longpimai 2 啤用大麦 Malting barley 皮 Hull 2 黑龙江 Heilongjiang
20 龙啤麦4号 Longpimai 4 啤用大麦 Malting barley 皮 Hull 6 黑龙江 Heilongjiang
21 华大麦2号 Huadamai 2 啤用大麦 Malting barley 皮 Hull 2 湖北 Hubei
22 华大麦6号 Huadamai 6 啤用大麦 Malting barley 皮 Hull 2 湖北 Hubei
23 华大麦7号 Huadamai 7 啤用大麦 Malting barley 皮 Hull 2 湖北 Hubei
24 鄂大麦9号 Edamai 9 饲用大麦 Feed barley 皮 Hull 2 湖北 Hubei
25 华大麦3号 Huadamai 3 饲用大麦 Feed barley 皮 Hull 6 湖北 Hubei
26 华大麦8号 Huadamai 8 饲用大麦 Feed barley 皮 Hull 2 湖北 Hubei
27 华大麦9号 Huadamai 9 饲用大麦 Feed barley 皮 Hull 2 湖北 Hubei
28 鄂大麦507 Edamai 507 食饲兼用 Barley for food and feed 裸 Naked 2 湖北 Hubei
29 华大麦1号 Huadamai 1 食饲兼用 Barley for food and feed 裸 Naked 2 湖北 Hubei
30 鄂大麦8号 Edamai 8 啤饲兼用
Barley for malting and feed
皮 Hull 2 湖北 Hubei
31 扬农啤2号 Yangnongpi 2 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
32 扬农啤4号 Yangnongpi 4 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
33 扬农啤7号 Yangnongpi 7 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
34 盐引1号 Yanyin 1 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
35 盐麦3号 Yanmai 3 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
36 扬农啤10号 Yangnongpi 10 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
37 扬农啤11号 Yangnongpi 11 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
38 扬农啤12号 Yangnongpi 12 啤用大麦 Malting barley 皮 Hull 2 江苏 Jiangsu
39 泰兴元麦 Taixingyuanmai 裸 Naked 2 江苏 Jiangsu
40 盐选一号 Yanxuanyihao 皮 Hull 2 江苏 Jiangsu
41 盐选50 Yanxuan 50 皮 Hull 2 江苏 Jiangsu
42 蒙啤麦1号 Mengpimai 1 啤用大麦 Malting barley 皮 Hull 2 内蒙古Inner Mongolia
43 蒙啤麦3号 Mengpimai 3 啤用大麦 Malting barley 皮 Hull 6 内蒙古Inner Mongolia
44 蒙啤麦4号 Mengpimai 4 啤用大麦 Malting barley 皮 Hull 2 内蒙古Inner Mongolia
45 蒙古国草Mengguguocaomai 皮 Hull 2 内蒙古Inner Mongolia
46 北青1号 Beiqing 1 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
47 北青2号 Beiqing 2 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
48 北青3号 Beiqing 3 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
49 北青4号 Beiqing 4 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
50 北青5号 Beiqing 5 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
51 北青6号 Beiqing 6 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
52 北青7号 Beiqing 7 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
53 北青8号 Beiqing 8 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
54 东青1号 Dongqing 1 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
55 互青2号 Huqing 2 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
56 昆仑13号 Kunlun 13 青稞 Qingke barley 裸 Naked 6 青海 Qinghai
57 昆仑10号 Kunlun 10 皮 Hull 6 青海 Qinghai
58 济皮02 Jipi 02 皮 Hull 2 山东 Shandong
59 花22 Hua 22 啤用大麦 Malting barley 皮 Hull 2 上海 Shanghai
60 沪麦4号 Humai 4 啤用大麦 Malting barley 皮 Hull 2 上海 Shanghai
61 申麦2号 Shenmai 2 皮 Hull 2 上海 Shanghai
62 沪麦8号 Humai 8 皮 Hull 2 上海 Shanghai
63 西大麦2号 Xidamai 2 饲用大麦 Feed barley 皮 Hull 6 四川 Sichuan
64 西大麦3号 Xidamai 3 饲用大麦 Feed barley 皮 Hull 6 四川 Sichuan
65 藏青148 Zangqing 148 青稞 Qingke barley 裸 Naked 6 西藏 Xizang
66 藏青690 Zangqing 690 青稞 Qingke barley 裸 Naked 6 西藏 Xizang
67 冬青8号 Dongqing 8 青稞 Qingke barley 裸 Naked 6 西藏 Xizang
68 冬青16 Dongqing 16 青稞 Qingke barley 裸 Naked 6 西藏 Xizang
69 新啤1号 Xinpi 1 啤用大麦 Malting barley 皮 Hull 2 新疆 Xinjiang
70 新啤2号 Xinpi 2 啤用大麦 Malting barley 皮 Hull 2 新疆 Xinjiang
71 新啤6号 Xinpi 6 啤用大麦 Malting barley 皮 Hull 2 新疆 Xinjiang
72 新啤4号 Xinpi 4 啤用大麦 Malting barley 皮 Hull 2 新疆 Xinjiang
73 云稞1号 Yunke 1 青稞 Qingke barley 裸 Naked 6 云南 Yunnan
74 云啤2号 Yunpi 2 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
75 凤大麦6号 Fengdamai 6 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
76 云啤9号 Yunpi 9 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
77 云啤11号 Yunpi 11 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
78 云啤12号 YunPi 12 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
79 云啤14号 YunPi 14 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
80 云玉麦1号 Yunyumai 1 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
81 云啤15号 Yunpi 15 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
82 云啤17号 Yunpi 17 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
83 云啤18号 Yunpi 18 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
84 云靖麦2号 Yunjingmai 2 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
85 凤大麦9号 Fengdamai 9 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
86 凤大麦10号 Fengdamai 10 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
87 凤大麦11号 Fengdamai 11 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
88 凤大麦13号 Fengdamai 13 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
89 凤啤麦1号 Fengpimai 1 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
90 凤啤麦2号 Fengpimai 2 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
91 云大麦2号 Yundamai 2 饲用大麦 Feed barley 皮 Hull 2 云南 Yunnan
92 凤大麦7号 Fengdamai 7 饲用大麦 Feed barley 皮 Hull 2 云南 Yunnan
93 凤03-39 Feng03-39 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
94 云饲麦1号 Yunsimai 1 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
95 云饲麦3号 Yunsimai 3 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
96 云饲麦4号 Yunsimai 4 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
97 云饲麦8号 Yunsimai 8 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
98 云饲麦9号 Yunsimai 9 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
99 凤大麦12号 Fengdamai 12 饲用大麦 Feed barley 皮 Hull 2 云南 Yunnan
100 保大麦8号 Baodamai 8 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
101 保大麦13号 Baodamai 13 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
102 保大麦14号 Baodamai 14 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
103 保大麦15号 Baodamai 15 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
104 保大麦16号 Baodamai 16 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
105 保大麦18号 Baodamai 18 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
106 保大麦19号 Baodamai 19 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
107 保大麦20号 Baodamai 20 饲用大麦 Feed barley 皮 Hull 6 云南 Yunnan
108 迪青4号 Diqing 4 青稞 Qingke barley 裸 Naked 6 云南 Yunnan
109 迪青1号 Diqing 1 粮用大麦 Grain barley 裸 Naked 6 云南 Yunnan
110 扎青6号 Zhaqing 6 裸 Naked 6 云南 Yunnan
111 楚08YD-4 Chu08YD-4 皮 Hull 6 云南 Yunnan
112 楚09YD-6 Chu08YD-6 皮 Hull 2 云南 Yunnan
113 楚09YD-9 Chu08YD-9 皮 Hull 2 云南 Yunnan
114 凤大麦8号 Fengdamai 8 皮 Hull 2 云南 Yunnan
115 保大麦22号 Baodamai 22 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
116 保大麦23号 Baodamai 23 啤用大麦 Malting barley 皮 Hull 2 云南 Yunnan
117 凤啤麦4号 Fengpimai 4 皮 Hull 2 云南 Yunnan
118 浙皮3号 Zhepi 3 啤用大麦 Malting barley 皮 Hull 2 浙江 Zhejiang
119 浙皮8号 Zhepi 8 啤用大麦 Malting barley 皮 Hull 2 浙江 Zhejiang
120 浙皮7号 Zhepi 7 饲用大麦 Feed barley 皮 Hull 2 浙江 Zhejiang
121 浙原18 Zheyuan 18 饲用大麦 Feed barley 皮 Hull 2 浙江 Zhejiang
122 浙秀22 Zhexiu 22 饲用大麦 Feed barley 皮 Hull 2 浙江 Zhejiang
123 浙秀12 Zhexiu 12 啤饲兼用Malting and Feed barley 皮 Hull 2 浙江 Zhejiang
124 浙皮9号 Zhepi 9 皮 Hull 2 浙江 Zhejiang

Fig. 1

Seedling grass biomass of barley cultivars at different incubation times A: growth curves of different barley cultivars incubated for ten days; B: daily average growth increment of different barley cultivars for ten days of incubation. DAP indicates days after planting. Different lowercase letters indicate significant difference (P < 0.05)."

Fig. 2

Box plots of thousand kernel weight and germination percentage of tested materials at different environment A: box plot of thousand kernel weight of test material at different environmental points; B: box plots of germination rates of test materials at different environmental points. 2022-BJ: Beijing pilot in 2022; 2022-GS: Gansu pilot in 2022; 2023-BJ: Beijing pilot in 2023; 2023-GS: Gansu pilot in 2023."

Table 1

Seedling grass conversion rates of different pilot barley cultivars"

环境
Environment
平均值
Mean
标准差
SE
最小值
Min.
最大值
Max.
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
2022-BJ 6.1 1.1 3.5 8.3 -0.081 -0.686 17.61
2022-GS 6.2 1.0 2.9 8.4 -0.208 0.936 15.91
2023-BJ 7.9 1.3 3.8 10.5 -0.601 0.229 16.18
2023-GS 7.5 1.2 3.5 10.2 -0.391 0.271 15.72

Fig. 3

Distribution of seedling grass conversion of different pilot barley cultivars A: distribution of seedling grass conversion rates of different pilot barley cultivars in 2022; B: distribution of seedling grass conversion rates of different pilot barley cultivars in 2023. 2022-BJ: Beijing pilot in 2022; 2022-GS: Gansu pilot in 2022; 2023-BJ: Beijing pilot in 2023; 2023-GS: Gansu pilot in 2023; GSR: grass seedling ratio."

Table 2

Specific phenotypic traits of ten high seedling grass conversion cultivars"

品种
Cultivar
苗草转化率 GSR 千粒重
1000-grain weight (g)
发芽率Germination rate (%) 综合排名
Comprehensive ranking
2022-BJ 2022-GS 2023-BJ 2023-GS
冬青16 Dongqing 16 7.2 6.9 10.2 8.9 37.7±3.7 75.2±15.2 1
扎青6号 Zhaqing 6 7.1 6.6 9.3 9.9 44.2±6.0 76.6±5.4 2
华大麦9号 Huadamai 9 6.1 7.8 9.4 10.0 48.3±5.2 76.0±6.2 3
凤大麦12号 Fengdamai 12 7.0 7.1 9.9 8.2 55.4±3.3 78.8±11.5 4
昆仑13号 Kunlun 13 7.7 7.5 8.6 8.4 39.2±6.1 85.7±10.0 5
凤啤麦4号 Fengpimai 4 6.8 7.6 8.5 9.0 43.1±5.0 77.3±7.7 6
垦啤麦2号 Kenpimai 2 6.8 7.7 9.2 8.0 41.4±5.4 83.5±9.1 7
云啤12号 Yunpi 12 7.1 5.8 9.2 8.9 50.3±7.4 81.4±14.1 8
北青7号 Beiqing 7 7.1 5.4 9.2 9.7 43.5±8.1 83.6±9.5 9
云饲麦1号 Yunsimai 1 7.3 7.9 9.4 5.7 49.3±5.1 60.3±20.4 10

Fig. 4

Correlated map of seedling grass biomass at different environmental sites A, B, C, and D in the figure represent correlation analysis graph for 2022 Beijing pilot (2022-BJ), 2022 Gansu pilot (2022-GS), 2023 Beijing pilot (2023-BJ), and 2023 Gansu pilot (2023-GS), respectively. GSR: grass seedling ratio; FW: fresh weight; GR: germination rate; TGW: thousand grain weight; *: significant correlation (P < 0.05); **: highly significant correlation (P < 0.01); ***: extremely significant correlation (P < 0.001); red indicates a positive correlation, blue indicates a negative correlation, and the darker the color, the stronger the correlation coefficient."

Fig. 5

Population structure analysis A: optimal K-value plots; B, C: stacked plots of ancestral components (K = 2, K = 3); D, E, F: denote the principal component analysis of 124 breeding cultivars. G: phylogenetic tree based on genetic distances of neighbor-joining. In the figure, yellow POP I indicates subpopulation I, purple POP II indicates subpopulation II, and blue POP III indicates subpopulation III."

Fig. 6

Genome-wide association analysis of seedling and grass conversion in barley breeding cultivars A: Manhattan plot (left) and QQ plot (right) of seedling grass conversion rate of 2022 Beijing pilot (2022-BJ); B: Manhattan plot (left) and QQ plot (right) of seedling grass conversion rate of 2022 Gansu pilot (2022-GS); C: Manhattan plot (left) and QQ plot (right) of seedling grass conversion rate of 2023 Beijing pilot (2023-BJ); D: Manhattan plot (left) and QQ plot (right) of seedling grass conversion rate of 2023 Gansu pilot (2023-GS)."

Table 3

GWAS loci statistics for seedling and grass conversion in barley breeding cultivars"

染色体
Chr.
QTL 位置
Position (Mb)
标记
Marker
环境
Environment
-log10 P PVE
(%)
1H qgsr1H.1 426.4-430.4 rs1_428421759 2022-BJ 4.240 12.33
2H qgsr2H.1 413.9-417.9 rs2_415944523 2022-GS 4.366 12.73
qgsr2H.2 457.5-490.1 rs2_459543120, rs2_488125716 2022-BJ 4.343 11.66-12.65
3H qgsr3H.1 108.6-112.6 rs3_110575889 2023-GS 4.004 11.60
rs3_109862073 2023-BJ 3.985 11.54
qgsr3H.2 615.3-619.3 rs3_617299505 2023-GS 4.354 12.69
4H qgsr4H.1 17.1-21.1 rs4_19065845 2023-GS 4.274 12.44
qgsr4H.2 362.9-366.9 rs4_364937809 2023-BJ 4.140 12.02
5H qgsr5H.1 294.4-298.4 rs5_296385024 2023-GS 4.445 12.97
qgsr5H.2 520.3-524.3 rs5_522318778 2023-BJ 4.780 14.01
6H qgsr6H.1 289.2-293.2 rs6_291151063 2022-BJ 5.546 16.35
qgsr6H.2 304.2-308.2 rs6_306192909 2023-BJ 4.178 12.14
qgsr6H.3 435.4-439.4 rs6_437361512 2022-GS 4.007 11.60

Table 4

Prediction of candidate genes for biomassloci regulation in barley seedling grass"

QTL 基因名称
Gene ID
起始-终止
Start-end
注释信息
Annotation information
qgrs1H.1 HORVU.MOREX.r3.1HG0065130 427509599-427511636 NAC domain-containing protein
qgrs2H.2 HORVU.MOREX.r3.2HG0168310 475735626-475738921 Cellulose synthase family protein
HORVU.MOREX.r3.2HG0170150 489043031-489043723 Pseudo-response regulator 3
HORVU.MOREX.r3.2HG0170210 489506920-489509541 Pentatricopeptide repeat-containing protein
qgrs4H.1 HORVU.MOREX.r3.4HG0337240 17745839-17748824 Glutamine synthetase
HORVU.MOREX.r3.4HG0337970 20646444-20650610 Transcription factor Inducer of CBF expression 1
HORVU.MOREX.r3.4HG0338080 20945447-20949766 Peptide transporter
qgrs5H.2 HORVU.MOREX.r3.5HG0509460 523994766-523997934 WRKY transcription factor
[1] Badea A, Tucker J R, Sabra A, Netticadan T, Blackwell B, Yu L P, Kodikara C, Wijekoon C. Endogenic phenolic compounds of barley as potential biomarkers related to grain mycotoxin production and cultivar selection. Biology, 2023, 12: 1306.
[2] 赵盟, 王春超, 张仁旭, 窦婷语, 裴红红, 郭爱奎, 李姗姗, 吴斌, 刘敏轩, 高佳, 张京, 邢国芳, 王化俊, 孟亚雄, 郭刚刚. 中国大麦育成品种产量相关性状鉴定评价. 植物遗传资源学报, 2022, 23: 1371-1382.
Zhao M, Wang C C, Zhang R X, Dou T Y, Pei H H, Guo A K, Li S S, Wu B, Liu M X, Gao J, Zhang J, Xing G F, Wang H J, Meng Y X, Guo G G. Evaluation of the yield-related traits of Chinese barley cultivars. J Plant Genet Resour, 2022, 23: 1371-1382 (in Chinese with English abstract).
[3] 邹俊杰. 大麦幼苗叶片营养成分和嫩叶汁粉制备及其提取物抗氧化研究. 西南农业大学硕士学位论文, 重庆, 2002.
Zou J J. Studies on Nutritional Components in Barley Leaves and Technics of Producing Leaf Juice Powder and Antioxidative Ability of Leaf Extract Solution. MS Thesis of Southwest Agricultural University, Chongqing, China, 2002 (in Chinese with English abstract).
[4] Havlíková L, Šatínský D, Opletal L, Solich P. A fast determination of chlorophylls in barley grass juice powder using HPLC fused-core column technology and HPTLC. Food Anal Method, 2014, 7: 629-635.
[5] Naik P K, Swain B K, Singh N P. Production and utilization of hydroponics fodder. Indian J Anim Nutr, 2015, 32: 1-9.
[6] 杨金钰. 水培大麦苗生长及饲用营养物质代谢对不同光配方和氮素的响应. 新疆农业大学博士学位论文, 新疆乌鲁木齐, 2022.
Yang J Y. Responses of Seedling Growth and Feed Nutrient Metabolism of Hydroponic Barley in Different Light Formulas and Nitrogen Level. PhD Dissertation of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2022 (in Chinese with English abstract).
[7] 黄万里. 不同水培时间大麦苗的营养价值测定. 河南科技大学硕士学位论文, 河南洛阳, 2019.
Huang W L. Determination of Nutritive Value of Barley Green Fodder Cultivated in Hydroponic System. MS Thesis of Henan University of Science and Technology, Luoyang, Henan, China, 2019 (in Chinese with English abstract).
[8] 黄万里, 王建平, 刘宁, 卜登攀. 不同水培时间下大麦苗的营养价值及CNCPS组分. 草业科学, 2019, 36: 1811-1818.
Huang W L, Wang J P, Liu N, Bu D P. Determination of nutritive value and analysis of the CNCPS contents in barley grass cultivated using a hydroponic system. Pratac Sci, 2019, 36: 1811-1818 (in Chinese with English abstract).
[9] 任澎, 冯娟, 李若诚, 刘建新, 王迪铭. 体外产气法评价水培大麦苗替代苜蓿、燕麦对奶牛瘤胃发酵特性的影响. 中国畜牧杂志, 2022, 58(9): 233-237.
Ren P, Feng J, Li R C, Liu J X, Wang D M. Evaluation of the barley seedlings replacing alfalfa and oat on rumen fermentation characteristics of dairy cows using gas production method in vitro. Chin J Anim Sci, 2022, 58(9): 233-237 (in Chinese with English abstract).
[10] 刘辉, 王建, 杨刚. 大麦芽对黑羽乌骨鸡产蛋性能的影响. 黑龙江畜牧兽医, 1999, (10): 37.
Liu H, Wang J, Yang G. Effect of barley malt on the egg-laying performance of black-feathered silkie. Heilongjinag J Anim Sci Vet Med, 1999, (10): 37 (in Chinese).
[11] Zang Y, Richards A T, Seneviratne N, Gutierrez Oviedo F A, Harding R, Ranathunga S, McFadden J W. Replacing conventional concentrates with sprouted barley or wheat: effects on lactational performance, nutrient digestibility, and milk fatty acid profile in dairy cows. J Dairy Sci, 2024, 107: 5529-5541.
[12] Nguyen T C T, Obermeier C, Friedt W, Abrams S R, Snowdon R J. Disruption of germination and seedling development in Brassica napus by mutations causing severe seed hormonal imbalance. Front Plant Sci, 2016, 7: 322.
[13] Rani H, Bhardwaj R D. Quality attributes for barley malt: “the backbone of beer”. J Food Sci, 2021, 86: 3322-3340.
[14] Solgajová M, Dráb Š, Mareček J. Changes in the content of β-glucans during the malting process. J Microb Biotech Food Sci, 2022, 12: e6001.
[15] Cornaggia C, Evans D E, Draga A, Mangan D, McCleary B V. Prediction of potential malt extract and beer filterability using conventional and novel malt assays. J Inst Brew, 2019, 125: 294-309.
[16] Andriotis V M E, Rejzek M, Barclay E, Rugen M D, Field R A, Smith A M. Cell wall degradation is required for normal starch mobilization in barley endosperm. Sci Rep, 2016, 6: 33215.
[17] Sakamoto K, Nagatani A. Nuclear localization activity of phytochrome B. Plant J, 1996, 10: 859-868.
[18] Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adám E, Schäfer E, Nagy F. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002, 14: 1541-1555.
[19] Zhao Y, Shi H, Pan Y, Lyu M H, Yang Z X, Kou X X, Deng X W, Zhong S W. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell, 2023, 186: 1230-1243.
[20] Neumann K, Zhao Y S, Chu J T, Keilwagen J, Reif J C, Kilian B, Graner A. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis. BMC Plant Biol, 2017, 17: 137.
[21] Khan W A, Penrose B, Shabala S, Zhang X Q, Cao F B, Zhou M X. Mapping QTL for mineral accumulation and shoot dry biomass in barley under different levels of zinc supply. Int J Mol Sci, 2023, 24: 14333.
[22] Tezuka D, Cho H, Tezuka D, Cho H, Onodera H, Linghu Q Y, Chijimatsu T, Hata M, Imai R. Redirecting barley breeding for grass production through genome editing of Photoperiod-H1. Plant Physiol, 2024, 195: 287-290.
[23] Schilling R K, Marschner P, Shavrukov Y, Berger B, Tester M, Roy S J, Plett D C. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J, 2014, 12: 378-386.
[24] Sivamani E, Bahieldin1 A, Wraith J M, Al-Niemi T, Dyer W E, Ho T D, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci, 2000, 155: 1-9.
[25] Tiong J, Sharma N, Sampath R, MacKenzie N, Watanabe S, Metot C, Lu Z J, Skinner W, Lu Y Z, Kridl J, Baumann U, Heuer S, Kaiser B, Okamoto M. Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Front Plant Sci, 2021, 12: 628521.
[26] Huang W T, Nie H P, Feng F, Wang J, Lu K, Fang Z M. Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. Plant Sci, 2019, 283: 23-31.
[27] Dai X Y, Wang Y Y, Zhang W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot, 2016, 67: 947-960.
[28] Alam M S, Kong J R, Tao R F, Ahmed T, Alamin M, Alotaibi S S, Abdelsalam N R, Xu J H. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants (Basel), 2022, 11: 1184.
[29] Xu D D, Dondup D, Dou T Y, Wang C C, Zhang R X, Fan C F, Guo A K, Lhundrup N, Ga Z, Liu M X, Wu B, Gao J, Zhang J, Guo G G. HvGST plays a key role in anthocyanin accumulation in colored barley. Plant J, 2023, 113: 47-59.
[30] Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904-909.
[31] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354.
[32] Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X Q, Angessa T T, Zhou G F, Tan C, Hill C, Wang P H, Schreiber M, Boston L B, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D D, Zhang J, Wang C C, Grimwood J, Schmutz J, Guo G G, Zhang G P, Mochida K, Hirayama T, Sato K, Chalmers K J, Langridge P, Waugh R, Pozniak C J, Scholz U, Mayer K F X, Spannagl M, Li C D, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289.
[33] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q S, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S J, Chapman B, Dai F, Han Y, Li H, Li X, Lin C Y, McCooke J K, Tan C, Wang P H, Wang S B, Yin S Y, Zhou G F, Poland J A, Bellgard M I, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G P, Braumann I, Spannagl M, Li C D, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433.
[34] 王其飞. 大麦幼苗和籽粒大小性状的QTL定位及候选基因预测. 华中农业大学博士学位论文, 湖北武汉, 2019.
Wang Q F. QTL Mapping and Candidate Gene Prediction of Seedling and Grain Size Traits in Barley. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[35] Wu Q, Liu Y F, Xie Z Z, Yu B, Sun Y, Huang J L. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiol, 2022, 189: 1296-1313.
[36] Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M. Photoperiod-H1 (ppd-H1) controls leaf size. Plant Physiol, 2016, 172: 405-415.
[37] Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1; 2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943.
[38] 索宝丽, 王文轩, 张盈盈, 杨开鑫, 齐军仓, 邢瑞, 张前兵. 植物工厂条件下不同营养液配方对大麦苗生长的影响. 中国草地学报, 2023, 45(11): 82-91.
Suo B L, Wang W X, Zhang Y Y, Yang K X, Qi J C, Xing R, Zhang Q B. Effects of different nutrient solutions on the growth of barley seedlings in plant factories. Chin J Grassland, 2023, 45(11): 82-91 (in Chinese with English abstract).
[39] Oikonomou V K, Huerta M, Sandéhn A, Dreier T, Daguerre Y, Lim H, Berggren M, Pavlopoulou E, Näsholm T, Bech M, Stavrinidou E. eSoil: a low-power bioelectronic growth scaffold that enhances crop seedling growth. Proc Natl Acad Sci USA, 2024, 121: e2304135120.
[40] Füllner K, Temperton V M, Rascher U, Jahnke S, Rist R, Schurr U, Kuhn A J. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley. Plant Cell Environ, 2012, 35: 884-892.
[1] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[2] PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960.
[3] ZHANG Li-Lan, YANG Jun, WANG Rang-Jian. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants [J]. Acta Agronomica Sinica, 2024, 50(4): 871-886.
[4] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[5] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[6] MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572.
[7] ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183.
[8] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[9] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[10] XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015.
[11] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[12] QIN Wen-Xuan, BAO Jian-Xi, WANG Yan-Bo, MA Ya-Jie, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study of leaf angle traits and mining of elite alleles from the major loci in maize [J]. Acta Agronomica Sinica, 2022, 48(11): 2691-2705.
[13] LI Ting, WANG Ya-Peng, DONG Yuan, GUO Rui-Shi, LI Dong-Mei, TANG Ya-Ling, ZHANG Xing-Hua, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize [J]. Acta Agronomica Sinica, 2022, 48(10): 2451-2462.
[14] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[15] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .