Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2433-2453.doi: 10.3724/SP.J.1006.2025.52003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive

GUO Bao-Wei1(), WANG Wang1, WANG Kai1, WANG Yan1, ZENG Xin1, JING Xiu1, WANG Jing1, NI Xin-Hua2, XU Ke1, ZHANG Hong-Cheng1,*()   

  1. 1Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Rice Industry Engineering Technology Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Agriculture and Rural Bureau of Youfang Town, Yangzhong County, Jiangsu Province, Yangzhong 212200, Jiangsu, China
  • Received:2025-01-20 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-12
  • Contact: *E-mail: hczhang@yzu.edu.cn E-mail:gbwyx@126.com;hczhang@yzu.edu.cn
  • Supported by:
    Key Research and Development Program of Jiangsu Province(BE2022338);Leading Talent Introduction Program of Zhenjiang City’s Jinshan Talent Plan for Strong Industries(2021);Jiangsu Higher Education Institutions’ Advantage Discipline Construction Project(PAPD)

Abstract:

To investigate the characteristics and formation patterns of super high-yielding (SHY) populations in glutinous rice and to provide theoretical guidance for high-yield cultivation, we used three glutinous rice cultivars as experimental materials: the conventional japonica variety Yangjingnuo 2 and the indica-japonica hybrid varieties Shuyounuo 82 and Shuyounuo 85. We analyzed the photosynthetic production and translocation of assimilates, population structure, lodging resistance, and yield performance across high-yielding (HY), higher-yielding (HRY), and super high-yielding (SHY) glutinous rice populations to clarify their characteristics and formation mechanisms. The results showed as follows: (1) Compared with HY and HRY populations, the SHY population had a significantly higher total spikelet number, while 1000-grain weight and seed setting rate were slightly lower, but not significantly different. SHY populations were characterized by large panicles and high total spikelet numbers (exceeding 43,000×104 hm-2 in conventional japonica and 60,000×104 hm-2 in hybrid types), while maintaining stable 1000-grain weight and seed setting rate. (2) From the effective critical leaf age to the jointing stage, there were no significant differences in leaf area index (LAI) or photosynthetic potential among yield types. However, from heading to maturity, both LAI and photosynthetic potential followed the order SHY > HRY > HY, while leaf area decay rate showed the opposite trend. Differences among the three yield types were highly significant during this period. (3) No significant differences in dry matter accumulation were observed from the critical leaf age to the booting stage. However, from heading to maturity, SHY populations accumulated significantly more dry matter than HRY and HY. During the booting to milky stage, SHY also showed a significantly higher dry matter accumulation rate. From the milky to waxy stage, the accumulation rate did not differ significantly in the conventional japonica type, but in the hybrid indica-japonica type, SHY populations still exhibited a significantly higher rate than HRY and HY. (4) With increasing yield grade, the top three leaves became longer, with smaller opening and base angles and reduced drooping; plant height increased, and the plant architecture became more upright. The first, second, and third basal internodes increased significantly in length, thickness, and width, contributing to enhanced stem strength and lodging resistance. Except for the third internode in conventional glutinous rice, the lodging index significantly decreased with higher yield grades. (5) In both glutinous rice types, population yield was significantly correlated with LAI at heading, dry matter weight at heading and maturity, and net dry matter accumulation. A strong positive correlation was also found between yield and LAI at maturity. SHY populations possessed a large and stable sink capacity (panicle size), a strong photosynthetic source capacity after panicle initiation, and an upright plant type with high stem strength and lodging resistance. These traits contribute to increased late-stage photosynthate production and dry matter accumulation, supporting a favorable grain-to-leaf ratio for safe and stable grain filling.

Key words: glutinous rice, super-high yield, different yield groups, yield and its components, group characteristics

Fig. 1

Rainfall, average temperature, and sunshine duration during the rice growth period"

Table 1

Grain yield and its components at different yield levels in glutinous rice"

年份
Year
品种
Cultivar
类型
Type
穗数
Panicles
(×104 hm−2)
每穗粒数
Spikelet
Per panicle
总颖花量
Total spikelet
(×104 hm−2)
结实率
Filled-grain
Percentage (%)
千粒重
1000-grain
weight (g)
产量
Harvested yield
(kg hm−2)
2022 扬粳糯2号
Yangjingnuo 2
HY 平均 M (n = 6) 320.6 Bb 114.2 Cc 36,628.3 Cc 94.8 Aa 26.7 Aa 9009.6 Cc
标准差 S 3.2 2.0 579.4 0.5 0.2 332.2
变异系数 CV (%) 0.99 1.71 1.58 0.51 0.70 3.69
变幅 315.5-324.7 112.2-116.5 35,755.4-37,593.2 94.1-95.5 26.3-26.9 8567.4-9512.7
HRY 平均 M (n = 5) 333.7 Bb 121.8 Bb 40,527.2 Bb 94.7 Aa 26.6 Aa 9971.5 Bb
标准差 S 6.2 3.1 499.9 0.2 0.2 386.5
变异系数 CV (%) 1.85 2.55 1.23 0.18 0.60 3.88
变幅 323.9-340.1 118.2-125.6 39,948.1-41,411.8 94.5-95.0 26.5-26.9 9650.2-10686.1
To HY±% 4.10 6.62 10.64 −0.09 −0.09 10.68
SHY 平均 M (n = 4) 345.2 Aa 133.1 Aa 45,870.9 Aa 94.7 Aa 26.5 Aa 11236.5 Aa
标准差 S 3.1 4.3 1365.1 0.6 0.1 401.3
变异系数 CV (%) 0.91 3.22 2.98 0.64 0.38 3.57
变幅 340.5-349.9 128.6-139.4 44,061.3-47,897.8 94.2-95.7 26.3-26.6 10,792.9-11,689.6
To HRY±% 3.43 9.24 13.19 −0.02 −0.69 12.69
沭优糯82
Shuyounuo 82
HY 平均 M (n = 5) 189.5 Bb 248.2 Bb 46,926.7 Cc 84.5 Aa 25.8 Aa 10,088.6 Cc
标准差 S 1.8 8.7 753.2 0.4 0.2 312.5
变异系数 CV (%) 0.97 3.49 1.61 0.51 0.88 3.10
变幅 186.9-192.1 236.7-262.9 45,670.7-47,972.1 84.1-85.3 25.3-25.9 9653.1-10,418.4
HRY 平均 M (n = 6) 217.4 Aa 254.3 Bb 55,251.3 Bb 84.4Aa 25.7 Aa 11,243.4 Bb
标准差 S 4.4 9.2 1071.1 0.3 0.3 419.9
变异系数 CV (%) 2.02 3.60 1.94 0.31 1.23 3.73
变幅 208.4-222.1 238.1-265.2 54,420.2-57,420.5 84.1-84.8 25.1-26.1 10,703.2-11,822.0
To HY±% 14.70 2.47 17.74 −0.12 −0.13 11.45
SHY 平均 M (n = 4) 222.3 Aa 282.9 Aa 62,889.1 Aa 84.3 Aa 25.8 Aa 13,533.6 Aa
标准差 S 1.7 6.3 1299.6 0.6 0.1 413.7
变异系数 CV (%) 0.78 2.23 2.07 0.68 0.41 3.06
变幅 219.5-224.2 275.3-290.2 61,252.9-64,541.4 83.4-85.0 25.6-25.9 12,997.2-13,997.2
To HRY±% 2.29 11.24 13.76 −0.14 0.22 20.37
2023 扬粳糯2号
Yangjingnuo 2
HY 平均 M (n = 7) 322.3 Bb 115.3Cc 37,155.2 Cc 94.8 Aa 26.9 Aa 9192.3 Cc
标准差 S 7.0 2.5 894.7 0.1 0.1 298.6
变异系数 CV (%) 2.18 2.18 2.41 0.16 0.36 3.25
变幅 308.3-329.8 111.1-118.7 36,002.5-38,487.7 94.6-94.9 26.8-27.0 8947.4-9510.1
HRY 平均 M (n = 4) 329.4 Bb 124.5Bb 41,011.1 Bb 94.3 Aa 26.8 Aa 10,195.7 Bb
标准差 S 3.9 2.2 996.7 0.1 0.1 360.0
变异系数 CV (%) 1.20 1.76 2.43 0.12 0.53 3.53
变幅 328.8-334.5 121.9-127.6 39,437.1-42,203.7 94.2-94.5 26.6-27.0 9805.7-10,756.4
To HY±% 2.20 7.98 10.38 -0.47 −0.33 10.92
SHY 平均 M (n = 4) 349.8 Aa 134.2 Aa 46,938.1 Aa 94.1 Aa 26.7 Aa 11,477.7 Aa
标准差 S 8.2 3.7 978.2 0.4 0.2 349.4
变异系数 CV (%) 2.34 2.73 4.21 0.42 0.66 3.04
变幅 340.2-359.1 130.1-140.1 45,450.7-50,309.9 93.5-94.5 26.4-26.8 10,966.5-11,911.3
To HRY±% 6.18 7.78 14.45 -0.20 −0.38 12.57
沭优糯85
Shuyounuo 85
HY 平均 M (n = 5) 199.5 Bb 264.5 Bc 52,751.9 Cc 81.1 Aa 26.3 Aa 10,708.8 Cc
标准差 S 6.5 5.4 1300.1 0.7 0.1 364.1
变异系数 CV (%) 3.25 2.05 2.46 0.89 0.55 3.41
变幅 187.1-205.1 256.1-271.7 52,317.9-53,249.7 80.2-81.9 26.0-26.4 10,014.1-11,014.0
HRY 平均 M (n = 5) 213.1 Aa 276.4 Bb 58,894.2 Bb 80.9 Aa 26.5 Aa 12,016.6 Bb
标准差 S 5.6 3.8 1722.9 0.3 0.2 428.7
变异系数 CV (%) 2.62 1.37 2.93 0.34 0.62 3.57
变幅 204.4-221.9 269.1-279.3 57,075.1-60,076.7 80.4-81.2 26.2-26.7 11,550.6-12,791.8
To HY±% 6.82 4.47 11.64 −0.17 0.87 12.21
SHY 平均 M (n = 5) 225.8 Aa 288.7 Aa 65,193.9 Aa 80.6 Aa 26.3 Aa 13,741.4 Aa
标准差 S 2.9 6.3 1441.1 0.3 0.2 415.7
变异系数 CV (%) 1.27 2.18 2.21 0.36 0.69 3.03
变幅 221.6-230.4 281.2-298.2 63,638.8-67,050.3 80.2-80.9 26.2-26.7 13,193.1-14,387.7
To HRY±% 5.97 4.46 10.70 −0.37 −0.52 14.35

Fig. 2

Dynamic changes of leaf area index at different yield levels in glutinous rice HY: high-yield; HRY: higher-yield; SHY: super high-yield; N-n: critical leaf-age for productive tillers; J: jointing; H: heading; MK: milky stage; W: waxy stage; M: maturity. Different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively."

Fig. 3

Dynamic changes of leaf area duration at different yield levels in glutinous rice HY: high-yield; HRY: higher-yield; SHY: super high-yield. (N-n)-J: from critical leaf-age for productive tillers to jointing; J-H: from jointing to heading; H-MK: from heading to milky stage; MK-W: from milky stage to waxy stage; W-M: from waxy stage to maturity. Different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively."

Fig. 4

Dynamic changes of Net assimilation rate at different yield levels in glutinous rice Abbreviations are the same as those given in Fig. 3. Different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively."

Fig. 5

Dynamic changes of dry matter accumulation in above-ground parts at different yield levels in glutinous rice Abbreviations are the same as those given in Fig. 2. Different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively."

Fig. 6

Dynamic changes of dry matter accumulation in panicle at different yield levels in glutinous rice Abbreviations are the same as those given in Fig. 2. Different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively."

Fig. 7

Growth rate of dry matter accumulation of above-ground parts at different yield levels in glutinous rice Abbreviations are the same as those given in Fig. 3. Different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively."

Fig. 8

Relationship between population spikelet, filled-grain percentage, 1000-grain weight, and harvested yield in glutinous rice ** indicate significant correlation at the P ≤ 0.01 levels, respectively."

Table 2

Correlation analysis among panicles, spikeles per panicle, and population spikelets in glutinous rice"

类型
Type
年份
Year
品种
Cultivar
性状
Trait
相关系数r 通径系数pi 净贡献率pir
穗数
Panicles
每穗颖花数
Spikelet
穗数
Panicles
每穗颖花数
Spikelet
穗数
Panicles
每穗颖花数
Spikelet
HY 2022 扬粳糯2号
Yangjingnuo 2
总颖花量
Total spikelet
0.767 -0.044 1.407 1.066 1.079 -0.047
沭优糯82
Shuyounuo 82
总颖花量
Total spikelet
0.678 -0.568 1.854 0.514 1.257 -0.292
2023 扬粳糯2号
Yangjingnuo 2
总颖花量
Total spikelet
0.779 -0.041 1.326 0.832 1.033 -0.033
沭优糯85
Shuyounuo 85
总颖花量
Total spikelet
0.877* 0.110 1.075 0.520 0.943 0.057
HRY 2022 扬粳糯2号
Yangjingnuo 2
总颖花量
Total spikelet
0.895* -0.220 1.258 0.575 1.126 -0.126
HRY 2022 沭优糯82
Shuyounuo 82
总颖花量
Total spikelet
0.656 0.743 0.657 0.766 0.431 0.569
2023 扬粳糯2号
Yangjingnuo 2
总颖花量
Total spikelet
0.872* -0.168 1.267 0.629 1.105 -0.106
沭优糯85
Shuyounuo 85
总颖花量
Total spikelet
0.677 0.762 0.648 0.736 0.439 0.561
SHY 2022 扬粳糯2号
Yangjingnuo 2
总颖花量
Total spikelet
0.595 0.876* 0.575 0.694 0.342 0.608
沭优糯82
Shuyounuo 82
总颖花量
Total spikelet
0.584 0.851* 0.527 0.814 0.308 0.692
2023 扬粳糯2号
Yangjingnuo 2
总颖花量
Total spikelet
0.780 0.878* 0.480 0.800 0.278 0.702
沭优糯85
Shuyounuo 85
总颖花量
Total spikelet
0.560 0.889* 0.481 0.817 0.269 0.726

Table 3

Production of day matter after heading and grain-leaf ratio with different yield levels in glutinous rice"

年份
Year
品种
Cultivar
类型Type 抽穗期-成熟期H-M 粒叶比Grain-leaf ratio
净积累量
Net
accumulation
(t hm-2)
RDMM
(%)
叶面积衰减率
Leaf area
decreasing per day
光合势
LAD
(×104 m2 d hm-2)
颖花/叶Spikelet per leaf area (cm-2) 实粒/叶
Filled grains per leaf area (cm-2)
粒重/叶
Grain weight per leaf area
(mg cm-2)
2022 扬粳糯2号
Yangjingnuo 2
HY 6.21 Cc 38.0 Bb 0.082 Aa 246.5 Cc 0.49 Cc 0.46 Cc 14.22 Cc
HRY 7.92 Bb 41.1 Aa 0.076 Bb 292.5 Bb 0.56 Bb 0.53 Bb 14.64 Bb
SHY 9.33 Aa 41.7 Aa 0.074 Cc 327.7 Aa 0.67 Aa 0.63 Aa 15.22 Aa
沭优糯82
Shuyounuo 82
HY 6.86 Cc 34.4 Cc 0.081 Aa 269.5 Cc 0.60 Cc 0.49 Cc 14.02 Cc
HRY 8.21 Bb 36.5 Bb 0.073 Bb 305.0 Bb 0.67 Bb 0.55 Bb 14.69 Bb
SHY 9.99 Aa 37.9 Aa 0.070 Cc 368.7 Aa 0.70 Aa 0.58 Aa 14.83 Aa
2023 扬粳糯2号Yangjingnuo 2 HY 6.44 Cc 38.2 Bb 0.083 Aa 239.6 Cc 0.54 Cc 0.50 Cc 14.48 Cc
HRY 8.12 Bb 40.9 Aa 0.078 Bb 279.8 Bb 0.64 Bb 0.59 Bb 15.08 Bb
SHY 9.42 Aa 41.1 Aa 0.071 Cc 327.9 Aa 0.69 Aa 0.65 Aa 15.53 Aa
沭优糯85 Shuyounuo 85 HY 7.05 Cc 34.2 Cc 0.086 Aa 268.6 Cc 0.65 Cc 0.52 Cc 14.58 Cc
HRY 8.33 Bb 35.6 Bb 0.081 Bb 300.1 Bb 0.70 Bb 0.56 Bb 15.21 Bb
SHY 9.96 Aa 38.2 Aa 0.071 Cc 360.3 Aa 0.76 Aa 0.61 Aa 16.27 Aa

Table 4

Production and translocation of day matter per stem and sheath with different yield levels in glutinous rice"

年份
Year
品种
Cultivar
类型Type 抽穗期单茎茎鞘重
Weight per stem and sheath in H
(g)
乳熟期单茎茎鞘重
Weight per
stem and
sheath in MK
(g)
成熟期单茎茎鞘重
Weight per stem and sheath in M
(g)
单茎茎鞘输出率Output ratio per stem and sheath
最大输出率
Maximum output ratio
(%)
表观输出率
Apparent
output ratio
(%)
最大输出物质的
转运率
Translocation ratio of maximum output (%)
2022 扬粳糯2号
Yangjingnuo 2
HY 2.184 Cc 1.626 Cc 1.651 Cc 25.6 Cc 24.4 Aa 19.2 Cc
HRY 2.445 Bb 1.749 Bb 1.892 Bb 28.5 Bb 22.6 Bb 22.4 Bb
SHY 2.693 Aa 1.824 Aa 2.209 Aa 32.3 Aa 17.9 Cc 25.6 Aa
沭优糯82
Shuyounuo 82
HY 2.417 Cc 1.744 Bb 1.851 Cc 27.8 Cc 23.5 Aa 12.3 Cc
HRY 2.873 Bb 1.952 Cc 2.339 Bb 32.1 Bb 18.6 Bb 16.3 Bb
SHY 3.321 Aa 2.143 Aa 2.811 Aa 35.5 Aa 15.3 Cc 20.2 Aa
2023 扬粳糯2号Yangjingnuo 2 HY 2.213 Cc 1.658 Cc 1.676 Cc 25.1 Cc 24.3 Aa 18.8 Cc
HRY 2.460 Bb 1.795 Bb 1.899 Bb 27.0 Bb 22.8 Bb 21.1 Bb
SHY 2.748 Aa 1.852 Aa 2.271 Aa 32.6 Aa 17.3 Cc 25.1 Aa
沭优糯85 Shuyounuo 85 HY 2.609 Cc 1.916 Cc 2.031 Cc 26.6 Cc 22.2 Aa 12.1 Cc
HRY 2.978 Bb 2.095 Bb 2.428 Bb 29.6 Bb 18.1 Bb 14.8 Bb
SHY 3.469 Aa 2.170 Aa 2.975 Aa 37.4 Aa 14.2 Cc 21.1 Aa

Table 5

Plant architecture characteristics at the heading stage in glutinous rice populations with different yield levels"

年份
Year
品种
Cultivar
类型
Type
剑叶Flag leaf 倒二叶2nd leaf from the bottom 倒三叶3rd leaf from the bottom

Length (cm)
LBA
(°)
ASL
(°)
DA
(°)

Length (cm)
LBA
(°)
ASL
(°)
DA
(°)

Length (cm)
LBA
(°)
ASL
(°)
DA
(°)
2022 扬粳糯2号
Yangjing-
nuo 2
HY 26.9 Aa 10.5 Aa 15.8 Aa 5.3 Aa 36.8 Aa 13.0 Aa 19.5 Aa 6.5 Aa 34.7 Aa 15.5 Aa 22.5 Aa 7.0 Aa
HRY 27.6 Aa 9.5 Ab 13.0 Bb 3.5 Bb 37.9 Aa 9.0 Bb 14.5 Bb 5.5 Ab 35.8 Aa 12.5 Bb 18.5 Bb 6.0 Bb
SHY 28.8 Aa 6.0 Bc 9.0 Cc 3.0 Bc 38.9 Aa 6.5 Cc 10.0 Cc 3.5 Bc 36.4 Aa 11.5 Cc 15.5 Cc 4.0 Cc
沭优糯82
Shuyou-
nuo 82
HY 26.9 Aa 11.5 Aa 17.0 Aa 5.5 Aa 43.6 Aa 12.5 Aa 19.0 Aa 6.5 Aa 42.3 Aa 13.5 Aa 20.5 Aa 7.0 Aa
HRY 28.8 Aa 9.5 Bb 12.5 Bb 3.0 Bb 44.5 Aa 11.5 Bb 15.5 Bb 4.0 Bb 42.7 Aa 12.8 Bb 17.0 Bb 4.3 Bb
SHY 32.0 Aa 5.0 Cc 7.5 Cc 2.5 Cc 45.0 Aa 5.8 Cc 9.5 Cc 3.8 Bc 43.0 Aa 7.5 Cc 11.5 Cc 4.0 Bc
2023 扬粳糯2号
Yangjing-
nuo 2
HY 29.5 Aa 8.3 Aa 14.3 Aa 6.0 Aa 35.2 Aa 11.0 Aa 18.0 Aa 7.0 Aa 36.5 Aa 13.8 Aa 21.5 Aa 7.8 Aa
HRY 29.5 Aa 7.0 Bb 12.5 Bb 5.5 Bb 37.8 Aa 7.8 Bb 14.0 Bb 6.3 Ab 37.2 Aa 10.5 Bb 17.5 Bb 7.0 Bb
SHY 29.7 Aa 6.0 Cc 10.0 Cc 4.0 Cc 38.9 Aa 6.5 Cc 11.5 Cc 5.0 Bc 36.7 Aa 8.5 Cc 14.5 Cc 6.0 Cc
沭优糯85
Shuyou-
nuo 85
HY 33.3 Aa 11.5 Aa 16.0 Aa 4.5 Aa 43.4 Aa 15.0 Aa 20.0 Aa 5.0 Aa 53.1 Aa 18.5 Aa 24.5 Aa 6.0 Aa
HRY 33.7 Aa 10.0 Bb 13.0 Bb 3.0 Bb 44.1 Aa 12.8 Bb 17.0 Bb 4.3 Ab 54.6 Aa 17.5 Bb 23.0 Bb 5.5 Ab
SHY 34.8 Aa 9.5 Cc 11.5 Cc 2.0 Cc 47.7 Aa 12.5 Bb 16.0 Cc 3.5 Bc 56.1 Aa 16.5 Cc 20.5 Cc 4.0 Bc

Table 6

Plant height and characteristic of basal internode at heading with different yield levels in glutinous rice"

年份
Year
品种
Cultivar
类型
Type
株高
Plant height
基部节间粗度
Width of basal internodes
(cm)
基部节间长度
Length of basal internodes (cm)
基部节间厚度
Thickness of basal internodes (mm)
I1 I2 I3 I1 I2 I3 I1 I2 I3
2022 扬粳糯2号
Yangjingnuo 2
HY 85.7 Cc 0.47 Aa 0.43 Aa 0.41 Aa 3.95 Aa 7.41 Aa 9.3 Aa 1.27 Cc 1.12 Cc 1.01 Cc
HRY 87.9 Bb 0.49 Aa 0.44 Aa 0.42 Aa 4.15 Aa 7.50 Aa 9.40 Aa 1.42 Bb 1.29 Bb 1.31 Bb
SHY 90.8 Aa 0.51 Aa 0.47 Aa 0.43 Aa 4.19 Aa 7.53 Aa 9.46 Aa 1.78 Aa 1.52 Aa 1.41 Aa
沭优糯82
Shuyou-
nuo 82
HY 114.5 Cc 0.72 Aa 0.62 Aa 0.56 Aa 4.25 Aa 9.30 Aa 14.11 Aa 1.91 Cc 1.52 Cc 1.01 Cc
HRY 116.5 Bb 0.73 Aa 0.64 Aa 0.58 Aa 4.40 Aa 9.45 Aa 14.20 Aa 2.16 Bb 1.63 Bb 1.08 Bb
SHY 120.3 Aa 0.74 Aa 0.67 Aa 0.59 Aa 4.45 Aa 9.85 Aa 14.26 Aa 2.54 Aa 1.76 Aa 1.15 Aa
2023 扬粳糯2号
Yangjingnuo 2
HY 92.1 Cc 0.45 Aa 0.43 Aa 0.41 Aa 3.99 Aa 7.60 Aa 9.75 Aa 1.35 Cc 1.28 Cc 1.10 Cc
HRY 93.8 Bb 0.47 Aa 0.44 Aa 0.43 Aa 4.20 Aa 7.80 Aa 9.85 Aa 1.60 Bb 1.55 Bb 1.20 Bb
SHY 95.9 Aa 0.49 Aa 0.48 Aa 0.45 Aa 4.55 Aa 7.88 Aa 9.88 Aa 1.80 Aa 1.60 Aa 1.35 Aa
沭优糯85 Shuyou-
nuo 85
HY 105.3 Cc 0.70 Aa 0.66 Aa 0.62 Aa 4.80 Aa 8.05 Aa 11.35 Aa 1.70 Cc 1.55 Cc 1.15 Cc
HRY 113.2 Bb 0.72 Aa 0.68 Aa 0.65 Aa 4.95 Aa 8.23 Aa 11.70 Aa 1.85 Bb 1.75 Bb 1.20 Bb
SHY 115.0 Aa 0.74 Aa 0.69 Aa 0.67 Aa 5.05 Aa 8.44 Aa 11.81 Aa 2.35 Aa 1.88 Aa 1.55 Aa

Table 7

Lodging index and breaking resistance at 30 days after heading with different yield levels"

年份
Year
品种
Cultivar
类型
Type
抗折力Breaking resistance (g) 倒伏指数Lodging index
I1 I2 I3 I1 I2 I3
2022 扬粳糯2号
Yangjingnuo 2
HY 1232.8 Cc 940.0 Cc 664.3 Cc 118.4 Aa 143.7 Aa 169.7 Aa
HRY 1434.6 Bb 1026.9 Bb 714.4 Bb 107.4 Bb 139.6 Bb 167.9 Aa
SHY 1856.3 Aa 1320.1 Aa 859.0 Aa 99.5 Cc 127.4 Cc 165.6 Aa
沭优糯82
Shuyounuo 82
HY 1845.2 Cc 1282.0 Cc 1058.5 Cc 128.3 Aa 174.4 Aa 188.1 Aa
HRY 2138.4 Bb 1516.4 Bb 1234.5 Bb 122.8 Bb 165.0 Bb 186.1 Aa
SHY 2344.1 Aa 1719.2 Aa 1309.3 Aa 119.0 Cc 154.4 Cc 179.0 Bb
2023 扬粳糯2号
Yangjingnuo 2
HY 1285.6 Cc 952.6 Cc 645.3 Cc 113.6 Aa 140.8 Aa 172.0 Aa
HRY 1449.9 Bb 1042.8 Bb 709.1 Bb 107.0 Bb 137.2 Bb 169.4 Aa
SHY 1851.2 Aa 1345.1 Aa 829.7 Aa 100.0 Cc 125.8 Cc 167.6 Aa
沭优糯85
Shuyounuo 85
HY 1943.9 Cc 1439.0 Cc 1060.9 Cc 117.1 Aa 150.1 Aa 179.5 Aa
HRY 2298.5 Bb 1625.9 Bb 1132.5 Bb 110.2 Bb 145.7 Bb 177.9 Aa
SHY 2545.9 Aa 1843.8 Aa 1363.8 Aa 100.5 Cc 140.4 Cc 170.6 Bb

Table 8

Correlation analysis between yield and grain-filling traits and post-heading related indices in glutinous rice"

类型
Type
指标
Index
抽穗期叶面积指数
LAI in H
成熟期叶面积指数
LAI in M
抽穗-成熟期光合势
LAD in H to M
抽穗期干物质重
Weight of dry matter in H
成熟期干物质重
Weight of dry matter in M
抽穗-成熟净积累量
Accumulation from H to M
常规粳型糯稻Conventional
glutinous rice
产量Yield 0.939** 0.745* 0.829** 0.964** 0.955** 0.912**
千粒重1000-grain weight -0.412 0.487 0.310 -0.327 0.495 0.441
结实率Filled-grain
percentage
-0.166 0.313 0.297 -0.127 0.111 0.289
籼粳杂交糯稻
Hybrid glutinous rice
产量Yield 0.931** 0.762* 0.812** 0.956** 0.938** 0.951**
千粒重1000-grain weight 0.250 0.476 -0.068 -0.081 0.205 0.271
结实率Filled-grain
percentage
-0.307 0.563 0.016 -0.218 0.107 0.138

Table 9

Population indexes of super high-yielding in glutinous rice"

考量指标
Index
适宜数值 Optimum value
常规粳型糯稻
Conventional glutinous rice
籼粳杂交糯稻
Hybrid glutinous rice
群体颖花量 Total spikelets (×104 hm-2) ≥ 43,000 ≥ 60,000
产量 Yield (kg hm-2) ≥ 10,500 ≥ 13,000
结实率 Filled-grain percentage (%) ≥ 95.0 ≥ 80.0
千粒重 1000-grain weight (g) 26± 25±
抽穗期叶面积指数 Index of leaf area at heading 7.5± 8.5±
成熟期叶面积指数 Index of leaf area at maturity ≥ 2.5 ≥ 3.5
抽穗期-成熟期光合势 Leaf area duration from heading to maturity (×104 m2 hm-2) ≥ 320 ≥ 350
抽穗期干物质重 Weight of dry matter at heading (t hm-2) 13± 16±
抽穗期-成熟期干物质重 Weight of dry matter from heading to maturity (t hm-2) ≥ 8.5 ≥ 9.0
成熟期干物质重 Weight of dry matter at maturity (t hm-2) ≥ 20.5 ≥ 22.5
抽穗期单茎重 Weight per stem and sheath at heading (g) ≥ 2.5 ≥ 3.0
成熟期单茎重 Weight per stem and sheath at maturity (g) ≥ 2.0 ≥ 2.5
[1] 刘宇强, 刘晴, 高世伟, 聂守军, 谢树鹏, 魏中华, 王翠玲, 刘立超. 黑龙江省主栽糯稻遗传背景研究. 中国稻米, 2016, 22(1): 22-24.
Liu Y Q, Liu Q, Gao S W, Nie S J, Xie S P, Wei Z H, Wang C L, Liu L C. Research on genetic background of main cultivated glutinous rice in Heilongjiang province. China Rice, 2016, 22(1): 22-24 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2016.01.005
[2] 朱军, 朱自忠, 李平. 中国糯稻遗传育种研究进展. 杂交水稻, 2021, 36(1): 1-8.
Zhu J, Zhu Z Z, Li P. Research progress on genetics and breeding of glutinous rice in China. Hybrid Rice, 2021, 36(1): 1-8 (in Chinese with English abstract).
[3] Jaiturong P, Sirithunyalug B, Eitsayeam S, Asawahame C, Tipduangta P, Sirithunyalug J. Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian J Pharm Sci, 2018, 13: 239-247.
doi: 10.1016/j.ajps.2017.08.008 pmid: 32104397
[4] 陈双琴. 糯稻种质胚乳淀粉消化特性及其结构特征分析. 云南农业大学硕士学位论文, 云南昆明, 2023.
Chen S Q. Analysis of Starch Digestibility and Structural Characteristics of Endosperm in Waxy Rice Germplasm. MS Thesis of Yunnan Agricultural University, Kunming, Yunnan, China, 2023 (in Chinese with English abstract).
[5] 郭桂英, 沈光辉, 马汉云, 霍二伟, 祁玉良, 徐士库, 申关望, 黄雅琴, 彭波, 常幸远, 等. 专用稻研究进展及市场化开发. 江苏农业科学, 2024, 52(7): 24-33.
Guo G Y, Shen G H, Ma H Y, Huo E W, Qi Y L, Xu S K, Shen G W, Huang Y Q, Peng B, Chang X Y, et al. Research progress and market-oriented development of specialized rice. Jiangsu Agric Sci, 2024, 52(7): 24-33 (in Chinese).
[6] 潘骏亚. 安徽省怀远县糯稻特色产业发展现状及对策研究. 粮食问题研究, 2024, (2): 7-11.
Pan J Y. Development status and countermeasures of characteristic industry of glutinous rice in Huaiyuan county, Anhui province. Grain Issues Res, 2024, (2): 7-11 (in Chinese).
[7] 陈先兵, 田玉霞, 王文丰, 曹鹏, 薛莲. 湖北省籼型糯稻产业发展路径及对策. 中国种业, 2023, (11): 37-39.
Chen X B, Tian Y X, Wang W F, Cao P, Xue L. Development path and countermeasures of industrialization on indica glutinous rice in Hubei province. China Seed Ind, 2023, (11): 37-39 (in Chinese).
[8] 张丽娟. 优质糯稻丹粳糯3号的选育及高产栽培技术. 辽宁农业科学, 2020, (1): 86-87.
Zhang L J. Breeding and high-yield cultivation techniques of good-quality waxy rice ‘danjingnuo No. 3’. Liaoning Agric Sci, 2020, (1): 86-87 (in Chinese with English abstract).
[9] 张庆, 徐玉峰, 凃荣文, 张小英, 徐洁芬, 徐晓杰. 苏南太湖流域优质高产晚粳糯稻新品种筛选. 农业工程技术, 2023, 43(31): 16.
Zhang Q, Xu Y F, Tu R W, Zhang X Y, Xu J F, Xu X J. Screening of new late japonica glutinous rice varieties with good quality and high yield in Taihu Lake basin of southern Jiangsu province. Agric Eng Technol, 2023, 43(31): 16 (in Chinese).
[10] 全坚宇, 朱正斌, 曹敏旭, 赵品恒, 赵旭昊, 何胥. 地方特色糯稻“鸭血糯” 品种特性及机插高产栽培技术. 农业开发与装备, 2023, (7): 37-38.
Quan J Y, Zhu Z B, Cao M X, Zhao P H, Zhao X H, He X. Characteristics of glutinous rice varieties with local characteristics “Ya Xue Nuo” and its high-yield cultivation techniques by mechanical transplanting. Agric Dev Equip, 2023, (7): 37-38 (in Chinese).
[11] Wei Z W, Zhang Y Z, Jin W Y. Yield gap analysis of super high-yielding rice (>15 t ha-1) in two ecological regions. Agriculture, 2024, 14: 491.
[12] Meng X S, Pan Y H, Chai Y X, Ji Y, Du H S, Huang J, Chen S X, Wang M, Guo S W. Higher light utilization and assimilate translocation efficiency produced greater grain yield in super hybrid rice. Plant Soil, 2024, 504: 529-544.
[13] Ye J Y, Zhong X F, Harrison M T, Kang K, Sheng T, Shang C, Wang C H, Deng J, Huang L Y, Tian X H, et al. Towards improved grain yield and soil microbial communities of super hybrid rice through sustainable management. Agronomy, 2023, 13: 2259.
[14] 董立强, 杨铁鑫, 李睿, 商文奇, 马亮, 李跃东, 隋国民. 株行距配置对超高产田水稻产量及根系形态生理特性的影响. 中国水稻科学, 2023, 37: 392-404.
doi: 10.16819/j.1001-7216.2023.221007
Dong L Q, Yang T X, Li R, Shang W Q, Ma L, Li Y D, Sui G M. Effect of plant-row spacing on rice yield and root morphological and physiological characteristics in super high yield field. Chin J Rice Sci, 2023, 37: 392-404 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2023.221007
[15] Tao Z, Lei T, Cao F B, Chen J N, Yin X H, Liang T F, Huang M. Contrasting characteristics of lodging resistance in two super-rice hybrids differing in harvest index. Phyton Int J Exp Bot, 2022, 91: 429-437.
[16] Chen T T, Yang X Q, Fu W M, Li G Y, Feng B H, Fu G F, Tao L X. Strengthened assimilate transport improves yield and quality of super rice. Agronomy, 2022, 12: 753.
[17] Wang F, Peng S B. Yield potential and nitrogen use efficiency of China’s super rice. J Integr Agric, 2017, 16: 1000-1008.
[18] Huang M, Tang Q Y, Ao H J, Zou Y B. Yield potential and stability in super hybrid rice and its production strategies. J Integr Agric, 2017, 16: 1009-1017.
doi: 10.1016/S2095-3119(16)61535-6
[19] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 等. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, et al. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t ha -1). Acta Agron Sin, 2014, 40: 2149-2159 (in Chinese with English abstract).
[20] 周年兵, 程飞虎, 陈波, 舒鹏, 张洪程, 花劲, 霍中洋, 黄大山, 陈忠平, 陈国梁, 等. 籼粳杂交晚稻超高产结构及群体生长特征研究. 扬州大学学报(农业与生命科学版), 2016, 37(1): 58-64.
Zhou N B, Cheng F H, Chen B, Shu P, Zhang H C, Hua J, Huo Z Y, Huang D S, Chen Z P, Chen G L, et al. Study on yield components and population characteristics of super-high-yielding late indica-japonica hybrid rice. J Yangzhou Univ (Agric Life Sci Edn), 2016, 37(1): 58-64 (in Chinese with English abstract).
[21] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J Q, Dai Q G, Huo Z Y, Xu K, Guo B W. Different characteristics of high yield formation between inbred Japonica super rice and inter-sub- specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
[22] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 等. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016-2027.
doi: 10.3724/SP.J.1006.2014.02016
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, et al. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014, 40: 2016-2027 (in Chinese with English abstract).
[23] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征. 作物学报, 2023, 49: 511-525.
doi: 10.3724/SP.J.1006.2023.22010
Tao S B, Ke J, Sun J, Yin C J, Zhu T Z, Chen T T, He H B, You C C, Guo S S, Wu L Q. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River. Acta Agron Sin, 2023, 49: 511-525 (in Chinese with English abstract).
[24] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 方加海. 双季机插稻不同产量水平群体的产量构成特征研究. 核农学报, 2019, 33: 2048-2057.
doi: 10.11869/j.issn.100-8551.2019.10.2048
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Fang J H. Characteristics of yield components from middle-yield to super-high-yield of machine-transplanted double rice. J Nucl Agric Sci, 2019, 33: 2048-2057 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2019.10.2048
[25] 花劲, 周年兵, 张军, 张洪程, 霍中洋, 周培建, 程飞虎, 李国业, 黄大山, 陈忠平, 等. 双季晚稻甬优系列籼粳杂交稻超高产结构与群体形成特征. 中国农业科学, 2015, 48: 1023-1034.
doi: 10.3864/j.issn.0578-1752.2015.05.20
Hua J, Zhou N B, Zhang J, Zhang H C, Huo Z Y, Zhou P J, Cheng F H, Li G Y, Huang D S, Chen Z P, et al. The structure and formation characteristics of super-high yield population with late Yongyou series of indica-japonica hybrid rice in double-cropping rice area. Sci Agric Sin, 2015, 48: 1023-1034 (in Chinese with English abstract).
[26] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345 (in Chinese with English abstract).
[27] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 等. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147-2158.
doi: 10.3864/j.issn.0578-1752.2012.11.003
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, et al. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147-2158 (in Chinese with English abstract).
[28] 张祥明, 郭熙盛, 闫永忠. 沿淮晚稻区优化施肥对粳糯生长和产量的影响. 中国稻米, 2007, 13(5): 62-65.
Zhang X M, Guo X S, Yan Y Z. Effect of optimized fertilization on the growth and yield of japonica and waxy rice in late rice area along Huaihe River. China Rice, 2007, 13(5): 62-65 (in Chinese).
[29] 王阳青, 李双盛, 游月华. 籼糯稻的产量构成因素和库源结构分析. 福建农业科技, 2005, 36(4): 1-3.
Wang Y Q, Li S S, You Y H. Analysis of yield components and sink-source structure of indica glutinous rice. Fujian Agric Sci Technol, 2005, 36(4): 1-3 (in Chinese).
[30] 郝留根, 张宏伟, 甘雨, 郭慧, 李树杏, 潘建慧, 龚大琨. 杂交糯稻新品种黔糯优11主要农艺性状与产量的相关性. 农技服务, 2018, 35(6): 24-26.
Hao L G, Zhang H W, Gan Y, Guo H, Li S X, Pan J H, Gong D K. Correlation between main agronomic characters and yield of a new hybrid glutinous rice variety Qiannuoyou 11. Agric Technol Serv, 2018, 35(6): 24-26 (in Chinese).
[31] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 39-44.
Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duanmu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2): 39-44 (in Chinese with English abstract).
[32] 韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201-2210.
doi: 10.3724/SP.J.1006.2013.02201
Wei H H, Jiang Y H, Zhao K, Xu J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Zheng F. Characteristics of super-high yield population in yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201-2210 (in Chinese with English abstract).
[33] 汪家凯, 陈文丰, 彭菁菁, 刘彦卓, 梁开明, 李晨, 毛兴学, 潘俊峰. 华南超大穗型水稻种质DS23“源-库-流”特征及其超高产潜力研究. 广东农业科学, 2023, 50(12): 150-159.
Wang J K, Chen W F, Peng J J, Liu Y Z, Liang K M, Li C, Mao X X, Pan J F. Source-sink-flow characteristics and super-high yield potential of the super-large-panicle rice line DS23 in South China. Guangdong Agric Sci, 2023, 50(12): 150-159 (in Chinese with English abstract).
[34] 王士强, 贺登美, 赵海红, 杨善伟, 衣玉卓, 付永明, 郑树生, 丁希武, 何晴, 郑凯文, 等. 不同产量水平寒地早粳稻品种的株型特征. 中国稻米, 2023, 29(2): 71-75.
doi: 10.3969/j.issn.1006-8082.2023.02.014
Wang S Q, He D M, Zhao H H, Yang S W, Yi Y Z, Fu Y M, Zheng S S, Ding X W, He Q, Zheng K W, et al. Plant-type characteristics in different yield early japonica rice varieties in cold region. China Rice, 2023, 29(2): 71-75 (in Chinese with English abstract).
[35] 杜永, 王艳, 王学红, 孙乃立, 杨建昌. 黄淮地区不同粳稻品种株型、产量与品质的比较分析. 作物学报, 2007, 33: 1079-1085.
Du Y, Wang Y, Wang X H, Sun N L, Yang J C. Comparisons of plant type, grain yield, and quality of different japonica rice cultivars in Huanghe-Huaihe River area. Acta Agron Sin, 2007, 33: 1079-1085 (in Chinese with English abstract).
[36] 李红娇, 张喜娟, 李伟娟, 徐正进. 超高产粳稻品种抗倒伏性的初步研究. 北方水稻, 2008, 38(2): 22-27.
Li H J, Zhang X J, Li W J, Xu Z J. Initial research on lodging resistance in super high-yielding japonica rice cultivars. North Rice, 2008, 38(2): 22-27 (in Chinese with English abstract).
[37] 杨洪伟, 张丽颖, 唐志强, 于丰华, 许童羽. 杂交粳稻茎秆力学性状与理化特征对抗倒伏能力的影响. 农业工程学报, 2024, 40(14): 45-52.
Yang H W, Zhang L Y, Tang Z Q, Yu F H, Xu T Y. Effects of mechanical and physicochemical properties on the lodging resistance of hybrid japonica rice. Trans CSAE, 2024, 40(14): 45-52 (in Chinese with English abstract).
[38] 殷敏, 刘少文, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020, 53: 890-903.
doi: 10.3864/j.issn.0578-1752.2020.05.003
Yin M, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F, Chen S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Sci Agric Sin, 2020, 53: 890-903 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.05.003
[39] 吕腾飞, 周伟, 孙永健, 秦俭, 朱懿, 杨志远, 马均. 不同秧龄下氮肥运筹对杂交稻枝梗和颖花分化及退化的影响. 四川农业大学学报, 2014, 32(1): 1-10.
Lyu T F, Zhou W, Sun Y J, Qin J, Zhu Y, Yang Z Y, Ma J. Effects of different transplanting seedling ages and nitrogen managements on differentiation and retrogression of branches and spikelets of hybrid rice. J Sichuan Agric Univ, 2014, 32(1): 1-10 (in Chinese with English abstract).
[40] Pan J F, Cui K H, Wei D, Huang J L, Xiang J, Nie L X. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol Plant, 2011, 141: 321-331.
doi: 10.1111/j.1399-3054.2010.01441.x pmid: 21175644
[41] 何迷, 李小波, 黄静, 黄光福. 水稻叶面积指数与产量关系研究进展. 农学学报, 2022, 12(8): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0269
He M, Li X B, Huang J, Huang G F. The relationship between leaf area index and yield of rice: research progress. J Agric, 2022, 12(8): 1-5 (in Chinese with English abstract).
doi: 10.11923/j.issn.2095-4050.cjas2020-0269
[1] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] WANG Xiao-Yan,WEI Huan-He,ZHANG Hong-Cheng,SUN Jian,ZHANG Jian-Min,LI Chao,LU Hui-Bin,YANG Jun-Wen,MA Rong-Rong,XU Jiu-Fu,WANG Jue,XU Yue-Jin,SUN Yu-Hai. Population Characteristics for Super-High Yielding Hybrid Rice Yongyou 12 (>13.5 t ha-1) [J]. Acta Agron Sin, 2014, 40(12): 2149-2159.
[4] WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Plant-type Characteristics in Populations with Different Yield of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(12): 2160-2168.
[5] WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MENG Tian-Yao1,YANG Jun-Wen,MA Rong-Rong,WANG Xiao-Yan,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan. Tillering Characteristics and Its Relationship with Population Productivity of Super-High Yield Rice Population of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(10): 1819-1829.
[6] WEI Huan-He,JIANG Yuan-Hua,ZHAO Ke,XU Jun-Wei,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,ZHENG Fei. Characteristics of Super-high Yield Population in Yongyou Series of Hybrid Rice [J]. Acta Agron Sin, 2013, 39(12): 2201-2210.
[7] WANG Yong-Jun,YANG Jin-Sheng,YUAN Cui-Ping,LIU Jing-Guo,LI Deng-Hai,DONG Shu-Ting. Characteristics of Senescence and Antioxidant Enzyme Activities in Leaves at Different Plant Parts of Summer Maize with the Super-high Yielding Potential after Anthesis [J]. Acta Agron Sin, 2013, 39(12): 2183-2191.
[8] JING Li-Quan,ZHAO Fu-Cheng,WANG De-Cheng,YUAN Jian-Hua,LU Da-Lei,LU Wei-Ping. Effects of Nitrogen Application on Accumulation and Distribution of Nitrogen, Phosphorus, and Potassium of Summer Maize under Super-High Yield Conditions [J]. Acta Agron Sin, 2013, 39(08): 1478-1490.
[9] WU Gui-Cheng, ZHANG Hong-Cheng, DAI Qi-Gen, HE Zhong-Yang, HU Ke, GAO Hui, WEI Hai-Yan, SHA An-Qin, XU Zong-Jin, QIAN Zong-Hua, SUN Ju-Ying. Characteristics of Dry Matter Production and Accumulation and Super-High Yield of Japonica Super Rice in South China [J]. Acta Agron Sin, 2010, 36(11): 1921-1930.
[10] LI Gang-Hua,ZHANG Guo-Fa,CHEN Gong-Lei,WANG Shao-Hua,LING Qi-Hong,DING Yan-Feng. Population Characteristics of Super Japonica Rice Ningjing 1 and Ningjing 3 and Its Responses to Nitrogen [J]. Acta Agron Sin, 2009, 35(6): 1106-1114.
[11] PENG Zhong-Ming;ZHANG Ming-Wei;TU Ju-Ming;YU Shi-Bin;XU Chai-Guo. Breeding and Nutrient Evaluation on Three-lines and Their Combination of Indica Black Glutinous Rice Hybrid [J]. Acta Agron Sin, 2004, 30(04): 342-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .