Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 44-57.doi: 10.3724/SP.J.1006.2025.44079

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L.

LI Jia-Xin(), HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing*()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2024-05-13 Accepted:2024-08-15 Online:2025-01-12 Published:2024-09-02
  • Contact: *E-mail: wenjing@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31771831);National Natural Science Foundation of China(31000721);China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

Gibberellins regulate plant epidermal cell growth, stem and leaf expansion, and plant architecture. In Arabidopsis, SLY1 encodes an F-box protein that modulates plant growth by targeting the negative regulator of GA signaling, the DELLA protein, for ubiquitination and subsequent degradation. However, the function of BnaSLY1 in Brassica napus has not been previously revealed. In this study, we characterized the expression patterns and performed a phylogenetic analysis of BnaSLY1. Using CRISPR/Cas9 technology, we generated mutants with different copy numbers of BnaSLY1. By integrating RNA-Seq analysis, we investigated the biological functions of BnaSLY1 and its impact on the growth and development of Brassica napus. Our results showed that there are two copies of SLY1 in Brassica napus, with similar expression patterns and constitutive expression. The protein is localized in the nucleus and is highly conserved among different varieties of rapeseed and cruciferous plants. Phenotypic analysis of mutants revealed that, compared to the control, single mutants bnaa01sly1 and bnaa06sly1 exhibited delayed flowering and significantly reduced plant height, while the double mutant bnasly1 showed a dark green leaf phenotype, increased leaf thickness, further delayed flowering, and further reduced plant height. RNA-Seq analysis between Westar and bnasly1 showed significant enrichment of differentially expressed genes in the auxin signaling pathway and wax biosynthesis pathway, with several flowering time-related genes showing significant expression changes. This study demonstrates that BnaSLY1 not only influences plant height and flowering time but also affects epidermal wax synthesis, thereby laying a theoretical foundation for exploring the crucial role of the GA signaling pathway in the growth and development of Brasscia napus.

Key words: Brassica napus L., BnaSLY1, gibberellin, plant architecture, wax biosynthesis, flowering time, RNA-seq

Table S1

Primers used in this study"

用途
Functions
引物
Primers
序列
Sequence (5'-3')
qRT-PCR分析
qRT-PCR Analysis
QBnaSLY1.A01-F TCAAACTCAGTTACAAACGGTGACG
QBnaSLY1.A01-R TGCTCACGCAAGAAGACGTTGCTAA
QBnaSLY1.A06-F TCAAACTCAGTTACAGACGGT
QBnaSLY1.A06-R GCAAGATGATGTTGCTAAGG
QActin-F GCTGACCGTATGAGCAAAG
QActin-R AAGATGGATGGACCCGAC
亚细胞定位
Subcellular localization
C83R TGTGCCCATTAACATCACCATC
SalI-GFP-F CTTGCATGCCTGCAGGTCGACATGAAACGCAGTGCTTCAAACT
BamHI-GFP-R TCTACCGGTACCCGGGGATCCCCGGGGAGTCTCTTAGTGAAATTCATC
CRISPR/Cas9基因
编辑
CRISPR/Cas9
gene editing
Cr-SLY1.A01-F0 ATATATGGTCTCGATTGGAGTAGATTCTCGTCTAAGTGTT
Cr-SLY1.A01-R0 TGTACTAGGTGCGGAAGCACGGTTTTAGAGCTAGAAATAGC
Cr-SLY1.A01-BsF AACGAGTAGATTCTCGTCTAAGTCAATCTCTTAGTCGACTCTAC
Cr-SLY1.A01-BsR ATTATTGGTCTCGAAACTACTAGGTGCGGAAGCACGCAA
Cr-SLY1.A06-F0 ATATATGGTCTCGATTGCCAGCTCAGATTCGTAGTCTGTT
Cr-SLY1.A06-R0 TGAGACTACGAATCTGAGCTGGGTTTTAGAGCTAGAAATAGC
Cr-SLY1.A06-BsF AACCCAGCTCAGATTCGTAGTCTCAATCTCTTAGTCGACTCTAC
Cr-SLY1.A06-BsR ATTATTGGTCTCGAAACAGACTACGAATCTGAGCTGGCAA
Cr-SLY1s-F0 ATATATGGTCTCGATTGCGTGAGCAAGATCTGGCACGTT
Cr-SLY1s-R0 TGCGTGCTTCAACACCTCGTAGTTTTAGAGCTAGAAATAGC
Cr-SLY1s-BsF AACCGTGAGCAAGATCTGGCACCAATCTCTTAGTCGACTCTAC
Cr-SLY1s-BsR ATTATTGGTCTCCGTGCTTCAACACCTCGTACAA
阳性苗检测
Detection of positive transgenic plants
U626-IDF TGTCCCAGGATTAGAATGATTAGGC
U629-IDR AGCCCTCTTCTTTCGATCCATCAAC
Hi-TOM分析
Hi-Tom analysis
A01-T1/T2-F GGAGTGAGTACGGTGTGCCAAGAAGATGAAAAAGACCACAGA
A01-T1/T2-R GAGTTGGATGCTGGATGGTAGAGCGAGTGGAGTTGCTTGAA
A06-T1/T2-F GGAGTGAGTACGGTGTGCTGACGCGAGTAACAAGAAGATG
A06-T1/T2-R GAGTTGGATGCTGGATGGTCGAGAGAGGCCACAGGTA
HI-T1/T2-F GGAGTGAGTACGGTGTGCAAGATCTGGCACAGGACT
HI-T1/T2-R GAGTTGGATGCTGGATGGTAGTACCGAATCGAGAGGAG
F-1 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGCGTTGGAGTGAGTACGGTGTGC
F-2 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGTAGTGGAGTGAGTACGGTGTGC
F-3 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTACGCTGGAGTGAGTACGGTGTGC
F-4 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCTCGTGGAGTGAGTACGGTGTGC
F-5 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGCTCTGGAGTGAGTACGGTGTGC
F-6 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTAGTCTGGAGTGAGTACGGTGTGC
F-7 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCGACTGGAGTGAGTACGGTGTGC
F-8 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGATGTGGAGTGAGTACGGTGTGC
F-9 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTATACTGGAGTGAGTACGGTGTGC
F-10 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCACATGGAGTGAGTACGGTGTGC
F-11 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGTGCTGGAGTGAGTACGGTGTGC
F-12 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTACTATGGAGTGAGTACGGTGTGC
R-A GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGCGTTGAGTTGGATGCTGGATGG
R-B GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGTAGTGAGTTGGATGCTGGATGG
R-C GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTACGCTGAGTTGGATGCTGGATGG
R-D GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTCTCGTGAGTTGGATGCTGGATGG
R-E GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGCTCTGAGTTGGATGCTGGATGG
R-F GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTAGTCTGAGTTGGATGCTGGATGG
R-G GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTCGACTGAGTTGGATGCTGGATGG
R-H GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGATGTGAGTTGGATGCTGGATGG
indexP-F11 AATGATACGGCGACCACCGAGATCTACACTCATGGTCACACTCTTTCCCTACACGACGC
indexP-F12 AATGATACGGCGACCACCGAGATCTACACAGCGATGTACACTCTTTCCCTACACGACGC
indexP-R17 CAAGCAGAAGACGGCATACGAGATTTACGAGGGTGACTGGAGTTCAGACGTGTGCTCTT
indexP-R18 CAAGCAGAAGACGGCATACGAGATACAGTGTGGTGACTGGAGTTCAGACGTGTGCTCTT

Fig. S1

Nucleotide sequence alignment of SLY1 among different B. napus varieties A: Nucleotide sequence alignment of the A subgenome SLY1 among different varieties; B: Nucleotide sequence alignment of C subgenome SLY1 among different varieties. The black area represents exons, and the gray area represents introns."

Fig. 1

Comparison of protein sequences and construction of developmental tree for BnaSLY1 A: alignment of SLY1 proteins in Arabidopsis, B. rapa, B. oleracea, and B. napus (var. Westar); B: phylogenetic tree of BnaSLY1 proteins among different B. napus varieties. Numbers on branches are bootstrap values for 1000 replications; C: phylogenetic tree of SLY1 proteins among different species. The green part represents Group I, the blue part represents Group II, and the remaining colors represent Group III. CICLE: citrus; FCD: Ficus carica; EVM: marijuana; Cla97: watermelon; SORBI: sorghum; Zm: maize; Os: rice; Traes: wheat; HORVU: barley; AVESA: oats; Rchi: rosebush; Csa: cucumber; Vitvi: grapes; EUTSA: thellungiella; DCAR: carrot; CEY00: kiwi; SIN: sesame; HanXRQ: sunflower; LSAT: lettuce; FRAEX: white wax; OE9A: olive; AT: Arabidopsis; Bna: Brassica napus; Bra: Brassica rapa; Bo: Brassica oleracea."

Fig. 2

Expression patterns of BnaSLY1 homologs A: relative expression level of BnaSLY1 homologs in different tissues of Westar; B: heatmap of BnaSLY1 expression in different tissues of ZS11, represented by TPM values, data extracted from the BnIR database; C: subcellular localization of BnaSLY1 in Nicotona benthamiana. Scale bar, 25 μm."

Fig. 3

The target sites of BnaSLY1 and its mutations in several representative knockout lines A: gene structure of BnaSLY1 and the target sites; B: mutations at the targeted sites of BnaSLY1 in T1 lines. Green fonts represent the PAM sequence, red fonts represent mutations, and red dotted lines represent deletion of bases, respectively."

Table S2

Detection of target editing efficiency of CRISPR/Cas9 T0 generation transgenic seedlings"

突变体
Mutant
再生植株
Number of
transgenic plants
阳性株数
Number of positive plants
编辑效率
Edit efficiency (%)
拷贝全突
Total mutation efficiency (%)
靶点1编辑效率
Editing efficiency of target 1 (%)
靶点2编辑效率
Editing efficiency of target 2 (%)
bnaa01sly1 22 18 (81.82%) 66.70 41.70 58.30 33.30
bnaa06sly1 10 7 (70.00%) 57.10 25.00 100.00 0
bnasly1 86 65 (75.58%) 64.60 28.60 52.30 69.10

Fig. 4

Phenotypes of the BnaSLY1 knockout mutants A: leaves of the control Westar and the mutants; B: seedlings of Westar and the mutants; C: flowering plants of Westar and the mutants; D: comparison of plant height between Westar and the mutants; E: comparison of flowering time between Westar and the mutants. Scale bar: 8 cm. ** indicates significant differences at the P < 0.01 probability level."

Fig. 5

BnaSLY1 impacts the cell morphology, chlorophyll, and wax synthesis in leaves A: paraffin sections of WT and the mutant leaves, scale bar: 100 μm; B: chloroplast ultrastructure of WT and the mutants, scale bar: 2 μm; C: comparison of leaf thickness between WT and the mutants; D: comparison of chlorophyll content between WT and the mutants. sm: spongy mesophyll; Cp: chloroplast; Tm: thylakoid membrane. * and ** indicate significant differences at the P < 0.05 and P < 0.01 levels, respectively; E: scanning electron microscopy of waxy on leaf epidermis; scale bar: 5 μm."

Fig. 6

Levels of endogenous GA in Westar and bnasly1 ** indicates significant differences at the P < 0.01 level."

Table S3

Summary of RNA-seq data for samples"

样本
Sample
测序总读数
Total reads
质控后读数
Clean reads
错误率
Error rate (%)
总比对率
Mapped ratio (%)
Q20 Q30
(%) (%)
CK1 51,374,928 50,456,150 0.026053 94.82 97.16 94.89
CK2 44,454,300 43,654,324 0.026104 94.73 97.18 94.92
CK3 46,223,656 45,461,716 0.002838 94.86 97.25 95.02
T1 43,448,334 42,710,898 0.002819 94.73 97.26 95.04
T2 41,761,542 41,089,858 0.002842 94.78 97.28 95.06
T3 41,721,250 40,921,468 0.008204 94.58 97.06 94.7

Fig. S2

Pearson correlation coefficients of transcriptome data CK: Westar; T: bnasly1."

Fig. S3

Volcano map of differentially expressed genes between Westar and bnasly1"

Fig. S4

GO classification of differentially expressed genes between Westar and bnasly1"

Fig. S5

KEGG Enrichment of differentially expressed genes between Westar and bnasly1"

Fig. 7

Differential expressed genes in the auxin signaling pathway a, b, and c indicate the log10(FPKM) of DEGs in the three biological replicates of Westar; d, e, and f indicate the log10(FPKM) of DEGs in the three biological replicates of bnasly1; g is the log2FC between Westar and bnasly1. AUX1/IAA: auxin/indole-3-acetic acid; TIR1: transport inhibitor response 1; ARF: auxin response factor; SAUR: small auxin upregulated RNA; GH3: gretchen hagen 3."

Table S4

DEGs in GA synthesis and signal transduction"

Gene ID Putative gene FPKM log2Fold Change
WT-1 WT-2 WT-3 bnasly1-1 bnasly1-2 bnasly1-3
BnaA01G0149400ZS BnaA01.GA20ox1 1.91 2.61 2.32 9.73 7.20 10.23 2.06
BnaC01G0190000ZS BnaC01.GA20ox1 0.56 0.21 0.77 7.48 5.88 8.21 3.86
BnaC07G0465100ZS BnaC07.GA20ox1 0.00 0.00 0.10 2.27 2.26 3.63 6.44
BnaA06G0105000ZS BnaA06.GA3ox1 0.59 0.61 1.51 11.75 10.50 17.79 3.95
BnaC05G0130100ZS BnaC05.GA3ox1 1.22 1.12 1.57 8.35 8.45 10.71 2.89
BnaA02G0232000ZS BnaA02.GA2ox1 1.48 3.44 1.51 0.00 0.07 0.27 -4.16
BnaC06G0441000ZS BnaC06.GA2ox1 3.20 3.60 3.07 0.57 0.46 0.13 -3.02
BnaC05G0539100ZS BnaC05.GID1A 10.15 8.42 8.88 27.94 25.41 27.80 1.63
BnaA04G0003700ZS BnaA04.GID1B 0.88 0.17 0.49 2.02 2.18 1.27 1.90
BnaC04G0258300ZS BnaC04.GID1B 1.98 1.65 1.12 7.63 5.73 7.36 2.19
BnaC08G0417900ZS BnaC08.GID1B 3.28 3.63 3.36 6.70 7.75 7.95 1.20
BnaA02G0160500ZS BnaA02.RGL1 6.49 12.58 7.56 2.48 2.13 3.04 -1.72
BnaC02G0205300ZS BnaC02.RGL1 7.19 17.43 9.53 3.80 3.51 2.02 -1.80
Gene ID Regulation GO KEGG Swissprot Pfam NR
BnaA01G0149400ZS Up GO:0005506 K05282 Gibberellin 20 oxidase 1 OS=Arabidopsis thaliana GN=GA20OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaA01g35230D [Brassica napus]
BnaC01G0190000ZS Up GO:0005506 K05282 Gibberellin 20 oxidase 1 OS=Arabidopsis thaliana GN=GA20OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaC01g17380D [Brassica napus]
BnaC07G0465100ZS Up GO:0005506 K05282 Gibberellin 20 oxidase 1 OS=Arabidopsis thaliana GN=GA20OX1 PE=2 SV=2 2OG-Fe(II) oxygenase superfamily BnaC07g39650D [Brassica napus]
BnaA06G0105000ZS Up GO:0016491 K04124 Gibberellin 3-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA3OX1 PE=1 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaA06g10250D [Brassica napus]
BnaC05G0130100ZS Up GO:0016491 K04124 Gibberellin 3-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA3OX1 PE=1 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaC05g11920D [Brassica napus]
BnaA02G0232000ZS Down GO:0016491 K04125 Gibberellin 2-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA2OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal PREDICTED: gibberellin 2-beta-dioxygenase 1-like [Brassica rapa]
BnaC06G0441000ZS Down GO:0005506 K04125 Gibberellin 2-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA2OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaC06g38910D [Brassica napus]
BnaC05G0539100ZS Up GO:0008152 K14493 Gibberellin receptor GID1A OS=Arabidopsis thaliana GN=GID1A PE=1 SV=1 alpha/beta hydrolase fold BnaC05g46680D [Brassica napus]
BnaA04G0003700ZS Up GO:0008152 K14493 Gibberellin receptor GID1B OS=Arabidopsis thaliana GN=GID1B PE=1 SV=1 alpha/beta hydrolase fold BnaA04g00210D [Brassica napus]
BnaC04G0258300ZS Up GO:0008152 K14493 Gibberellin receptor GID1B OS=Arabidopsis thaliana GN=GID1B PE=1 SV=1 alpha/beta hydrolase fold BnaC04g21040D [Brassica napus]
BnaC08G0417900ZS Up GO:0008152 K14493 Gibberellin receptor GID1B OS=Arabidopsis thaliana GN=GID1B PE=1 SV=1 alpha/beta hydrolase fold BnaCnng55170D [Brassica napus]
BnaA02G0160500ZS Down K14494 DELLA protein RGL1 OS=Arabidopsis thaliana GN=RGL1 PE=1 SV=1 Transcriptional regulator DELLA protein N terminal BnaCnng68300D [Brassica napus]
BnaC02G0205300ZS Down K14494 DELLA protein RGL1 OS=Arabidopsis thaliana GN=RGL1 PE=1 SV=1 Transcriptional regulator DELLA protein N terminal BnaCnng28010D [Brassica napus]

Fig. 8

Differential expressed genes in the wax synthesis pathway a, b, and c indicate the log10(FPKM) of DEGs in three biological replicates of Westar; d, e, and f indicate the log10(FPKM) of DEGs in three biological replicates of bnasly1; g is the log2FC between Westar and bnasly1. LACS: long-chain acyl-CoA synthetase; FAE: fatty acid elongase; CER3: CERIFERUM 3 (FAE complex subunit); CER26: CERIFERUM 26 (FAE complex subunit); WSD1: wax ester synthase/ diacylglycerol acyltransferase; FAR: fatty acyl-CoA reductase; MAH1: mid-chain alkane hydroxylase; CYP: cytochrome P450; GPAT: glycerol 3-phosphate acyltransferase; 2-MHG: 2-mono (10,16)-dihydroxyhexadecanoyl glycerol."

Table S5

DEGs related to flowering time"

Gene ID Putative gene FPKM log2Fold Change
WT-1 WT-2 WT-3 bnasly1-1 bnasly1-2 bnasly1-3
BnaA09G0591400ZS BnaA09.SVP 33.92 22.94 37.72 72.61 70.84 70.94 1.25
BnaC04G0438900ZS BnaC04.SVP 24.46 12.02 17.51 43.86 41.38 35.38 1.22
BnaC08G0443200ZS BnaC08.SVP 17.09 9.5 20.32 41.15 35.3 39.69 1.37
BnaA03G0039200ZS BnaA03.FLC 11.26 15.3 18.45 33.08 34.89 33.12 1.22
BnaA08G0227500ZS BnaA08.TEM1 2.00 0.95 1.51 9.99 5.86 11.65 2.68
BnaA09G0438900ZS BnaA09.TEM1 2.92 1.77 1.66 5.94 4.19 9.05 1.66
BnaC03G0630000ZS BnaC03.TEM1 1.84 1.30 1.43 9.28 4.55 10.92 2.50
BnaC05G0224800ZS BnaC05.TEM1 1.69 1.29 0.62 4.9 4.20 6.85 2.20
BnaA01G0166300ZS BnaA01.SPL 7.43 6.46 6.02 0 0 0 -9.03
BnaC01G0213600ZS BnaC01.SPL 5.96 5.57 7.85 0.25 0 0 -6.13
BnaC07G0475500ZS BnaC07.SPL 3.13 4.25 4.11 0 0.16 0.08 -5.52
BnaA07G0282700ZS BnaA07.FT 2.92 4.78 2.68 0.45 0.20 0.61 -2.95
BnaC06G0323800ZS BnaC06.FT 9.78 13.22 17.44 1.18 0.86 2.72 -3.02
Gene ID Regulation GO KEGG Swissprot Pfam NR
BnaA09G0591400ZS Up GO:0003700 K09264 MADS-box protein SVP OS=Arabidopsis thaliana GN=SVP PE=1 SV=1 K-box region short vegetative phase protein [Brassica juncea]
BnaC04G0438900ZS Up GO:0003677 K09264 MADS-box protein SVP OS=Arabidopsis thaliana GN=SVP PE=1 SV=1 K-box region MADS-box protein SVP [Brassica napus]
BnaC08G0443200ZS Up GO:0003677 K09264 MADS-box protein SVP OS=Arabidopsis thaliana GN=SVP PE=1 SV=1 K-box region BnaC08g34920D [Brassica napus]
BnaA03G0039200ZS Up GO:0003677 K09264 MADS-box protein FLOWERING LOCUS C OS=Arabidopsis thaliana GN=FLC PE=2 SV=1 K-box region MADS-box protein [Brassica napus]
BnaA08G0227500ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain PREDICTED: AP2/ERF and B3 domain-containing transcription repressor TEM1-like [Brassica rapa]
BnaA09G0438900ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain PREDICTED: AP2/ERF and B3 domain-containing transcription repressor TEM1-like [Brassica rapa]
BnaC03G0630000ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain BnaCnng04580D [Brassica napus]
BnaC05G0224800ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain BnaC05g20560D [Brassica napus]
BnaA01G0166300ZS Down Plant transcription factor NOZZLE BnaA01g16350D [Brassica napus]
BnaC01G0213600ZS Down Plant transcription factor NOZZLE BnaC01g19500D [Brassica napus]
BnaC07G0475500ZS Down Plant transcription factor NOZZLE BnaC07g40830D [Brassica napus]
BnaA07G0282700ZS Down K16223 Protein TWIN SISTER of FT OS=Arabidopsis thaliana GN=TSF PE=2 SV=1 Phosphatidylethanolamine-binding protein PREDICTED: protein TWIN SISTER of FT-like [Brassica rapa]
BnaC06G0323800ZS Down K16223 Protein FLOWERING LOCUS T OS=Arabidopsis thaliana GN=FT PE=1 SV=2 Phosphatidylethanolamine-binding protein flowering locus T variant 6 [Brassica carinata]
[1] Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol, 2020, 61: 1832-1849.
[2] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
[3] Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530.
[4] Olszewski N, Sun T P, Gubler F. Gibberellin signaling. Plant Cell, 2002, 14: 61-80.
[5] Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34: 740-760.
[6] Davière J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151.
[7] 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 2022, 38(2): 195-204.
Li Y D, Shan X H. Gibberellin metabolism regulation and green revolution. Biotechnol Bull, 2022, 38(2): 195-204 (in Chinese with English abstract).
[8] 董静, 尹梦回, 杨帆, 赵娟, 覃珊, 侯磊, 罗明, 裴炎, 肖月华. 棉花赤霉素不敏感矮化GID1同源基因的克隆和表达分析. 作物学报, 2009, 35: 1822-1830.
Dong J, Yin M H, Yang F, Zhao J, Qin S, Hou L, Luo M, Pei Y, Xiao Y H. Cloning and expression profiling of gibberellin insensitive dwarf GID1 homologous genes from cotton. Acta Agron Sin, 2009, 35: 1822-1830 (in Chinese with English abstract).
[9] Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S- proteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492-497.
[10] Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S X, Liang W Q, Liu Q Q, Zhang D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol J, 2021, 19: 2304-2318.
[11] Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. Plant Signal Behav, 2018, 13: e1445933.
[12] Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-1898.
[13] Dill A, Thomas S G, Hu J H, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16: 1392-1405.
[14] Gao S P, Chu C C. Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiol, 2020, 61: 1902-1911.
[15] Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626-634.
[16] El-Sharkawy I, Ismail A, Darwish A, El Kayal W, Subramanian J, Sherif S M. Functional characterization of a gibberellin F-box protein, PslSLY1, during plum fruit development. J Exp Bot, 2021, 72: 371-384.
[17] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
[18] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13: 999-1010.
[19] Bujarrabal A, Schumacher B. Hormesis running hot and cold. Cell Cycle, 2016, 15: 3335-3336.
[20] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108.
[21] Liu H, Chen W D, Li Y S, Sun L, Chai Y H, Chen H X, Nie H C, Huang C L. CRISPR/Cas9 technology and its utility for crop improvement. Int J Mol Sci, 2022, 23: 10442.
[22] Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451-476.
[23] Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
[24] 何若韫. 叶绿素含量测定. 新农业, 1980, (3): 31-32.
He R Y. Chlorophyll content determination. New Agric, 1980, (3): 31-32 (in Chinese with English abstract).
[25] Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. Auxin response factors are keys to the many auxin doors. New Phytol, 2022, 235: 402-419.
[26] 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展. 植物学报, 2023, 58: 770-782.
Yuan Y, En H B Y E, Qi Y H. Research advances in biological functions of GH3 gene family in plants. Chin Bull Bot, 2023, 58: 770-782 (in Chinese with English abstract).
[27] 赵雪惠, 张蕊, 李玲, 付喜玲, 陈修德, 李冬梅, 肖伟, 高东升. 植物表皮蜡质合成及运输的研究进展. 植物生理学报, 2016, 52: 1128-1134.
Zhao X H, Zhang R, Li L, Fu X L, Chen X D, Li D M, Xiao W, Gao D S. Advances of plant cuticles biosynthesis and transport. Plant Physiol J, 2016, 52: 1128-1134 (in Chinese with English abstract).
[28] Birchler J A, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34: 2466-2474.
[29] Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399-3414.
[30] Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22: 2680-2696.
[31] Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Plant Cell, 2020, 62: 118-131.
[32] Olimpieri I, Caccia R, Picarella M E, Pucci A, Santangelo E, Soressi G P, Mazzucato A. Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Sci, 2011, 180: 496-503.
[33] Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M N, Maier A, Schwechheimer C. The della domain of ga insensitive mediates the interaction with the ga insensitive dwarf1a gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209-1220.
[34] Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Plant Cell, 2012, 3: 808.
[35] Mateos J L, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G. Combinatorial activities of short vegetative phase and flowering locus c define distinct modes of flowering regulation in Arabidopsis. Plant Cell, 2015, 16: 31.
[36] Hu J, Su H L, Cao H, Wei H B, Fu X K, Jiang X M, Song Q, He X H, Xu C Z, Luo K M. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34: 2688-2707.
[37] Schneider-Belhaddad F, Kolattukudy P. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys, 2000, 377: 341-349.
[38] Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol, 2009, 150: 1831-1843.
[1] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[2] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[3] LIU Yu-Hang, ZHAO Shu-Hong, ZHU Ting-Ting, LIANG Zhen-Yu, HE Da-Hai, CHEN Jia-Bo, REN Yong, HUANG Lin, FAN Gao-Qiong, WU Bi-Hua. Effects of 16,17-dihydro gibberellin A5 on canopy radiation interception and yield of Shumai 133 under different planting density [J]. Acta Agronomica Sinica, 2024, 50(11): 2787-2800.
[4] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[5] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[6] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[7] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[8] ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249.
[9] QIAN Fu, ZHANG Zhan-Qin, CHEN Shu-Bin, DING Yong-Fu, SANG Zhi-Qin, LI Wei-Hua. Mining maize flowering traits related candidate genes based on GWAS and WGCNA data [J]. Acta Agronomica Sinica, 2023, 49(12): 3261-3276.
[10] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[11] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[12] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[13] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[14] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[15] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .