Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 58-67.doi: 10.3724/SP.J.1006.2025.44092

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet

MENG Fan-Hua1, LIU Min1(), SHEN Ao1,2, LIU Wei1,*()   

  1. 1Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2024-06-06 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: wheiliu@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    Agricultural Fine Seed Project of Shandong Province(2021LZGC006);Key Research and Development Project of Shandong Province(2021LZGC025);National Natural Science Foundation of China(32201736);National Natural Science Foundation of China(32171955);Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2023F13)

Abstract:

Soil salinization poses a significant barrier to agricultural productivity. Enhancing the salt tolerance of crops is crucial for the effective utilization of saline-alkali land, thereby ensuring food security and improving agricultural efficiency. Lipid transfer proteins (LTPs) are a class of small, widely distributed proteins in higher plants, playing crucial roles in plant growth, signal transduction, and responses to various biotic and abiotic stresses. In a previous study, a lipid transfer protein gene, designated SiLTP1, was cloned from foxtail millet. In this study, we constructed both a prokaryotic expression vector and a plant binary overexpression vector for SiLTP1. The prokaryotically expressed protein and four homozygous transgenic lines were successfully obtained and characterized. In vitro salt tolerance assays revealed that the SiLTP1 protein exhibited a notable degree of salt tolerance. Physiological measurements of the transgenic seedlings indicated reduced oxidative damage, as evidenced by lower malondialdehyde (MDA) accumulation, increased superoxide dismutase (SOD) activity, and reduced hydrogen peroxide (H2O2) levels under salt stress, demonstrating enhanced salt tolerance. These findings suggest that SiLTP1 plays a positive role in regulating salt tolerance in foxtail millet, potentially by mitigating oxidative stress. This study provides a theoretical foundation and valuable genetic resources for the future development and breeding of salt-tolerant foxtail millet varieties.

Key words: lipid transfer proteins, SiLTP1, salt stress, foxtail millet, salt tolerance response

Fig. 1

Prokaryotic protein expression of SiLTP1 A: PCR verification; M: DNA marker; 1-6: positive bacterial solution of pET32a-SiLTP1. B: SDS-PAGE electrophoresis; M: protein maker; 1-4: total protein expressed by pET32a-SiLTP1, induced by 0.05 mmol L-1, 0.20 mmol L-1, 0.50 mmol L-1, and 1.00 mmol L-1 IPTG for 5 h; 5-6: total protein expressed by pET32a; 7: total protein of plants without vector transformation. 32 kD band: fusion protein expressed by pET32a-SiLTP1; 21 kD band: the tagged protein expressed by the vector."

Fig. 2

Detection of salt tolerance of pET32a-SiLTP1 strain with spot method Phenotypes of pET32a-SiLTP1 and pET32a on LB with 0 mmol L-1, 100 mmol L-1, 200 mmol L-1, 300 mmol L-1, 500 mmol L-1, and 700 mmol L-1 NaCl."

Fig. 3

Growth curves of pET32a-SiLTP1 (blue) and pET32a (orange) in LB liquid medium with 200 mmol L-1 NaCl * indicates a significant difference at the 0.05 probability level."

Fig. 4

Identification and screening of SiLTP1 overexpressing lines A: hygromycin screening; B: PCR identification of overexpressing plants; M: DNA marker; 1-4: overexpressing lines of T3 generation; 5: Ci846. C: relative expression levels of SiLTP1 in Ci846 and overexpression lines (OE1-OE4). Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 5

Phenotypes of control and SiLTP1 overexpressing lines before and after salt treatment A: phenotypes of control and SiLTP1 overexpressing plants before and after 100 mmol L-1 NaCl treatment for seven days; B: analyze of root and shoot length before and after 100 mmol L-1 NaCl treatment for seven days. Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 6

Test of physiological indexes and DAB staining of Ci846 and SiLTP1 overexpressing lines before and after salt treatment Different lowercase letters indicate significant differences at the 0.05 probability level."

[1] Zhou H P, Shi H F, Yang Y Q, Feng X X, Chen X, Xiao F, Lin H H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics, 2024, 51: 16-34.
[2] Xiao F, Zhou H P. Plant salt response: perception, signaling, and tolerance. Front Plant Sci, 2023, 13: 1053699.
[3] Atta K, Mondal S, Gorai S, Singh A P, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad D J, Mondal S, Bhattacharya S, Jha U C, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front Plant Sci, 2023, 14: 1241736.
[4] Kader J C. Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci, 1997, 2: 66-70.
[5] Kader J C, Julienne M, Vergnolle C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem, 1984, 139: 411-416.
[6] Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: an overview. Plant Physiol Biochem, 2022, 171: 115-127.
[7] Salminen T A, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta, 2016, 244: 971-997.
[8] Liu F, Zhang X B, Lu C M, Zeng X H, Li Y J, Fu D H, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663-5681.
[9] Fang C W, Wu S W, Li Z W, Pan S S, Wu Y R, An X L, Long Y, Wei X, Wan X Y. A systematic investigation of lipid transfer proteins involved in male fertility and other biological processes in maize. Int J Mol Sci, 2023, 24: 1660.
[10] Hairat S, Baranwal V K, Khurana P. Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. Plant Physiol Biochem, 2018, 130: 418-430.
[11] Missaoui K, Ghorbel M, Jrad O, Masmoudi K, Brini F. The wheat lipid transfer protein (TdLTP2) mitigates biotic and abiotic stress damages in transgenic Arabidopsis thaliana plants. Physiol Mol Plant Pathol, 2023, 127: 102096.
[12] Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant, 2014, 7: 722-738.
[13] Yang Y X, Song H, Yao P P, Zhang S T, Jia H F, Ye X F. NtLTPI.38, a plasma membrane-localized protein, mediates lipid metabolism and salt tolerance in Nicotiana tabacum. Int J Biol Macromol, 2023, 242: 125007.
[14] 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665.
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665 (in Chinese with English abstract).
[15] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549-554.
[16] 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29: 292-301.
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29: 292-301 (in Chinese with English abstract).
[17] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
[18] 娄燕宏, 丁汉凤, 诸葛玉平, 王会, 陈青, 赵鹏, 王德领, 孙鑫. 山东省谷子产业化发展的制约因素及对策研究. 中国农业信息, 2016, (12): 31-33.
Lou Y H, Ding H F, Zhuge Y P, Wang H, Chen Q, Zhao P, Wang D L, Sun X. Study on restrictive factors and countermeasures of millet industrialization development in Shandong province. China Agric Inf, 2016, (12): 31-33 (in Chinese).
[19] Wang M Z, Li P, Li C, Pan Y L, Jiang X Y, Zhu D Y, Zhao Q, Yu J J. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol, 2014, 14: 290.
[20] Li C, Yue J, Wu X W, Xu C, Yu J J. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot, 2014, 65: 5415-5427.
[21] Li J R, Dong Y, Li C, Pan Y L, Yu J J. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci, 2017, 7: 2053.
[22] Pan Y L, Li J R, Jiao L C, Li C, Zhu D Y, Yu J J. A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci, 2016, 7: 1752.
[23] 孟凡花, 李臻, 王庆国, 刘炜. 谷子脂质转移蛋白基因SiLTP1的克隆及表达分析. 山东农业科学, 2021, 53(10): 1-7.
Meng F H, Li Z, Wang Q G, Liu W. Cloning and expression analysis of lipid transfer protein gene SiLTP1 of foxtail millet. Shandong Agric Sci, 2021, 53(10): 1-7 (in Chinese with English abstract).
[24] Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma, 2013, 250: 1079-1089.
[25] Huang L, Wu D Z, Zhang G P. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B, 2020, 21: 426-441.
[26] Wang M, Wang M, Zhao M, Wang M C, Liu S P, Tian Y C, Moon B, Liang C C, Li C L, Shi W M, Bai M Y, Liu S W, Zhang W, Hwang I, Xia G M. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. New Phytol, 2022, 236: 495-511.
[27] Xiang Y H, Yu J J, Liao B, Shan J X, Ye W W, Dong N Q, Guo T, Kan Y, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Lin H X. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Mol Plant, 2022, 15: 1908-1930.
[28] Zhang M, Cao Y B, Wang Z P, Wang Z Q, Shi J P, Liang X Y, Song W B, Chen Q J, Lai J S, Jiang C F. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol, 2018, 217: 1161-1176.
[29] Zhang H L, Yu F F, Xie P, Sun S Y, Qiao X H, Tang S Y, Chen C X, Yang S, Mei C, Yang D K, Wu Y R, Xia R, Li X, Lu J, Liu Y X, Xie X W, Ma D M, Xu X, Liang Z W, Feng Z H, Huang X H, Yu H, Liu G F, Wang Y C, Li J Y, Zhang Q F, Chen C, Ou-Yang Y D, Xie Q. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379: eade8416.
[30] Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel diligent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801-1812.
[31] 杨玉婷, 李国印, 苏亚春, 郭晋隆, 许莉萍. 正响应盐胁迫的甘蔗6-磷酸葡萄糖脱氢酶基因的克隆. 福建农林大学学报(自然科学版), 2014, 43(2): 156-164.
Yang Y T, Li G Y, Su Y C, Guo J L, Xu L P. Cloning and characterization of sugarcane 6-phosphogluconate dehydrogenase gene, positive response to salt stress. J Fujian Agric For Univ (Nat Sci Edn), 2014, 43(2): 156-164 (in Chinese with English abstract).
[32] Murphy M P, Bayir H, Belousov V, Chang C J, Davies K J A, Davies M J, Dick T P, Finkel T, Forman H J, Janssen-Heininger Y, Gems D, Kagan V E, Kalyanaraman B, Larsson N G, Milne G L, Nyström T, Poulsen H E, Radi R, Van Remmen H, Schumacker P T, Thornalley P J, Toyokuni S, Winterbourn C C, Yin H Y, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab, 2022, 4: 651-662.
[33] 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 龚明, 邹竹荣. 植物活性氧的产生及其作用和危害. 西北植物学报, 2014, 34: 1916-1926.
Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zou Z R. Generation of reactive oxygen species and their functions and deleterious effects in plants. Acta Bot Boreali-Occident Sin, 2014, 34: 1916-1926 (in Chinese with English abstract).
[34] Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay S K. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. Plant Sci, 2023, 337: 111881.
[35] Gao W D, Liu B C, Phetmany S, Li J H, Wang D N, Liu Z Y, Gao C Q. ThDIV2, an R-R-type MYB transcription factor of Tamarix hispida, negatively regulates cadmium stress by modulating ROS homeostasis. Environ Exp Bot, 2023, 214: 105453.
[1] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[2] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[3] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[4] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[5] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[6] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[7] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[8] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[9] YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997.
[10] ZHANG Jin-Hui, XIAO Zi-Yi, LI Xu-Hua, ZHANG Ming, JIA Chun-Lan, PAN Zhen-Yuan, QIU Fa-Zhan. Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2 [J]. Acta Agronomica Sinica, 2024, 50(12): 3144-3154.
[11] XUE Ya-Peng, XIN Xu-Xia, WANG Ruo-Nan, YU Xiao-Han, LIU Shao-Xiong, WANG Rui-Yun, LIU Min-Xuan. Analysis of agronomic, quality traits and genetic diversity of domestic and foreign foxtail millet resources [J]. Acta Agronomica Sinica, 2024, 50(10): 2468-2482.
[12] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[13] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[14] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[15] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .