Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 68-78.doi: 10.3724/SP.J.1006.2025.41034

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Allelic variation and distribution of peroxidase activity genes TaPod-A1, TaPod-A3, and TaPod-D1 of wheat in Xinjiang, China

LIU Xin-Yuan1,2(), CHENG Yu-Kun1,2, WANG Li-Li1, ZHAN Shuai-Shuai1, MA Meng-Yao1, GUO Ling1, GENG Hong-Wei1,2,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University / Xinjiang Engineering Technology Research Center for High-quality Special Wheat Crops, Urumqi 830052, Xinjiang, China
    2Xinjiang Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Urumqi 830052, Xinjiang, China
  • Received:2024-05-10 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: hw-geng@163.com
  • Supported by:
    Key R&D Project of Xinjiang Autonomous Region(2022B02001-3);Graduate Research and Innovation Program of Xinjiang Agricultural University(XJAUGRI2023005);Xinjiang Agriculture Research System(XJARS-01-02)

Abstract:

To further improve the quality of wheat flour, functional markers for the TaPod-A1, TaPod-A3, and TaPod-D1 loci were employed to detect allelic variations in 110 wheat varieties (lines) from Xinjiang. Genotypic and phenotypic ANOVA results revealed that the TaPod-A1b (35.5%), TaPod-A3c (53.6%), and TaPod-D1b (60%) alleles associated with significantly higher POD activity compared to TaPod-A1a (64.5%), TaPod-A3a (46.4%), and TaPod-D1a (40%) alleles, respectively. In Xinjiang wheat cultivars, the distribution frequencies of favorable high-POD activity alleles at the TaPod-A1, TaPod-A3, and TaPod-D1 loci were higher in introduced varieties (lines)≈self-fertile varieties (lines) compared to landraces. Notably, the TaPod-A3b allele was absent in all 110 Xinjiang wheat samples, suggesting that it is a rare allele. The average POD activity of cultivars (lines) with specific alleles at the TaPod-A1, TaPod-A3, and TaPod-D1 genes followed the order: TaPod-A1b/TaPod-A3c/TaPod-D1b (2836.25 U g-1 min-1) > TaPod-A1b/TaPod-A3c/TaPod-D1a (2796.00 U g-1 min-1) > TaPod-A1b/TaPod-A3a/TaPod-D1b (2520.31 U g-1 min-1) > TaPod-A1a/TaPod-A3c/TaPod-D1b (2473.91 U g-1 min-1) > TaPod-A1a/TaPod-A3a/TaPod-D1b (2407.65 U g-1 min-1) > TaPod-A1b/TaPod-A3a/TaPod-D1a (2339.06 U g-1 min-1) > TaPod-A1a/TaPod-A3c/TaPod-D1a (2320.38 U g-1 min-1) > TaPod-A1a/TaPod-A3a/TaPod-D1a (2210.69 U g-1 min-1). Among these, the allele combination TaPod-A1b/TaPod-A3c/TaPod-D1b exhibited significantly higher POD activity (2836.25 U g-1 min-1) compared to the combination TaPod-A1a/TaPod-A3a/TaPod- D1a (2210.69 U g-1 min-1) (P < 0.01), indicating that varieties with superior allele combinations exhibit enhanced POD activity.

Key words: wheat, peroxidase, alleles, molecular marker testing

Table 1

Primer sequence, amplified fragments, and corresponding allelic variations of POD gene"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
扩增片段长度
Length of amplified fragment (bp)
等位变异
Allelic variation
POD-3A1 F: ACGGGAGACGACGAGAAGCAAAGA 291 TaPod-A1a
R: TCGTGGAAGTGTAGGCGAAGA
POD-3A2 F: GTGGCGCAGGGCCTGTCA 766 TaPod-A1b
R: GTTGTCGAACACGTTGGGGGA
POD-7A1 F: CACGAGACGCTGTGGAAGGACAG 216 TaPod-A3a
R: TCGCATTCAAGGACGCATACA
POD-7A2 F: TATTTTTTTTTTTTTTGCGTTC 882 TaPod-A3b
R: GGATCTCCCCCTTGCGTGCCGGTCTT
POD-7A3 F: AAGACCGGCACGCAGGGGGAGA 156 TaPod-A3c
R: TCGCATTCAAGGACGCATACA
POD-7D1 F: GCTTCGTCCAGGACGCGTT 540 TaPod-D1a
R: CGAGGAATGGGGGGTTGATG
POD-7D6 F: TGGGCATGGGGCTTCTGCA 640 TaPod-D1b
R: GCGAGGAATGGGGGGTTGATG

Fig. 1

Results of amplification using labeled POD-3A1 and POD-3A2 M: marker DL2000; 1: Aberghlig; 2: Yinong 20; 3: Beijing 6; 4: Bima 1; 5: Bima 4; 6: Lovrin 10; 7: Wumang 1; 8: Xinchun 3; 9: Xinchun 22; 10: Xinchun 26."

Fig. 2

Results of amplification using labeled POD-7A1 and POD-7A3 M: marker DL2000; 1: Xindong 32; 2: Kuihua 1; 3: Shidong 7; 4: Xindong 34; 5: Jimai 24; 6: Shidong 8; 7: Shidong 9; 8: Baiyoubao; 9: Kadong 4; 10: Jimai 26."

Fig. 3

Results of amplification using labeled POD-7D1 and POD-7D6 M: marker DL2000; 1: Kadong 1; 2: Kuihua 4; 3: Shidong 7; 4: Xindong 27; 5: Xindong 28; 6: Xinchun 11; 7: Xinchun 40; 8: Xindong 37; 9: Xindong 36; 10: Xindong 23."

Table 2

Distribution of POD activity in different wheat varieties"

等位变异基因
Allele
全部品种(系)
All varieties (lines)
冬小麦 Winter wheat 春小麦 Spring wheat
地方品种(系)
Landraces (lines)
自育品种(系)
Self-bred varieties (lines)
引进品种(系)
Introduced varieties (lines)
总计
Total
早期品种(系)
Early varieties (lines)
近期品种(系)
Recent varieties (lines)
总计
Total
TaPod-A1a 2363.2 a 2422.67 a 2338.04 a 2431.36 a 2389.16 a 0 2412.08 a 2412.08 a
TaPod-A1b 2664.29 b 3057.5 b 2437.5 a 2875.23 b 2673.81 b 2420.83 2703.65 a 2650.62 a
TaPod-A3a 2345.05 a 2422.5 a 2255.68 a 2502.29 a 2362.22 a 0 2216.25 a 2216.25 a
TaPod-A3b 0 0 0 0 0 0 0 0
TaPod-A3c 2577.92 b 2550 a 2508.97 a 2529.05 a 2523.55 a 2588.75 2794.04 a 2755.55 b
TaPod-D1a 2332.95 a 2363.75 a 2204.88 a 2465 a 2332.96 a 0 0 0
TaPod-D1b 2561.29 b 2521.5 a 2535.79 b 2584.5 a 2549.15 b 2420.83 2611.58 2585.57
TaPod-A1a/TaPod-A3a/TaPod-D1a 2210.69 a 2225 a 2115 ab 2505.833 abcd 2210.69 a 0 0 0
TaPod-A1a/TaPod-A3a/TaPod-D1b 2407.65 ab 2587.083 a 2385 ab 2162.5 a 2406.5 ab 0 2416.25 ab 2416.25 ab
TaPod-A1a/TaPod-A3c/TaPod-D1b 2473.91 ab 2423.125 a 2528 ab 2457.5 abc 2487.37 abcd 0 2410 ab 2410 ab
TaPod-A1a/TaPod-A3c/TaPod-D1a 2320.38 a 0 2370 ab 2305.5 ab 2320.38 abc 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1a 2339.06 a 0 2009.375 a 2668.75 abcd 2339.06 ab 0 0 0
TaPod-A1b/TaPod-A3c/TaPod-D1a 2796 c 3057.5 b 2600 ab 3122.5 cd 2796 d 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1b 2520.31 ab 0 2837.5 b 3185 d 2924.38 bcd 0 2116.25 a 2116.25 a
TaPod-A1b/TaPod-A3c/TaPod-D1b 2836.2 5c 0 2462.5 ab 2929 bcd 2851.25 cd 2420.83 2964.72 b 2828.75 b

Table 3

Distribution frequency of alleles in different types of Xinjiang wheat"

等位变异基因
Allele
全部品种(系)
All varieties
(lines)
冬小麦 Winter wheat 春小麦 Spring wheat
地方品种(系)
Landraces
(lines)
自育品种(系)
Self-bred varieties (lines)
引进品种(系)
Introduced varieties (lines)
总计
Total
早期品种(系)
Early varieties
(lines)
近期品种(系)
Recent varieties (lines)
总计
Total
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency
(%)
个数
No.
频率
Frequency (%)
TaPod-A1a 71 64.5 15 93.8 28 71.8 22 66.7 65 73.9 0 0 6 31.6 6 27.3
TaPod-A1b 39 35.5 1 6.2 11 28.2 11 33.3 23 26.1 3 100 13 68.4 16 72.7
TaPod-A3a 51 46.4 11 68.8 22 56.4 12 36.4 45 51.1 0 0 6 31.6 6 27.3
TaPod-A3b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TaPod-A3c 59 53.6 5 31.2 17 43.6 21 63.6 43 48.9 3 100.0 13 68.4 16 72.7
TaPod-D1a 44 0.4 6 37.5 20 51.3 18 54.5 44 50.0 0 0 0 0 0 0
TaPod-D1b 66 0.6 10 62.5 19 48.7 15 45.5 44 50.0 3 100.0 19 100.0 22 100.0
TaPod-A1a/TaPod-A3a/TaPod-D1a 18 16.4 5 31.25 10 25.6 3 9.1 18 20.5 0 0 0 0 0 0
TaPod-A1a/TaPod-A3a/TaPod-D1b 17 15.5 6 37.5 5 12.8 4 12.1 15 17.0 0 0 2 10.5 2 9.1
TaPod-A1a/TaPod-A3c/TaPod-D1b 23 20.9 4 25 10 25.6 5 15.2 19 21.6 0 0 4 21.1 4 18.2
TaPod-A1a/TaPod-A3c/TaPod-D1a 13 11.8 0 0 3 7.7 10 30.3 13 14.8 0 0 0 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1a 8 7.3 0 0 4 10.3 4 12.1 8 9.1 0 0 0 0 0 0
TaPod-A1b/TaPod-A3c/TaPod-D1a 5 4.5 1 6.25 3 7.7 1 3.0 5 5.7 0 0 0 0 0 0
TaPod-A1b/TaPod-A3a/TaPod-D1b 8 7.3 0 0 3 7.7 1 3.0 4 4.5 0 0 4 21.1 4 18.2
TaPod-A1b/TaPod-A3c/TaPod-D1b 18 16.3 0 0 1 2.6 5 15.2 6 6.8 3 100.0 9 47.3 12 54.5
[1] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 430-434.
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status and perspective of wheat genomics, genetics and breeding. J Plant Genet Resour, 2018, 19: 430-434 (in Chinese with English abstract).
[2] Evlice A K, Özkaya H. Effects of wheat cultivar, cooking method, and bulgur type on nutritional quality characteristics of bulgur. J Cereal Sci, 2020, 96: 103124.
[3] 王瑞, 张永科, 郭勇, 孔令让, 胡希远. 小麦不同阶段产品品质性状的变异及其关系. 麦类作物学报, 2018, 38: 900-905.
Wang R, Zhang Y K, Guo Y, Kong L R, Hu X Y. Variability and relationship of quality characters of wheat at different product stages. J Triticeae Crops, 2018, 38: 900-905 (in Chinese with English abstract).
[4] 何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰芹, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006, 39: 1091-1101.
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006, 39: 1091-1101 (in Chinese with English abstract).
[5] Gélinas P, Poitras E, McKinnon C M, Morin A. Oxido-reductases and lipases as dough-bleaching agents. Cereal Chem, 1998, 75: 810-814.
[6] Mcdonald C E. Lipoxygenase and lutein bleaching activity of durum wheat semolina. Cereal Chem, 1979, 56: 84-89.
[7] Iori R, Cavalieri B, Palmieri S. Cathodic peroxidases of durum wheat flour. Cereal Chem, 1995, 72: 176-181.
[8] Borrelli G M, Troccoli A, Di Fonzo N, Fares C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem, 1999, 76: 335-340.
[9] Delcros J F, Rakotozafy L, Boussard A, Davidou S, Porte C, Potus J, Nicolas J. Effect of mixing conditions on the behavior of lipoxygenase, peroxidase, and catalase in wheat flour doughs. Cereal Chem, 1998, 75: 85-93.
[10] Hessler T G, Thomson M J, Benscher D, Nachit M M, Sorrells M E. Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci, 2002, 42: 1695-1700.
[11] van den Berg B M, Chibbar R N, van Huystee R B. A comparative study of a cationic peroxidase from peanut and an anionic peroxidase from Petunia. Plant Cell, 1983, 2: 304-307.
[12] Revanappa S B, Salimath P V, Prasada Rao UJS. Effect of peroxidase on textural quality of dough and Arabinoxylan characteristics isolated from whole wheat flour dough. Int J Food Prop, 2014, 17: 2131-2141.
[13] 胡瑞波, 田纪春, 邓志英, 张永祥. 中国白盐面条色泽影响因素的研究. 作物学报, 2006, 32: 1338-1343.
Hu R B, Tian J C, Deng Z Y, Zhang Y X. Factors related to Chinese white salted noodle color. Acta Agron Sin, 2006, 32: 1338-1343 (in Chinese with English abstract).
[14] Hidalgo A, Brandolini A, Pompei C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem, 2010, 121: 746-751.
[15] Maksimov I V, Cherepanova E A, Kuzmina O I, Yarullina L G, Akhunov A A. Molecular peculiarities of the chitin-binding peroxidases of plants. Russ J Bioorg Chem, 2010, 36: 293-300.
[16] Žilić S, Dodig D, Šukalović V H T, Maksimović M, Saratlić G, Škrbić B. Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities. Int J Food Sci Technol, 2010, 45: 1360-1367.
[17] Takasaki S, Kato Y, Murata M, Homma S, Kawakishi S. Effects of peroxidase and hydrogen peroxide on the dityrosine formation and the mixing characteristics of wheat-flour dough. Biosci Biotechnol Biochem, 2005, 69: 1686-1692.
[18] Brenchley R, Spannagl M, Pfeifer M, Barker G L A, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N X, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F X, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole genome shotgun sequencing. Nature, 2012, 491: 705-710.
[19] Wei J X, Geng H W, Zhang Y, Liu J D, Wen W E, Zhang Y, Xia X C, Chen X M, He Z H. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1on wheat chromosome 3AL. Theor Appl Genet, 2015, 128: 2067-2076.
[20] 时佳, 翟胜男, 刘金栋, 魏景欣, 白璐, 高文伟, 闻伟锷, 何中虎, 夏先春, 耿洪伟. 普通小麦籽粒过氧化物酶活性全基因组关联分析. 中国农业科学, 2017, 50: 4212-4227.
Shi J, Zhai S N, Liu J D, Wei J X, Bai L, Gao W W, Wen W E, He Z H, Xia X C, Geng H W. Genome-wide association study of grain peroxidase activity in common wheat. Sci Agric Sin, 2017, 50: 4212-4227 (in Chinese with English abstract).
[21] Geng H W, Shi J, Fuerst E P, Wei J X, Morris C F. Physical mapping of peroxidase genes and development of functional markers for TaPod-D1 on bread wheat chromosome 7D. Front Plant Sci, 2019, 10: 523.
[22] 谢磊, 战帅帅, 王丽丽, 任毅, 时佳, 耿洪伟. 新疆冬小麦过氧化物酶基因TaPod-D1TaPod-A1的等位变异及分布. 麦类作物学报, 2019, 39: 262-267.
Xie L, Zhan S S, Wang L L, Ren Y, Shi J, Geng H W. Molecular identification and distribution analysis of peroxidase gene TaPod-D1and TaPod-A1 in Xinjiang winter wheat. J Triticeae Crops, 2019, 39: 262-267 (in Chinese with English abstract).
[23] 王丽丽, 战帅帅, 谢磊, 王继庆, 哈尼开·马坎, 任毅, 时佳, 耿洪伟. 新疆小麦籽粒过氧化物酶(POD)活性检测及其基因等位变异检测. 新疆农业科学, 2020, 57: 1765-1774.
Wang L L, Zhan S S, Xie L, Wang J Q, Ma H, Ren Y, Shi J, Geng H W. Identification of peroxidase activity and allelic variation in wheat. Xinjiang Agric Sci, 2020, 57: 1765-1774 (in Chinese).
[24] 邓彪, 屈国胜, 王茹, 张晓科, 孙道杰, 杨松杰. 陕西省地方小麦品种多酚氧化酶基因等位变异检测及分布. 分子植物育种, 2009, 7: 478-482.
Deng B, Qu G S, Wang R, Zhang X K, Sun D J, Yang S J. Molecular identification and distribution of me polyphenol oxidase genes in Shaanxi winter wheat cultivars. Mol Plant Breed, 2009, 7: 478-482 (in Chinese with English abstract).
[25] Taneja S R, Abrol Y P, Sachar R C. Modulation of o-diphenolase and monophenolase enzymes during wheat grain development. Cereal Chem, 1974, 51: 457-465.
[26] McCaig T N, Fenn D Y K, Knox R E, Depauw R M, Clarke J M, McLeod J G. Measuring polyphenol oxidase activity in a wheat breeding program. Can J Plant Sci, 1999, 79: 507-514.
[27] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
[28] Demeke T, Morris C F, Campbell K G, King G E, Anderson J A, Chang H G. Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci, 2001, 41: 1750-1757.
[29] 时佳, 白璐, 任毅, 穆培源, 梁晓东, 玛依拉, 耿洪伟. 新疆小麦TaGW2-6A、TaCwi-A1、Tasus2-2B等位变异对粒重的影响及应用. 分子植物育种, 2018, 16: 848-858.
Shi J, Bai L, Ren Y, Mu P Y, Liang X D, Ma Y L, Geng H W. Effects and application of allelic variation of TaGW2-6A, TaCwi-A1 and TaSus2-2B on grain weight of Xinjiang wheat. Mol Plant Breed, 2018, 16: 848-858 (in Chinese with English abstract).
[30] 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019, 39: 682-691.
Jiang J, Jiang Y, Wang S R. Agronomic and quality traits of wheat varieties bred in Sichuan in recent years. J Triticeae Crops, 2019, 39: 682-691 (in Chinese with English abstract).
[31] 孙静, 王宪泽. 盐胁迫对小麦过氧化物酶同工酶基因表达的影响. 麦类作物学报, 2006, 26: 42-44.
Sun J, Wang X Z. Effects of salt stress on gene expression of peroxidase isozyme in wheat. J Triticeae Crops, 2006, 26: 42-44 (in Chinese with English abstract).
[32] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23: 2031-2038.
Li S Q, Shao M A, Li Z Y, Wu W M, Zhang X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Bot Boreali-Occident Sin, 2003, 23: 2031-2039 (in Chinese with English abstract).
[33] 黄静, 张运, 汪明秀, 王芳, 汤志, 何好. 近17年新疆干旱时空分布特征及影响因素. 生态学报, 2020, 40: 1077-1088.
Huang J, Zhang Y, Wang M X, Wang F, Tang Z, He H. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years. Acta Ecol Sin, 2020, 40: 1077-1088 (in Chinese with English abstract).
[34] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7 (in Chinese with English abstract).
[35] Thorwarth P, Liu G Z, Ebmeyer E, Schacht J, Schachschneider R, Kazman E, Reif J C, Würschum T, Longin C F H. Dissecting the genetics underlying the relationship between protein content and grain yield in a large hybrid wheat population. Theor Appl Genet, 2019, 132: 489-500.
[36] 张晓, 高德荣, 李曼, 刘大同, 吴素兰, 江伟, 吕国锋. 小麦面粉和鲜面片色泽及Psy-A1Ppo-A1等位变异检测. 麦类作物学报, 2019, 39: 415-422.
Zhang X, Gao D R, Li M, Liu D T, Wu S L, Jiang W, Lyu G F. Color of flour and fresh dough sheet of wheat varieties and detection of allelic variations for genes psy-A1 and ppo-A1. J Triticeae Crops, 2019, 39: 415-422 (in Chinese with English abstract).
[37] 相吉山, 穆培源, 桑伟, 聂迎彬, 徐红军, 崔凤娟, 韩新年, 邹波. 新疆小麦品种资源脂肪氧化酶活性基因TaLox-B1的分布特征研究. 麦类作物学报, 2013, 33: 279-285.
Xiang J S, Mu P Y, Sang W, Nie Y B, Xu H J, Cui F J, Han X N, Zou B. Distribution characteristics of lipid oxidase active gene Talox-B1 in wheat germplasm resources of Xinjiang. J Triticeae Crops, 2013, 33: 279-285 (in Chinese with English abstract).
[38] 陈钰, 郭爱华, 姚月俊, 姚延梼. 低温胁迫下杏花器官内POD、相对电导率和可溶性蛋白含量的变化. 山西农业科学, 2007, 35: 30-32.
Chen Y, Guo A H, Yao Y J, Yao Y T. The change of POD enzymes, relative conductivities and soluble proteins in flower of almond under cold stress. J Shanxi Agric Sci, 2007, 35: 30-32 (in Chinese with English abstract).
[39] 张顺琴, 王素芳, 陈梦玫, 林志华. Cu2+对泥蚶血红蛋白(Tg-HbII)的过氧化物酶活性与结构的影响. 海洋学报(中文版), 2018, 40: 106-114.
Zhang S Q, Wang S F, Chen M M, Lin Z H. Effects of Cu2+on structure and peroxidase activity of Tegillarca granosa hemoglobin (Tg-HbII). Haiyang Xuebao, 2018, 40: 106-114 (in Chinese with English abstract).
[40] 马传喜, 姚大年, 阮龙, 陶永祥, 韩峰, 柏发梢. 小麦品种产量和品质性状相关的研究. 安徽农业科学, 1997, 25: 99-100.
Ma C X, Yao D N, Ruan L, Tao Y X, Han F, Bai F S. Correlation between yield and quality traits in wheat varieties. J Anhui Agric Sci, 1997, 25: 99-100 (in Chinese with English abstract).
[41] Bagge M, Xia X, Lübberstedt T. Functional markers in wheat. Curr Opin Plant Biol, 2007, 10: 211-216.
[42] Borrelli G M, De Leonardis A M, Fares C, Platani C, Di Fonzo N. Effects of modified processing conditions on oxidative properties of Semolina dough and pasta. Cereal Chem, 2003, 80: 225-231.
[1] YANG Fang-Ping, GUO Ying, TIAN Yuan-Yuan, XU Yu-Feng, WANG Lan-Lan, BAI Bin, ZHAN Zong-Bing, ZHANG Xue-Ting, XU Yin-Ping, LIU Jin-Dong. Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province,China [J]. Acta Agronomica Sinica, 2025, 51(2): 370-382.
[2] LIANG Miao, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Effect of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat [J]. Acta Agronomica Sinica, 2025, 51(2): 470-484.
[3] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[4] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
[5] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[6] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[7] PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960.
[8] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[9] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[10] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[11] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[12] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[13] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[14] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[15] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .