Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 79-90.doi: 10.3724/SP.J.1006.2025.44066

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic relationship analysis and fingerprints construction of faba bean varieties in Qinghai province based on SSR markers

ZHENG Dong1,2(), ZHOU Xian-Li1,2, TENG Chang-Cai1,2,*(), HOU Wan-Wei1,2,4, ZHANG Hong-Yan1,2, LIU Yu-Jiao1,3,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China
    3State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
    4National Crop Germplasm Resources Duplicate Library, Xining 810016, Qinghai, China
  • Received:2024-04-19 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: 13997058356@163.com; E-mail: 13299761531@163.com
  • Supported by:
    Key Research and Development and Transformation Plan of Qinghai Province(2022-NK-109);China Agriculture Research System of MOF and MARA(CARS-08-G06)

Abstract:

To clarify the population structure and relationships among cultivated varieties, advanced lines, and backbone parents of faba bean in Qinghai province, forty-six pairs of SSR primers with high polymorphism, stability, and repeatability were used to analyze the genetic diversity of thirty-six varieties (lines) and construct genetic fingerprints. The results revealed that 262 alleles were detected using the forty-six primer pairs through capillary electrophoresis. The number of polymorphic alleles (Na) per primer ranged from two to fifteen, with an average of 5.696 alleles. The average number of effective alleles per locus was 2.988, ranging from 1.180 to 9.257. The Shannon index ranged from 0.287 to 2.444, with an average of 1.210. The polymorphism information content (PIC) varied from 0.141 to 0.883, with an average of 0.553, indicating rich genetic diversity among the faba bean varieties in Qinghai. Clustering analysis grouped the 36 materials into four subgroups: subgroup I (twenty-four materials), subgroup II (four materials), subgroup III (seven materials), and subgroup IV (one material). Population genetic structure and principal coordinate analyses divided the materials into two subgroups, with subgroup I containing seventeen materials and subgroup II containing nineteen materials. There was some overlap between the subgroups identified by clustering and those identified by population structure analysis, which clarified the genetic relationships and population structure of the main faba bean cultivars in Qinghai province. On this basis, four core primer pairs were selected to construct genetic fingerprints for the thirty-six materials, which were subsequently stored in a two-dimensional code. The fingerprinting of the main faba bean cultivars in Qinghai provides an effective tool for variety identification and offers technical support for parental selection and the protection of new varieties in future faba bean breeding programs in the region.

Key words: faba bean, Qinghai, main cultivars, SSR maker, genetic relationships, fingerprint

Table 1

Information of the 36 tested materials"

编号
No.
材料名称
Material name
材料来源
Material source
生长习性
Growth habit
1 青海1号 Qinghai 1 牛角蚕豆中系统选育
Systematic selection of Niujiao faba bean
无限 Indeterminacy
2 青海2号 Qinghai 2 无限 Indeterminacy
3 青海3号 Qinghai 3 拉萨1号×互助东和蚕豆
Lhasa 1×Huzhudonghe faba bean
无限 Indeterminacy
4 青海4号 Qinghai 4 无限 Indeterminacy
5 青海5号 Qinghai 5 无限 Indeterminacy
6 青海6号 Qinghai 6 无限 Indeterminacy
7 青海8号 Qinghai 8 农14×103 Nong 14×103 无限 Indeterminacy
8 青海11号 Qinghai 11 72-45×新西兰 72-45×New Zealand 无限 Indeterminacy
9 青海12号 Qinghai 12 青海3号×马牙//72-45×英国176
Qinghai 3×Maya//72-45×UK176
无限 Indeterminacy
10 青海13号Qinghai 13 马牙×戴韦 Maya×Divine 无限 Indeterminacy
11 青蚕14号Qingcan 14 72-45×日本寸蚕 72-45× Japanese Cuncan 无限 Indeterminacy
12 青蚕15号Qingcan 15 湟中落角×96-49 Huangzhongluojiao ×96-49 无限 Indeterminacy
13 青蚕16号Qingcan 16 马牙×Flip88-243FB Maya×Flip88-243FB 有限 Determinacy
14 青蚕17号Qingcan 17 透心绿系选 Systematic selection of Touxinlyu 无限 Indeterminacy
15 青蚕18号Qingcan 18 意大利蚕豆资源3290 Italian faba bean resource 3290 无限 Indeterminacy
16 青蚕19号Qingcan 19 云南新平绿豆×3290 Yunnanxinpinglyudou×3290 无限 Indeterminacy
17 青蚕20号Qingcan 20 云南新平绿豆×3290 Yunnanxinpinglyudou×3290 无限 Indeterminacy
18 青蚕21号Qingcan 21 130×意大利资源 166 130× Italian resource 166 无限 Indeterminacy
19 青蚕22号Qingcan 22 2005-00系选Systematic selection of 2005-00 无限 Indeterminacy
20 青蚕23号Qingcan 23 马牙×戴韦 Maya×Divine 无限 Indeterminacy
21 青蚕24号Qingcan 24 云122系选 Systematic selection of Yun 122 无限 Indeterminacy
22 青蚕25号Qingcan 25 马牙×戴韦 Maya×Divine 无限 Indeterminacy
23 青蚕26号Qingcan 26 无限 Indeterminacy
24 青蚕27号Qingcan 27 意大利资源 166 Italy resource 166 无限 Indeterminacy
25 青蚕28号Qingcan 28 意大利资源 166 Italy resource 166 无限 Indeterminacy
26 青蚕32号Qingcan 32 Y4系选 Systematic selection of Y4 有限 Determaincy
27 青蚕33号Qingcan 33 Y4×GF22 有限 Determaincy
28 RF12 2008F34黑有-7-1-16 2008F34 Heiyou-7-1-16 亚有限 Semi-determinacy
29 RF15 2008F34黑有-7-2-5 2008F34 Heiyou-7-2-5 亚有限 Semi-determinacy
30 RF22 2008F34黑有-7-4-11 2008F34 Heiyou-7-4-11 亚有限 Semi-determinacy
31 羊眼豆Yangyandou 甘肃农家种 Landrace of Gansu province 无限 Indeterminacy
32 沙珠玉紫蚕豆
Shazhuyu purple faba bean
农家种 Landrace 无限 Indeterminacy
33 RF19 2008F34黑有-7-3-7-1 2008F34 Heiyou-7-3-7-1 亚有限 Semi-determinacy
34 R4061 云122-3×2005-00 Yun 122-3×2005-00 无限 Indeterminacy
35 R4053 云122-3×2005-00 Yun 122-3×2005-00 无限 Indeterminacy
36 GF22 云南新平绿豆×3290 Yunnanxinpinglyudou×3290 无限 Indeterminacy

Table 2

Polymorphism of the SSR loci"

标记
Marker
位点数
Number of
alleles (Na)
主要位点
频率
Major allele frequency (MAF)
有效
位点数
Number of
effective
alleles (Ne)
Shannon’s
指数
Shannon’s
diversity index (I)
Nei’s遗传
多样性指数Nei’s gene diversity
多态信息
含量
Polymorphism
information
content (PIC)
位点上的
同一性概率
PI
相邻位点上的同一性概率
PIsibs
4-37 6.000 0.529 2.558 1.180 0.609 0.546 0.216 0.500
3-54 3.000 0.618 2.181 0.920 0.542 0.480 0.271 0.547
6-118 2.000 0.600 1.923 0.673 0.480 0.365 0.386 0.606
1L-20 3.000 0.528 2.374 0.949 0.579 0.496 0.260 0.526
3-51 4.000 0.571 2.445 1.080 0.591 0.535 0.223 0.510
4-119 6.000 0.429 3.393 1.413 0.705 0.659 0.133 0.431
6-55 2.000 0.917 1.180 0.287 0.153 0.141 0.730 0.856
1S-113 6.000 0.457 3.165 1.360 0.684 0.635 0.149 0.445
2-28 4.000 0.486 2.360 0.979 0.576 0.486 0.270 0.529
1L-51 6.000 0.778 1.620 0.862 0.383 0.368 0.396 0.658
2-63 4.000 0.833 1.412 0.595 0.292 0.272 0.521 0.734
1L-73 7.000 0.412 4.014 1.609 0.751 0.719 0.094 0.398
1L-90 2.000 0.583 1.946 0.679 0.486 0.368 0.382 0.603
1S-68 3.000 0.771 1.610 0.696 0.379 0.347 0.417 0.665
1S-109 2.000 0.611 1.906 0.668 0.475 0.362 0.388 0.609
5-09 3.000 0.600 2.005 0.776 0.501 0.401 0.349 0.587
2-36 3.000 0.543 2.416 0.973 0.586 0.512 0.246 0.518
1L-15 6.000 0.361 3.904 1.496 0.744 0.702 0.107 0.405
6-14 13.000 0.278 7.200 2.251 0.861 0.849 0.032 0.327
4-42 7.000 0.457 2.981 1.357 0.664 0.609 0.168 0.460
1S-26 5.000 0.486 2.612 1.132 0.617 0.545 0.218 0.496
2-01 4.000 0.472 2.711 1.127 0.631 0.562 0.205 0.486
3-40 3.000 0.486 2.536 0.997 0.606 0.525 0.236 0.506
3-23 2.000 0.667 1.800 0.637 0.444 0.346 0.407 0.630
3-39 2.000 0.694 1.737 0.615 0.424 0.334 0.421 0.643
3-22 4.000 0.400 2.855 1.137 0.650 0.579 0.193 0.473
6-21 9.000 0.361 4.909 1.853 0.796 0.773 0.064 0.368
6-24 7.000 0.444 2.972 1.348 0.664 0.606 0.170 0.461
6-62 8.000 0.500 3.322 1.574 0.699 0.672 0.118 0.430
3-61 8.000 0.389 4.408 1.734 0.773 0.746 0.078 0.383
2-106 11.000 0.429 3.990 1.776 0.749 0.722 0.090 0.398
2-103 15.000 0.194 9.257 2.444 0.892 0.883 0.021 0.309
3-52 9.000 0.371 4.268 1.729 0.766 0.735 0.086 0.389
3-94 6.000 0.486 3.249 1.426 0.692 0.655 0.132 0.437
4-100 8.000 0.429 4.016 1.677 0.751 0.724 0.089 0.397
4-63 12.000 0.500 3.429 1.748 0.708 0.687 0.107 0.423
3-122 3.000 0.800 1.514 0.637 0.340 0.313 0.463 0.696
3-65 6.000 0.559 2.627 1.254 0.619 0.575 0.189 0.488
6-47 4.000 0.444 2.602 1.069 0.616 0.537 0.226 0.499
6-58 3.000 0.559 2.165 0.859 0.538 0.444 0.308 0.558
5-112 13.000 0.417 4.469 1.964 0.776 0.757 0.069 0.379
5-87 5.000 0.514 2.753 1.213 0.637 0.582 0.187 0.478
5-64 6.000 0.667 2.098 1.108 0.523 0.494 0.256 0.552
6-113 7.000 0.472 3.447 1.521 0.710 0.677 0.117 0.424
6-112 6.000 0.571 2.485 1.184 0.598 0.547 0.213 0.504
3-81 4.000 0.514 2.601 1.085 0.616 0.548 0.216 0.496
平均Mean 5.696 0.526 2.988 1.210 0.606 0.553 0.231 0.505

Fig. 1

NJ dengrogram of 36 faba bean varieties/lines in Qinghai province based on SSR markers"

Fig. 2

Population structure and principal coordinate analysis of 36 faba bean varieties A: line chart of K and ΔK; B: (Q1 > 0.6) is Subpop I, (Q2 > 0.6) is Subpop II; C: principal Coordinate Analysis (PCoA). Squares represent Subpop I in Figure B, triangles represent Subpop II, and different colors correspond to different clusters in Fig. 1."

Fig. 3

Evaluation for the fingerprinting power of adjacent markers combination in 36 materials"

Table 3

Fragments and code of markers"

引物 Primer 序列
Sequence (5°-3°)
简称Abbreviation 编码 Code (bp)
0 1 2 3 4 5 6 7
6-21 F: GGCTGTTGCAATCAACTGG
R: CGACCAGCTCCATCCTACAT
M1 136 292 301 306
3-52 F: TCACCCCCACTATTCTCACTG
R: CCGCCCTCACTTTCAGTCTA
M2 253 267 272 278 290 295 306
1L-15 F: CGAGACTCGCGTCATTTGTA
R: CATGGCGATCAAGTTCAGTG
M3 255 259 266 270
6-113 F: TTCTGCTTGAGGAAGCACCT
R: CGGATCTTGTGGGTTGAAAG
M4 267 274 284 292

Fig. 4

Fingerprinting of 36 materials"

Table 4

Fingerprint information and two-dimensional information of 36 materials"

编号Number 材料名称
Material name
指纹编码
Fingerprint
coding
二维码
QR code
编号Number 材料名称
Material name
指纹编码
Fingerprint
coding
二维码
QR code
1 青海1号
Qinghai 1
23041313 19 青蚕22号
Qingcan 22
02020303
2 青海2号
Qinghai 2
03040303 20 青蚕23号
Qingcan 23
03040101
3 青海3号
Qinghai 3
24042403 21 青蚕24号
Qingcan 24
03030203
4 青海4号
Qinghai 4
24042302 22 青蚕25号
Qingcan 25
03030214
5 青海5号
Qinghai 5
04040203 23 青蚕26号
Qingcan 26
02040202
6 青海8号
Qinghai 8
14030313 24 青蚕27号
Qingcan 27
04060303
7 青海6号
Qinghai 6
03031313 25 青蚕28号
Qingcan 28
13051303
8 青海11号
Qinghai 11
03040103 26 青蚕32号
Qingcan 32
03460203
9 青海12号
Qinghai 12
23041313 27 青蚕33号
Qingcan 33
03450303
10 青海13号
Qinghai 13
04040123 28 RF12 03451203
11 青蚕14号
Qingcan 14
12040204 29 RF15 03040301
12 青蚕15号
Qingcan 15
04461304 30 RF22 03030301
13 青蚕16号
Qingcan 16
02040103 31 羊眼豆
Yangyandou
04020101
14 青蚕17号
Qingcan 17
03020303 32 沙珠玉紫蚕豆
Shazhuyu purple faba bean
01020201
15 青蚕18号
Qingcan 18
03010201 33 RF19 02030201
16 青蚕19号
Qingcan 19
02020302 34 R4061 03030303
17 青蚕20号
Qingcan 20
14070203 35 R4053 12030103
18 青蚕21号
Qingcan 21
04000303 36 GF22 03451203
[1] Jensen E S, Peoples M, Hauggaard-Nielsen H. Faba bean in cropping systems. Field Crops Res, 2010, 115: 203-216.
[2] Köpke U, Nemecek T. Ecological services of faba bean. Field Crops Res, 2010, 115: 217-233.
[3] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
[4] Bishop J, Jones H E, Lukac M, Potts S G. Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.). Agric Ecosyst Environ, 2016, 220: 89-96.
[5] FAO. Statistical Database, Food and Agriculture Organization (FAO) of the United Nations, Rome. http://faostat.fao.org/, 2021.
[6] 刘玉皎. 调结构, 转方式, 促进青海蚕豆产业转型升级. 青海科技, 2018, 25(1): 35-37.
Liu Y J. Adjusting structure and mode to promote the transformation and upgrading of faba bean industry in Qinghai. Qinghai Sci Technol, 2018, 25(1): 35-37 (in Chinese).
[7] 刘玉皎, 张红岩, 郭兴莲, 周仙莉. 基于“一优两高”战略的蚕豆产业认知与产业发展. 青海科技, 2020, 27(6): 18-21.
Liu Y J, Zhang H Y, Guo X L, Zhou X L. Cognition and industrial development of faba bean industry based on the “One excellence and two highs” strategy. Qinghai Sci Technol, 2020, 27(6): 18-21 (in Chinese).
[8] 张红岩. 基于SSR标记的蚕豆DNA指纹图谱构建及品种纯度鉴定. 中国农业科学院硕士学位论文, 北京, 2018.
Zhang H Y. Construction of DNA Fingerprint and Variety Purity Identification of Faba Bean Based on SSR Markers. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[9] 聂兴华, 刘松, 王碧瑶, 李琰, 练蔓青, 秦岭, 郑瑞杰, 邢宇. 基于SSR标记的我国主栽日本栗品种(系)遗传结构分析和指纹图谱构建. 核农学报, 2022, 36: 2104-2114.
Nie X H, Liu S, Wang B Y, Li Y, Lian M Q, Qin L, Zheng R J, Xing Y. Genetic structure analysis and fingerprinting construction of the main Japanese chestnut cultivars (lines) using SSR markers in China. J Nucl Agric Sci, 2022, 36: 2104-2114 (in Chinese with English abstract).
[10] 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析. 作物学报, 2022, 48: 2786-2805.
Liu Y L, Zhang H Y, Teng C C, Zhou X L, Hou W W. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.). Acta Agron Sin, 2022, 48: 2786-2805 (in Chinese with English abstract).
[11] 张红岩, 郭兴莲, 杨涛, 刘荣, 黄宇宁, 季一山, 王栋, 宗绪晓. 利用SSR标记分析蚕豆品种(品系)与优异种质的遗传多样性. 中国蔬菜, 2018, (2): 34-41.
Zhang H Y, Guo X L, Yang T, Liu R, Huang Y N, Ji Y S, Wang D, Zong X X. Genetic diversity of faba bean varieties (lines) and elite collections by SSR markers. China Veg, 2018, (2): 34-41 (in Chinese with English abstract).
[12] Ma Y, Bao S Y, Yang T, Hu J G, Guan J P, He Y H, Wang X J, Wan Y L, Sun X L, Jiang J Y, Gong C X, Zong X X. Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breed, 2013, 132: 397-400.
[13] Yang T, Jiang J Y, Zhang H Y, Liu R, Strelkov S, Hwang S F, Chang K F, Yang F, Miao Y M, He Y H, Zong X X. Density enhancement of a faba bean genetic linkage map (Vicia faba) based on simple sequence repeats markers. Plant Breed, 2019, 138: 207-215.
[14] 周仙莉, 滕长才, 张红岩, 韩雪梅, 林夕, 刘玉玲, 吴小燕, 侯万伟, 刘玉皎. 蚕豆亚有限生长习性遗传规律分析及其基因初步定位. 分子植物育种, 2021, 19: 2660-2667.
Zhou X L, Teng C C, Zhang H Y, Han X M, Lin X, Liu Y L, Wu X Y, Hou W W, Liu Y J. Genetic analysis and primary mapping of the semi-determinate growth habit genes in faba bean. Mol Plant Breed, 2021, 19: 2660-2667 (in Chinese with English abstract).
[15] 刘金洋, 周琰琰, 林云, 刘萌萌, 薛晨晨, 陈景斌, 闫强, 吴然然, 陈新, 袁星星. 南方90份秋播区蚕豆粒型性状的SSR关联分析. 植物遗传资源学报, 2023, 24: 1602-1618.
Liu J Y, Zhou Y Y, Lin Y, Liu M M, Xue C C, Chen J B, Yan Q, Wu R R, Chen X, Yuan X X. Associate studies of seed size-related traits with SSR markers of 90 faba beans in south autumn sowing areas. J Plant Genet Resour, 2023, 24: 1602-1618 (in Chinese with English abstract).
[16] Požárková D, Koblížková A, Román B, Torres A M, Lucretti S, Lysák M, Doležel J, Macas J. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant, 2002, 45: 337-345.
[17] Suresh S, Park J H, Cho G T, Lee H S, Baek H J, Lee S Y, Chung J W. Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (Vicia faba L.) using 454 pyrosequencing. Molecules, 2013, 18: 1844-1856.
[18] Zeid M, Mitchell S, Link W, Carter M, Nawar A, Fulton T, Kresovich S. Simple sequence repeats (SSRs) in faba bean: new loci from Orobanche-resistant cultivar ‘Giza 402’. Plant Breed, 2009, 128: 149-155.
[19] Jayakodi M, Golicz A A, Kreplak J, Fechete L I, Angra D, Bednář P, Bornhofen E, Zhang H L, Boussageon R, Kaur S, Cheung K, Čížková J, Gundlach H, Hallab A, Imbert B, Keeble-Gagnère G, Koblížková A, Kobrlová L, Krejčí P, Mouritzen T W, Neumann P, Nadzieja M, Nielsen L K, Novák P, Orabi J, Padmarasu S, Robertson-Shersby-Harvie T, Robledillo L Á, Schiemann A, Tanskanen J, Törönen P, Warsame A O, Wittenberg A H J, Himmelbach A, Aubert G, Courty P E, Doležel J, Holm L U, Janss L L, Khazaei H, Macas J, Mascher M, Smýkal P, Snowdon R J, Stein N, Stoddard F L, Stougaard J, Tayeh N, Torres A M, Usadel B, Schubert I, O’Sullivan D M, Schulman A H, Andersen S U. The giant diploid faba genome unlocks variation in a global protein crop. Nature, 2023, 615: 652-659.
[20] 宋伟, 王凤格, 田红丽, 易红梅, 王璐, 赵久然. 利用核心SNP位点鉴别玉米自交系的研究. 玉米科学, 2013, 21(4): 28-32.
Song W, Wang F G, Tian H L, Yi H M, Wang L, Zhao J R. Identification of maize inbred lines using core SNP loci. J Maize Sci, 2013, 21(4): 28-32 (in Chinese with English abstract).
[21] 乔东亚, 王鹏, 王淑安, 李林芳, 高露璐, 杨如同, 汪庆, 李亚. 基于SNP标记的紫薇遗传多样性分析. 南京林业大学学报(自然科学版), 2020, 44(4): 21-28.
Qiao D Y, Wang P, Wang S A, Li L F, Gao L L, Yang R T, Wang Q, Li Y. Genetic diversity analysis of Lagerstroemia germplasm resources based on SNP markers. J Nanjing For Univ (Nat Sci Edn), 2020, 44(4): 21-28 (in Chinese with English abstract).
[22] 孙虎, 刘昌燕, 李莉, 刘良军, 韩雪松, 万正煌, 沙爱华, 陈宏伟. 80份绿豆象抗感蚕豆种质资源SSR遗传多样性分析. 西南农业学报, 2023, 36: 683-691.
Sun H, Liu C Y, Li L, Liu L J, Han X S, Wan Z H, Sha A H, Chen H W. Genetic diversity of SSR markers in 80 faba bean germplasm resources susceptible to mung bean weevil. Southwest China J Agric Sci, 2023, 36: 683-691 (in Chinese with English abstract).
[23] 孙泽硕, 蒋冬月, 柳新红, 沈鑫, 李因刚, 屈雨飞, 李永华. 基于SSR标记的42份樱花品种的聚类分析及DNA指纹图谱构建. 园艺学报, 2023, 50: 657-668.
Sun Z S, Jiang D Y, Liu X H, Shen X, Li Y G, Qu Y F, Li Y H. Cluster analysis and construction of DNA fingerprinting of 42 oriental cultivars of flowering cherry based on SSR markers. Acta Hortic Sin, 2023, 50: 657-668 (in Chinese with English abstract).
[24] 李超, 杨英, 陈伟, 郑贺云, 廖新福, 孙玉萍. 西州密系列甜瓜SSR指纹图谱构建及聚类分析. 园艺学报, 2022, 49: 622-632.
Li C, Yang Y, Chen W, Zheng H Y, Liao X F, Sun Y P. Construction of DNA fingerprinting and clustering analysis with SSR markers for the muskmelon of Xizhoumi series. Acta Hortic Sin, 2022, 49: 622-632 (in Chinese with English abstract).
[25] 胡春龙. 基于SSR标记构建白蜡种质资源分子身份证及其遗传多样性分析. 山东农业大学硕士学位论文, 山东泰安, 2015.
Hu C L. Establishment of Molecular ID for Fraxinus Based on SSR Markers and Analysis of Genetic Diversity. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2015 (in Chinese with English abstract).
[26] 刘秀菊, 任俊云, 宗绪晓, 关建平, 张晓艳. 蚕豆AFLP技术体系的建立与优化. 植物遗传资源学报, 2007, 8: 153-158.
Liu X J, Ren J Y, Zong X X, Guan J P, Zhang X Y. Establishment and optimization of AFLP for faba bean. J Plant Genet Resour, 2007, 8: 153-158 (in Chinese with English abstract).
[27] 杨菁, 刘玉皎. 青海主要蚕豆品种AFLP指纹图谱构建. 2008年中国作物学会学术年会论文摘要集, 2008.
Yang J, Liu Y J. Construction of AFLP fingerprint of main faba bean varieties in Qinghai province. Abstracts of 2008 Annual Academic Meeting of Crop Science Society of China, 2008.
[28] Waly E A, Farghali M A, Abbas H S, Mosselhy D S. Identification of the genetic differences between some faba bean genotypes by finger print characters. J Appl Sci Res, 2012, 8: 17-24.
[29] 侯万伟, 刘玉皎, 李萍, 张小田. 12个蚕豆品种RAPD指纹图谱的构建. 江苏农业科学, 2011, 39(3): 48-50.
Hou W W, Liu Y J, Li P, Zhang X T. Construction of RAPD fingerprints of 12 faba bean varieties. Jiangsu Agric Sci, 2011, 39(3): 48-50 (in Chinese).
[30] Waits L P, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol, 2001, 10: 249-256.
[1] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[2] ZHANG Hong-Yan, MIN Yu-Xia, TENG Chang-Cai, PENG Xiao-Xing, CHEN Zhi-Kai, ZHOU Xian-Li, LOU Shu-Bao, LIU Yu-Jiao. Genetic diversity analysis of Chinese faba bean (Vicia faba L.) germplasm resources using 130K liquid phase chips [J]. Acta Agronomica Sinica, 2024, 50(8): 1989-2000.
[3] FAN Hui-Ling, BAI Sheng-Wen, LU Yan, PENG Xiao-Xing, ZHOU Xian-Li, ZHANG Hong-Yan, TENG Chang-Cai, WU Xue-Xia, LIU Yu-Jiao. Identification and comprehensive evaluation of salt-alkali tolerance throughout the growth period of 155 faba bean germplasms [J]. Acta Agronomica Sinica, 2024, 50(12): 3035-3045.
[4] CHEN Zhi-Kai, ZHOU Xian-Li, ZHANG Hong-Yan, TENG Chang-Cai, HOU Wan-Wei. SSR association analysis of the protein content of 320 faba bean germplasms [J]. Acta Agronomica Sinica, 2024, 50(11): 2775-2786.
[5] SHAO Yang, GUO Yan-Ping, ZHOU Bing-Yue, ZHANG Feng, ZHANG Xin-Ming, WANG Yu-Ping. Analysis of genotype × environment interaction and stability of yield components in faba bean lines [J]. Acta Agronomica Sinica, 2024, 50(1): 149-160.
[6] ZHAO Cai-Xia, SHEN Ji-Cheng, YIN Shu-Xiang, YE Fa-Hui, YANG Miao-Si, LIU Rui-Juan, LIU De-Mei, ZHANG Huai-Gang, SHEN Yu-Hu, CHEN Wen-Jie. Evaluation of the forage performance of polish wheat on the Qinghai-Tibet Plateau [J]. Acta Agronomica Sinica, 2023, 49(11): 3017-3028.
[7] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[8] TIAN Hong-Li, ZHAO Zi-Wei, YANG Yang, FAN Ya-Ming, BAN Xiu-Li, YI Hong-Mei, YANG Hong-Ming, LIU Shao-Rong, GAO Yu-Qian, LIU Ya-Wei, WANG Feng-Ge. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China [J]. Acta Agronomica Sinica, 2022, 48(12): 2994-3003.
[9] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[10] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[11] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[12] TIAN Hong-Li, YANG Yang, WANG Lu, WANG Rui, YI Hong-Mei, XU Li-Wen, ZHANG Yun-Long, GE Jian-Rong, WANG Feng-Ge, ZHAO Jiu-Ran. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties [J]. Acta Agronomica Sinica, 2020, 46(7): 1006-1015.
[13] Le-Chen LI,Guo-Zhong ZHU,Xiu-Juan SU,Wang-Zhen GUO. Genome-wide screening and evaluation of SNP core loci for fingerprinting construction of cotton accessions (G. barbadense) [J]. Acta Agronomica Sinica, 2019, 45(5): 647-655.
[14] Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275.
[15] Ren-Xin ZHAO,Sen-Ye LI,Rui-Xing GUO,Xin-Hua ZENG,Jing WEN,Chao-Zhi MA,Jin-Xiong SHEN,Jin-Xing TU,Ting-Dong FU,Bin YI. Construction of DNA Fingerprinting for Brassica napus Varieties Based on SNP Chip [J]. Acta Agronomica Sinica, 2018, 44(7): 956-965.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .