Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1389-1399.doi: 10.3724/SP.J.1006.2025.43050

• RESEARCH NOTES • Previous Articles     Next Articles

Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods

ZHOU Ke1,2(), CHEN Peng-Fei1,3,*()   

  1. 1Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences / State Key Laboratory of Resources and Environment Information System, Beijing 100101, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing 210023, Jiangsu, China
  • Received:2024-12-25 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-11
  • Contact: *E-mail: pengfeichen@igsnrr.ac.cn
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28040502);National Natural Science Foundation of China(41871344)

Abstract:

Accurately identifying chlorophyll content is essential for precise fertilization management in maize. The SPAD (Soil and plant analyzer development) value of leaves serves as a reliable indicator of chlorophyll content. For SPAD prediction using remote sensing, most existing studies rely on single data sources combined with machine learning methods. To enhance SPAD prediction accuracy, this study explores the feasibility of integrating multi-source unmanned aerial vehicle (UAV) data with various machine learning methods, comparing the results to traditional approaches. A maize field experiment was conducted with different treatments, including organic fertilizer, inorganic fertilizer, straw return, and varying planting densities. UAV multispectral and RGB images were acquired at the V4 and V9 growth stages, and SPAD values of maize leaves were measured subsequently. Using a multi-scale analysis approach, RGB images were fused with multispectral images to produce a dataset combining high spatial resolution with multispectral information. Additionally, an ensemble learning method (ELM) was developed by integrating multiple machine learning models, including the backpropagation artificial neural network (BP-ANN), support vector machine (SVM), generalized additive model (GAM), and random forest (RF). Different scenarios were designed by coupling various data sources and machine learning models. The dataset was divided into calibration and validation subsets. SPAD prediction models were developed by calibration dataset, and their performance was evaluated using the validation dataset. Comparative analysis identified the optimal model and data source. Results showed that multi-source data significantly improved SPAD prediction accuracy by combining the spectral information of multispectral images with the texture information of RGB images. Furthermore, the ensemble learning method outperformed single machine learning methods, achieving higher SPAD prediction accuracy. Among all scenarios, the SPAD prediction model using the ELM method and fused images exhibited the highest accuracy, with an a Rcal2 value of 0.83 and RMSEcal value of 1.93 during calibration, and an Rval2 value of 0.80 and RMSEval value of 2.07 during validation. In contrast, models based on other scenarios yielded Rcal2 values ranging from 0.64 to 0.88 and RMSEcal values ranging from 1.63 to 2.84 during calibration, and Rval2 values ranging from 0.60 to 0.78 and RMSEval values ranging from 2.18 to 3.01 during validation. This study demonstrates that the optimal strategy for SPAD prediction in maize involves using multi-source data and ensemble learning models. These findings provide technical support for further advancements in precision nitrogen management.

Key words: machine learning method, multi-source data, maize, SPAD, unmanned aerial vehicle

Fig. 1

Location of the study area and the layout of field plots This map is based on the map numbered GS (2020) 4619 from Standard Map Service of the Ministry of Natural Resources, with no modifications to the map boundaries. A: China; B: Inner Mongolia Autonomous Region; C: distribution of field plots. N1: pure nitrogen application rate of 150 kg hm-2; N2: pure nitrogen application rate of 180 kg hm-2; N3: pure nitrogen application rate of 210 kg hm-2; N4: pure nitrogen application rate of 240 kg hm-2; P1: P2O5 application rate of 60 kg hm-2; P2: P2O5 application rate of 75 kg hm-2; P3: P2O5 application rate of 90 kg hm-2; K1: K2O application rate of 75 kg hm-2; K2: K2O application rate of 90 kg hm-2; K3: K2O application rate of 105 kg hm-2; O1: organic fertilizer application rate of 0 kg hm-2; O2: organic fertilizer application rate of 22,500 kg hm-2; O3: organic fertilizer application rate of 37,500 kg hm-2; O4: organic fertilizer application rate of 45,000 kg hm-2; O5: organic fertilizer application rate of 52,500 kg hm-2; D1: planting density of 50,000 plant hm-2; D2: planting density of 55,000 plant hm-2; D3: planting density of 60,000 plant hm-2; D4: planting density of 62,000 plant hm-2; D5: planting density of 64,000 plant hm-2; R1: maize straw return amount of 0 kg hm-2; R2: maize straw return amount of 3000 kg hm-2; R3: maize straw return amount of 4500 kg hm-2; R4: maize straw return amount of 6000 kg hm-2; R5: maize straw return amount of 7500 kg hm-2; T0: stabilized compound fertilizer application rate of 0 kg hm-2; T1: stabilized compound fertilizer application rate of 750 kg hm-2."

Table 1

Spectral indices selected in this study"

光谱指数
Spectral indices
公式
Formula
数据源
Data source
发明者
Developer
RVI NIR / R MS image, fused image [17]
EVI 2.5 × (NIR - R) / (NIR + 6 × R - 7.5 × B + 1) MS image, fused image [18]
TVI 0.5 × (120 × (NIR - G) - 200 × (R - G)) MS image, fused image [19]
MSR (NIR / R - 1) / (Sqrt (NIR / R + 1)) MS image, fused image [20]
NDVI (NIR - R) / (NIR + R) MS image, fused image [21]
GNDVI (NIR - G) / (NIR + G) MS image, fused image [22]
NDRE (NIR - RE) / (NIR + RE) MS image, fused image [23]
R_M NIR / RE - 1 MS image, fused image [24]
MNLI 1.5 × (NIR × NIR - R) / (NIR × NIR + R + 0.5) MS image, fused image [25]
VIopt 1.45 × (NIR × NIR + 1) × (R + 0.45) MS image, fused image [26]
VARI (G - R) / (G + R - B) RGB image, MS image, fused image [27]
OSAVI (NIR - R) / (NIR + R + 0.16) MS image, fused image [28]
MCARI ((RE - R) - 0.2 × (RE - G)) × (RE / R) MS image, fused image [29]
MTCI (NIR - RE) / (RE - R) MS image, fused image [30]
EXGR 3 × G - 2.4 × R - B RGB image, MS image, fused image [31]
NGBDI (G - B) / (G + B) RGB image, MS image, fused image [32]
NGRDI (G - R) / (G + R) RGB image, MS image, fused image [33]
IKAW (R - B) / (R + B) RGB image, MS image, fused image [33]
RGBVI (G × G - R × B) / (G × G + R × B) RGB image, MS image, fused image [34]
MGRVI (G × G - R × R) / (G × G + R × R) RGB image, MS image, fused image [34]
CIVE 0.44 × R - 0.88 × G + 0.39 × B + 18.7875 RGB image, MS image, fused image [35]
TCARI/OSAVI 3 × ((RE - R) - 0.2 × (RE - G)× (RE / R)) / OSAVI MS image, fused image [36]

Fig. 2

Flowchart of comparative experiments under different scenarios BP-ANN: back propagation-artificial neural network; SVM: support vector machine; RF: random forest; GAM: generalized additive model; ELM: ensemble learning method."

Table 2

SPAD statistics in maize"

生育期
Growth stage
样本数
Number of samples
最小值
Min.
最大值
Max.
平均值
Average value
标准差
Standard deviation
方差
Variance
V4 stage 69 39.00 53.10 46.22 2.97 8.84
V9 stage 70 48.20 58.40 54.05 2.11 4.43

Fig. 3

Comparison of images before and after fusion Abbreviations are the same as those given in Tables 1 and 2."

Fig. 4

SPAD inversion performance under different data sources A, B: calibration and validation results of BP-ANN; C, D: calibration and validation results of SVM; E, F: calibration and validation results of GAM; G, H: calibration and validation results of RF; I, J: calibration and validation results of ELM. Abbreviations are the same as those given in Table 1 and Fig. 2. R2 represents the coefficient of determination; RMSE represents the root mean square error. Subscript cal represents the calibration result, subscript val indicates the validation result."

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, et al. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428-444.
doi: 10.3864/j.issn.0578-1752.2019.03.004
Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428-444 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.03.004
[3] 陈志强, 王磊, 白由路, 杨俐苹, 卢艳丽, 王贺, 王志勇. 整个生育期玉米叶片SPAD高光谱预测模型研究. 光谱学与光谱分析, 2013, 33: 2838-2842.
Chen Z Q, Wang L, Bai Y L, Yang L P, Lu Y L, Wang H, Wang Z Y. Hyperspectral prediction model for maize leaf SPAD in the whole growth period. Spectrosc Spectr Anal, 2013, 33: 2838-2842 (in Chinese with English abstract).
[4] 徐若涵, 杨再强, 申梦吟, 王明田. 苗期低温胁迫对“红颜”草莓叶绿素含量及冠层高光谱的影响. 中国农业气象, 2022, 43: 148-158.
Xu R H, Yang Z Q, Shen M Y, Wang M T. Effects of low temperature stress at seedling stage on chlorophyll content and canopy hyperspectral of “hongyan” strawberry. Chin J Agrometeorol, 2022, 43: 148-158 (in Chinese with English abstract).
[5] Chen P F, Ma X. Optimal strategy for designing a multitask learning-based hybrid model to predict wheat leaf nitrogen content. IEEE Geosci Remote Sens Lett, 2023, 20: 2504805.
[6] Guo Y H, Chen S Z, Li X X, Cunha M, Jayavelu S, Cammarano D, Fu Y S. Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images. Remote Sens, 2022, 14: 1337.
[7] Wang J J, Zhou Q, Shang J L, Liu C, Zhuang T X, Ding J J, Xian Y Y, Zhao L T, Wang W L, Zhou G S, et al. UAV-and machine learning-based retrieval of wheat SPAD values at the overwintering stage for variety screening. Remote Sens, 2021, 13: 5166.
[8] Ma W T, Han W T, Zhang H H, Cui X, Zhai X D, Zhang L Y, Shao G M, Niu Y X, Huang S J. UAV multispectral remote sensing for the estimation of SPAD values at various growth stages of maize under different irrigation levels. Comput Electron Agric, 2024, 227: 109566.
[9] 车荧璞, 王庆, 李世林, 李保国, 马韫韬. 基于超分辨率重建和多模态数据融合的玉米表型性状监测. 农业工程学报, 2021, 37(20): 169-178.
Che Y P, Wang Q, Li S L, Li B G, Ma Y T. Monitoring of maize phenotypic traits using super-resolution reconstruction and multimodal data fusion. Trans CSAE, 2021, 37(20): 169-178 (in Chinese with English abstract).
[10] Xu S Z, Xu X G, Zhu Q Z, Meng Y, Yang G J, Feng H K, Yang M, Zhu Q L, Xue H Y, Wang B B. Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV. Precis Agric, 2023, 24: 2327-2349.
[11] Du R Q, Lu J S, Xiang Y Z, Zhang F C, Chen J Y, Tang Z J, Shi H Z, Wang X, Li W Y. Estimation of winter canola growth parameter from UAV multi-angular spectral-texture information using stacking-based ensemble learning model. Comput Electron Agric, 2024, 222: 109074.
[12] 马俊伟, 陈鹏飞, 孙毅, 谷健, 王李娟. 基于无人机多光谱影像和机器学习方法的玉米叶面积指数反演研究. 作物学报, 2023, 49: 3364-3376.
doi: 10.3724/SP.J.1006.2023.33001
Ma J W, Chen P F, Sun Y, Gu J, Wang L J. Comparing different machine learning methods for maize leaf area index (LAI) prediction using multispectral image from unmanned aerial vehicle (UAV). Acta Agron Sin, 2023, 49: 3364-3376 (in Chinese with English abstract).
[13] Loncan L, de Almeida L B, Bioucas-Dias J M, Briottet X, Chanussot J, Dobigeon N, Fabre S, Liao W Z, Licciardi G A, Simões M, et al. Hyperspectral pansharpening: a review. IEEE Geosci Remote Sens Mag, 2015, 3: 27-46.
[14] Selva M, Aiazzi B, Butera F, Chiarantini L, Baronti S. Hyper-sharpening: a first approach on SIM-GA data. IEEE J Sel Top Appl Earth Obs Remote Sens, 2015, 8: 3008-3024.
[15] Richardson M D, Karcher D E, Purcell L C. Quantifying turfgrass cover using digital image analysis. Crop Sci, 2001, 41: 1884-1888.
[16] Chen P F, Wang F Y. New textural indicators for assessing above-ground cotton biomass extracted from optical imagery obtained via unmanned aerial vehicle. Remote Sens, 2020, 12: 4170.
[17] Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens Environ, 1972, 8: 1355.
[18] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002, 83: 195-213.
[19] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156-172.
[20] Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens, 1996, 22: 229-242.
[21] Rouse J, Haas R H, Schell J A, Deering D. Monitoring vegetation systems in the great Plains with ERTS. NASA Spec Publ, 1974, 351: 309.
[22] Huete A, Justice C, Liu H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ, 1994, 49: 224-234.
[23] Fitzgerald G J, Rodriguez D, Christensen L K, Belford R, Sadras V O, Clarke T R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis Agric, 2006, 7: 233-248.
[24] Gitelson A A, Viña A, Ciganda V, Rundquist D C, Arkebauer T J. Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett, 2005, 32: L08403.
[25] Feng W, Wu Y P, He L, Ren X X, Wang Y Y, Hou G G, Wang Y H, Liu W D, Guo T C. An optimized non-linear vegetation index for estimating leaf area index in winter wheat. Precis Agric, 2019, 20: 1157-1176.
doi: 10.1007/s11119-019-09648-8
[26] Reyniers M, Walvoort D J J, De Baardemaaker J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int J Remote Sens, 2006, 27: 4159-4179.
[27] Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002, 80: 76-87.
[28] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 1996, 55: 95-107.
[29] Daughtry C S T, Walthall C L, Kim M S, de Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ, 2000, 74: 229-239.
[30] Dash J, Curran P J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv Space Res, 2007, 39: 100-104.
[31] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric, 2008, 63: 282-293.
[32] Hunt E R, Cavigelli M, Daughtry C S T T, McMurtrey J E, Walthall C L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis Agric, 2005, 6: 359-378.
[33] Kawashima S, Nakatani M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann Bot, 1998, 81: 49-54.
[34] Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp M L, Bareth G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf, 2015, 39: 79-87.
[35] Guijarro M, Pajares G, Riomoros I, Herrera P J, Burgos-Artizzu X P, Ribeiro A. Automatic segmentation of relevant textures in agricultural images. Comput Electron Agric, 2011, 75: 75-83.
[36] Haboudane D, Tremblay N, Miller J R, Vigneault P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans Geosci Remote Sens, 2008, 46: 423-437.
[37] Farifteh J, Van der Meer F, Atzberger C, Carranza E J M. Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ, 2007, 110: 59-78.
[38] Lou Y, Caruana R, Gehrke J. Intelligible models for classification and regression. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China. ACM, 2012. pp 150-158.
[39] Wu Q, Zhang Y P, Zhao Z W, Xie M, Hou D Y. Estimation of relative chlorophyll content in spring wheat based on multi-temporal UAV remote sensing. Agronomy, 2023, 13: 211.
[40] Sudu B, Rong G Z, Guga S R, Li K W, Zhi F, Guo Y, Zhang J Q, Bao Y L. Retrieving SPAD values of summer maize using UAV hyperspectral data based on multiple machine learning algorithm. Remote Sens, 2022, 14: 5407.
[41] Seager S, Turner E L, Schafer J, Ford E B. Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology, 2005, 5: 372-390.
pmid: 15941381
[42] Tsuchikawa S, Ma T, Inagaki T. Application of near-infrared spectroscopy to agriculture and forestry. Anal Sci, 2022, 38: 635-642.
[43] 苏伟, 王伟, 刘哲, 张明政, 边大红, 崔彦宏, 黄健熙. 无人机影像反演玉米冠层LAI和叶绿素含量的参数确定. 农业工程学报, 2020, 36(19): 58-65.
Su W, Wang W, Liu Z, Zhang M Z, Bian D H, Cui Y H, Huang J X. Determining the retrieving parameters of corn canopy LAI and chlorophyll content computed using UAV image. Trans CSAE, 2020, 36(19): 58-65 (in Chinese with English abstract).
[44] Li W F, Pan K, Liu W R, Xiao W H, Ni S J, Shi P, Chen X Y, Li T. Monitoring maize canopy chlorophyll content throughout the growth stages based on UAV MS and RGB feature fusion. Agriculture, 2024, 14: 1265.
[45] 张鹏, 王砚涵, 吴强, 李赛如, 张永平. 基于无人机多光谱影像的春小麦SPAD值估测研究. 北方农业学报, 2024, 52(4): 120-134.
doi: 10.12190/j.issn.2096-1197.2024.04.13
Zhang P, Wang Y H, Wu Q, Li S R, Zhang Y P. Research on SPAD value estimation of spring wheat based on UAV multispectral imager. J North Agric, 2024, 52(4): 120-134 (in Chinese with English abstract).
[1] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[2] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[3] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[4] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[5] LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101.
[6] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[7] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[8] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[9] CHEN Chen, FU Xiu-Yi, CHEN Chuan-Yong, WU Shan-Shan, ZHANG Hua-Sheng, ZHANG Chun-Yuan, CHEN Shao-Jiang, ZHAO Jiu-Ran, WANG Yuan-Dong. Study on the haploid breeding performance of maize inbred lines [J]. Acta Agronomica Sinica, 2025, 51(2): 526-533.
[10] QIAN Yu-Ping, SU Bing-Bing, GAO Ji-Xing, RUAN Fen-Hua, LI Ya-Wei, MAO Lin-Chun. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region [J]. Acta Agronomica Sinica, 2025, 51(1): 273-284.
[11] HAO Qi, CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang, WANG Zhi-Gang. Estimation of canopy nitrogen concentration in maize based on UAV multi- spectral data and spatial nitrogen heterogeneity [J]. Acta Agronomica Sinica, 2025, 51(1): 189-206.
[12] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[13] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[14] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[15] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!