Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 44-57.doi: 10.3724/SP.J.1006.2025.44079
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Jia-Xin(), HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing*(
)
[1] | Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol, 2020, 61: 1832-1849. |
[2] | Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251. |
[3] | Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530. |
[4] | Olszewski N, Sun T P, Gubler F. Gibberellin signaling. Plant Cell, 2002, 14: 61-80. |
[5] | Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34: 740-760. |
[6] | Davière J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151. |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 2022, 38(2): 195-204. |
Li Y D, Shan X H. Gibberellin metabolism regulation and green revolution. Biotechnol Bull, 2022, 38(2): 195-204 (in Chinese with English abstract). | |
[8] | 董静, 尹梦回, 杨帆, 赵娟, 覃珊, 侯磊, 罗明, 裴炎, 肖月华. 棉花赤霉素不敏感矮化GID1同源基因的克隆和表达分析. 作物学报, 2009, 35: 1822-1830. |
Dong J, Yin M H, Yang F, Zhao J, Qin S, Hou L, Luo M, Pei Y, Xiao Y H. Cloning and expression profiling of gibberellin insensitive dwarf GID1 homologous genes from cotton. Acta Agron Sin, 2009, 35: 1822-1830 (in Chinese with English abstract). | |
[9] | Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S- proteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492-497. |
[10] | Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S X, Liang W Q, Liu Q Q, Zhang D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol J, 2021, 19: 2304-2318. |
[11] | Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. Plant Signal Behav, 2018, 13: e1445933. |
[12] | Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-1898. |
[13] | Dill A, Thomas S G, Hu J H, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16: 1392-1405. |
[14] | Gao S P, Chu C C. Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiol, 2020, 61: 1902-1911. |
[15] | Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626-634. |
[16] | El-Sharkawy I, Ismail A, Darwish A, El Kayal W, Subramanian J, Sherif S M. Functional characterization of a gibberellin F-box protein, PslSLY1, during plum fruit development. J Exp Bot, 2021, 72: 371-384. |
[17] | Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261. |
[18] | Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13: 999-1010. |
[19] | Bujarrabal A, Schumacher B. Hormesis running hot and cold. Cell Cycle, 2016, 15: 3335-3336. |
[20] | Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108. |
[21] | Liu H, Chen W D, Li Y S, Sun L, Chai Y H, Chen H X, Nie H C, Huang C L. CRISPR/Cas9 technology and its utility for crop improvement. Int J Mol Sci, 2022, 23: 10442. |
[22] | Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451-476. |
[23] | Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7. |
[24] | 何若韫. 叶绿素含量测定. 新农业, 1980, (3): 31-32. |
He R Y. Chlorophyll content determination. New Agric, 1980, (3): 31-32 (in Chinese with English abstract). | |
[25] | Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. Auxin response factors are keys to the many auxin doors. New Phytol, 2022, 235: 402-419. |
[26] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展. 植物学报, 2023, 58: 770-782. |
Yuan Y, En H B Y E, Qi Y H. Research advances in biological functions of GH3 gene family in plants. Chin Bull Bot, 2023, 58: 770-782 (in Chinese with English abstract). | |
[27] | 赵雪惠, 张蕊, 李玲, 付喜玲, 陈修德, 李冬梅, 肖伟, 高东升. 植物表皮蜡质合成及运输的研究进展. 植物生理学报, 2016, 52: 1128-1134. |
Zhao X H, Zhang R, Li L, Fu X L, Chen X D, Li D M, Xiao W, Gao D S. Advances of plant cuticles biosynthesis and transport. Plant Physiol J, 2016, 52: 1128-1134 (in Chinese with English abstract). | |
[28] | Birchler J A, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34: 2466-2474. |
[29] | Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399-3414. |
[30] | Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22: 2680-2696. |
[31] | Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Plant Cell, 2020, 62: 118-131. |
[32] | Olimpieri I, Caccia R, Picarella M E, Pucci A, Santangelo E, Soressi G P, Mazzucato A. Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Sci, 2011, 180: 496-503. |
[33] | Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M N, Maier A, Schwechheimer C. The della domain of ga insensitive mediates the interaction with the ga insensitive dwarf1a gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209-1220. |
[34] | Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Plant Cell, 2012, 3: 808. |
[35] | Mateos J L, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G. Combinatorial activities of short vegetative phase and flowering locus c define distinct modes of flowering regulation in Arabidopsis. Plant Cell, 2015, 16: 31. |
[36] | Hu J, Su H L, Cao H, Wei H B, Fu X K, Jiang X M, Song Q, He X H, Xu C Z, Luo K M. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34: 2688-2707. |
[37] | Schneider-Belhaddad F, Kolattukudy P. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys, 2000, 377: 341-349. |
[38] | Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol, 2009, 150: 1831-1843. |
[1] | LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622. |
[2] | LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309. |
[3] | LIU Yu-Hang, ZHAO Shu-Hong, ZHU Ting-Ting, LIANG Zhen-Yu, HE Da-Hai, CHEN Jia-Bo, REN Yong, HUANG Lin, FAN Gao-Qiong, WU Bi-Hua. Effects of 16,17-dihydro gibberellin A5 on canopy radiation interception and yield of Shumai 133 under different planting density [J]. Acta Agronomica Sinica, 2024, 50(11): 2787-2800. |
[4] | YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250. |
[5] | HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372. |
[6] | HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432. |
[7] | SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143. |
[8] | ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249. |
[9] | QIAN Fu, ZHANG Zhan-Qin, CHEN Shu-Bin, DING Yong-Fu, SANG Zhi-Qin, LI Wei-Hua. Mining maize flowering traits related candidate genes based on GWAS and WGCNA data [J]. Acta Agronomica Sinica, 2023, 49(12): 3261-3276. |
[10] | ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716. |
[11] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
[12] | DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644. |
[13] | GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634. |
[14] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[15] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
|