Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2412-2432.doi: 10.3724/SP.J.1006.2025.41079

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress

HE Peng-Xu1,2,**(), YAO Li-Rong1,2,*,**(), CHEN Yuan-Ling1,2, YAN Yan1,2, ZHANG Hong1,2, WANG Jun-Cheng1,2, LI Bao-Chun1,3, YANG Ke1,2, SI Er-Jing1,2, MENG Ya-Xiong1,2, MA Xiao-Le1,2, WANG Hua-Jun1,2   

  1. 1State key laboratory of Aridland Crop Science / The State Key Laboratory of Crop Genetic Improvement and Germplasm Innovation of Gansu Province, Lanzhou730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou730070, Gansu, China
    3College of Life Science and Technology, Gansu Agricultural University, Lanzhou730070, Gansu, China
  • Received:2024-11-12 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-19
  • Contact: *E-mail: ylr0384@163.com E-mail:hpx306080@163.com;ylr0384@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    East West Science and Technology Cooperation Special Project(25CXNA030);Innovative Training Program of Gansu Agricultural University(202501077);China Agriculture Research System of MOF and MARA(CARS-05-02A-02);State Key Laboratory of Aridland Crop Science Open Fund(GSCS-2021-02);Modern Agricultural Industry Technology System in Gansu Province(Triticeae Crops);Scientific Research Start-up Funds for Openly-recuited Doctors of Gansu Agricultural University(GAU-KYQD-2022-10);Industrial Support Project of Colleges and Universities in Gansu Province(2021CYZC-12);Fuxi Young Talents Fund of Gansu Agricultural University(GAUfx-04Y011);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y06);Gansu Province Longyuan Youth Talent Project

Abstract:

Drought is a major abiotic stress affecting the growth and development of barley (Hordeum vulgare L.), with potentially irreversible impacts across all growth stages, including seed germination and flowering. To investigate the germination responses of diverse barley germplasm under drought stress, this study employed a vermiculite-based water control method to evaluate the germination characteristics of 54 barley germplasm accessions. Based on drought tolerance during germination, the accessions were classified into five categories: excellent, good, moderate, poor, and very poor, with the highest proportion (37.04%) falling into the moderate group. Seven accessions with strong drought tolerance during germination, such as E0270389 and ZDM5430, exhibited rapid germination, uniform emergence, and vigorous seedling growth. In contrast, six accessions with poor drought tolerance, including 08 Jing 134 and Ziyuan136-21490058, showed low germination rates, asynchronous emergence, and poor seedling uniformity. Six representative accessions (E0270389, ZDM5430, 7DCADA, Z1920057W, Feite 36, and ZY69-G231M004M) with significantly different drought germination characteristics were further analyzed for physiological and biochemical parameters, as well as DNA damage repair mechanisms during germination under drought conditions. The results revealed that accessions with good drought tolerance had lower expression of HvFPG during mid-germination and lower HvOGG1 expression during early germination compared to drought-sensitive accessions. In addition, these drought-tolerant accessions maintained higher peroxidase (POD) activity during early and middle germination stages, and showed less reduction in superoxide dismutase (SOD) and cysteine protease activities before germination. Soluble sugar content at 6 hours after drought induction did not differ significantly from the control. In contrast, drought-sensitive accessions exhibited significantly reduced POD activity during mid-germination and a marked decrease in soluble sugar content, as observed in Feite 36. In summary, barley germplasm with good drought tolerance during germination demonstrated enhanced DNA repair capacity, antioxidant activity, and metabolic adaptability under drought stress, leading to faster germination and healthier seedling development.

Key words: barley, drought stress, seed germination, DNA repair capacity, material transformation, antioxidant capacity

Table 1

Primer sequences for qRT-PCR"

基因号
Gene ID
基因名称
Gene name
上游引物序列
Upstream primer sequence (5'-3')
下游引物序列
Downstream primer sequence (5'-3')
EF101498.1 Actin GCAACAGATCAGCACACTTCCA GCTGACCCTGGTACTCCATTGT
LOC123424347 FPG TTGTCAGAGCCTGGCCATTT ACCTTCAGCAACCCCCAAAA
LOC123442698 OGG1 CATCGCACGGATCGAGAAGA GCCAGCAACATACTTTGCCC

Table 2

Analysis of variance (ANOVA) of barley germination indices under different germplasm resources and drought stress conditions"

指标
Index
变异来源
Source of variation
基因型
Genotype
处理
Treatment
基因型×处理
Genotype × treatment
发芽势GE (%) 方差SS 132,851.200 225,625.000 13,399.074
自由度DF 53 1 53
均方差MS 2506.626 225,625.000 2460.360
FF-value 30.57*** 2751.662*** 30.006***
发芽率GP (%) 方差SS 144,931.859 183,469.444 146,747.222
自由度DF 53 1 53
均方差MS 2734.563 183,469.444 2768.816
FF-value 30.011*** 2013.537*** 30.387***
发芽指数GI 方差SS 10,195.863 16,337.371 1457.406
自由度DF 53 1 53
均方差MS 192.375 16,337.371 27.498
FF-value 88.527*** 7518.092*** 12.654***
活力指数VI 方差SS 147.866 223.301 17.833
自由度DF 53 1 53
均方差MS 2.790 223.301 0.336
FF-value 93.957*** 7520.215*** 11.331***
单株干重SSDW (mg) 方差SS 0.004 0.006 0.001
自由度DF 53 1 53
均方差MS 7.6510E-05 0.006 1.7580E-05
FF-value 45.705*** 3552.814*** 10.501***
根长RL (cm) 方差SS 1287.199 1441.165 245.208
自由度DF 53 1 53
均方差MS 24.287 1441.165 4.627
FF-value 71.640*** 4251.089*** 13.647***
苗长SL (cm) 方差SS 1143.616 3170.514 155.539
自由度DF 53 1 53
均方差MS 21.578 3170.514 2.935
FF-value 62.020*** 9112.909*** 8.435***
根冠比 R/S 方差SS 1258.209 468.934 1271.404
自由度DF 53 1 53
均方差MS 23.740 468.934 23.989
FF-value 4.598*** 90.816*** 4.646***

Table S1

Comparison of differences in germination growth indexes of different barley germplasm resources under normal conditions"

指标
Index
类别
Category
品种数量
Number of cultivars
品种名称
Cultivar name
指标范围
Index range
发芽势GE (%) 显著高
Significantly higher
10 BGLAHA, IL-34, 资源71-CA2, 21099-2316, 金山本地大麦, 71200TTN, ZDM5430, 7DCADA, ZDM5458, IL-54
BGLAHA, IL-34, ZY71-CA2, 21099-2316, JSBD barley, 71200TTN, ZDM5430, 7DCADA, ZDM5458, IL-54
> 99%
显著低
Significantly lower
7 G0587125V, DM-1300, 资源69-G231M004M, 资源144-C7067705, 菲特36, G0584001, 7极亲本抗病154
G0587125V, DM-1300, ZY69-G231M004M, ZY144-C7067705, FT 36, G0584001, 7JQBKB154
< 90%
发芽率GP (%) 显著高
Significantly higher
17 BGLA HA, 黑龙江, EDM5189, IL-36, IL-34, G0584001, 资源- 173-3289, 资源136-21490058, 资源71-CA2, 21099-2316, 金山本地大麦, 71200TTN, ZDM5430, 7DCADA, ZDM5458, EZ04V021W, IL-54
BGLA HA, HLJ, EDM5189, IL-36, IL-34, G0584001, ZY-173- 3289, ZY136-21490058, ZY71-CA2, 21099-2316, JSBD barley, 71200TTN, ZDM5430, 7DCADA, ZDM5458, EZ04V021W, IL-54
100%
显著低
Significantly lower
7 118ZDM5512, 沾益红毛大麦, IL-49, ZYM21, 7极亲本抗病154, IL-48, IL-20
118ZDM5512, ZYHM barley, IL-49, ZYM21, 7JQBKB154, IL-48, IL-20
< 95%
发芽指数GI 显著高
Significantly higher
6 资源71-CA2, Z1920057W, 21099-2316, 金山本地大麦, 71200TTN, E02703897
ZY71-CA2, Z1920057W, 21099-2316, JSBD Barley, 71200TTN, E02703897
> 30
显著低
Significantly lower
5 资源69-G231M004M, 资源144-C7067705, 菲特36, G0584001, G0401018K-1
ZY69-G231M004M, ZY144-C7067705, FT36, G0584001, G0401018K-1
< 22
活力指数VI 显著高
Significantly higher
4 Z1920057W, 21099-2316, E02703897, 7DCADA > 0.5
显著低
Significantly lower
3 资源69-G231M004M, 资源144-C7067705, 菲特36
ZY69-G231M004M, ZY144-C7067705, FT36
< 0.4
单株干重SSDW (mg) 显著高
Significantly higher
8 GR5-419网8, BM13-007413, ZYM21, Z1920057W, 21099-2316, ZDM5430, E02703897, 7DCADA
GR5-419W8, BM13-007413, ZYM21, Z1920057W, 21099-2316, ZDM5430, E02703897, 7DCADA
> 17
显著低
Significantly lower
2 资源144-C7067705, IL-48
ZY144-C7067705, IL-48
< 15
根长RL (cm) 显著高
Significantly higher
5 118ZDM5512, 2117W46V, BE-ATRJX, GR5-419网8, ZDM5430
118ZDM5512, 2117W46V, BE-ATRJX, GR5-419W8, ZDM5430
> 12.4
显著低
Significantly lower
3 资源69-G231M004M, 资源144-C7067705, 菲特36
ZY69-G231M004M, ZY144-C7067705, FT36
< 10.2
苗长SL (cm) 显著高
Significantly higher
3 金山本地大麦, ZDM5430, ZYM21
JSBD barley, ZDM5430, ZYM21
> 11.5
显著低
Significantly lower
1 08京134
08J134
< 6
根冠比R/S 显著高
Significantly higher
4 2117W46V, 08京134, IL-48, IL-54
2117W46V, 08J134, IL-48, IL-54
> 1.6
显著低
Significantly lower
3 资源69-G231M004M, 资源144-C7067705, 菲特36
ZY69-G231M004M, ZY144-C7067705, FT36
< 0.8

Table S2

Comparison of differences in germination growth indexes of different barley germplasm resources under drought conditions"

指标
Index
类别
Category
品种数量
Number of cultivars
品种名称
Cultivar name
指标范围
Index range
发芽势GE (%) 显著高
Significantly higher
4 黄茫大麦92, 资源71-CA2, 21099-2316, 金山本地大麦
HM barley 92, ZY71-CA2, 21099-2316, JSBD barley
> 95%
显著低
Significantly lower
11 Z1450066W, 丹青4号, EDM5189, BM13-007413, ZW20400211W, 资源144-C7067705, 菲特36, IL-12, Z133V057W, EZ04V021W, IL-48
Z1450066W, DQ4, EDM5189, BM13-007413, ZW20400211W, ZY144- C7067705, FT36, IL-12, Z133V057W, EZ04V021W, IL-48
< 70%
发芽率GP (%) 显著高
Significantly higher
6 黄茫大麦92, 资源71-CA2, 21099-2316, 金山本地大麦, ZDM5430, E02703897
HM barley 92, ZY71-CA2, 21099-2316, JSBD barley, ZDM5430, E02703897
> 98%
显著低
Significantly lower
8 Z1450066W, BM13-007413, ZW20400211W, 资源144-C7067705, 菲特36, IL-12, Z133V057W, EZ04V021W
Z1450066W, BM13-007413, ZW20400211W, ZY144-C7067705, FT36, IL-12, Z133V057W, EZ04V021W
< 95%
发芽指数GI 显著高
Significantly higher
5 资源71-CA2, Z1920057W, 金山本地大麦, 71200TTN, E02703897
ZY71-CA2, Z1920057W, JSBD barley, 71200TTN, E02703897
> 25
显著低
Significantly lower
9 Z1450066W, EDM5189, ZW20400211W, 资源144-C7067705, 菲特36, IL-12, Z133V057W, EZ04V021W, IL-48
Z1450066W, EDM5189, ZW20400211W, ZY144-C7067705, FT36, IL-12, Z133V057W, EZ04V021W, IL-48
< 21
活力指数VI 显著高
Significantly higher
3 Z1920057W, 金山本地大麦, E02703897
Z1920057W, JSBD Barley, E02703897
> 0.4
显著低
Significantly lower
11 Z1450066W, EDM5189, 菲特36, 资源136-21490058, IL-12, 7极亲本抗病154, Z133V057W, EZ04V021W, IL-48, IL-20, IL-54
Z1450066W, EDM5189, FT36, ZY136-21490058, IL-12, 7JQBKB154, Z133V057W, EZ04V021W, IL-48, IL-20, IL-54
< 0.3
单株干重SSDW (mg) 显著高
Significantly higher
8 资源71-CA2, ZYM21, Z1920057W, 21099-2316, 金山本地大麦, ZDM5430, E02703897, 7DCADA
ZY71-CA2, ZYM21, Z1920057W, 21099-2316, JSBD barley, ZDM5430, E02703897, 7DCADA
> 15
显著低
Significantly lower
20 Z1450066W, EDM5189, BM13-007413, 资源69-G231M004M, ZY 144-C7067, 菲特36, G0584001, 2046R0805, BONC785, ZY 136-21490, G0401018K-1, ZDM5458, IL-12, 7极亲本抗病154, Z133V057W, EZ04V021W, 08京134, IL-48, IL-20, IL-54
Z1450066W, EDM5189, BM13-007413, ZY69-G231M004M, ZY 144- C7067, FT36, G0584001, 2046R0805, BONC785, ZY 136-21490, G0401018K-1, ZDM5458, IL-12, 7JQBKB154, Z133V057W, EZ04V021W, 08J134, IL-48, IL-20, IL-54
< 12
根长RL (cm) 显著高
Significantly higher
4 黄茫大麦92, ZYM21, ZDM5430, E02703897
HM barley92, ZYM21, ZDM5430, E02703897
> 10.2
显著低
Significantly lower
8 ZY 69-G231M, 菲特36, 2046R0805, G0401018K-1, IL-12, EZ04V021W, IL-20, IL-54
ZY 69-G231M, FT36, 2046R0805, G0401018K-1, IL-12, EZ04V021W, IL-20, IL-54
< 6.2
苗长SL (cm) 显著高
Significantly higher
4 金山本地大麦, 71200TTN, ZDM5430, E02703897
JSBD barley, 71200TTN, ZDM5430, E02703897
> 6.1
显著低
Significantly lower
10 EDM5189, BM13-007413, ZY 69-G231M, ZY 144-C7067, G0584001, G0401018K-1, IL-12, 7极亲本抗病154, EZ04V021W, IL-54
EDM5189, BM13-007413, ZY 69-G231M, ZY 144-C7067, G0584001, G0401018K-1, IL-12, 7JQBKB154, EZ04V021W, IL-54
< 3.2
根冠比R/S 显著高
Significantly higher
6 EDM5189, ZDM5458, EZ04V021W, 08京134, IL-20, IL-54
EDM5189, ZDM5458, EZ04V021W, 08J134, IL-20, IL-54
> 2.3
显著低
Significantly lower
1 EDM390404 < 1.5

Fig. 1

Cluster analysis of drought tolerance coefficients among different barley germplasm resources I: germplasm resources with excellent drought germination characteristics; II: germplasm resources with good drought germination characteristics; III: germplasm resources with moderate drought germination characteristics; IV: germplasm resources with relatively poor drought germination characteristics; V: germplasm resources with poor drought germination characteristics. HM Barley 92: Huangmang barley 92; JSBD barley: Jinshanbendi barley; ZY71-CA2: Ziyuan 71-CA2; 08J134: 08 Jing 134; ZY173-3289: Ziyuan 173-3289; ZY136-21490058: Ziyuan 136-21490058; DQ4: Danqing 4; FT36: Feite 36; ZY144-C7067705: Ziyuan 144-C7067705; ZY69-G231M004M: Ziyuan 69- G231M004M; 7JQBKB154: 7 Jiqinbenkangbing 154; HLJ: Heilongjiang; ZYHM Barley: Zhanyihongmao barley; GR5-419W8: GR5-419 Wang 8."

Table S3

Barley germplasm resources with small decrease in germination growth indexes under drought stress"

指标
Index
降幅
Decrease amplitude
品种数量
Number of cultivars
品种名称
Cultivar name
发芽势GE (%) 无影响No effect 4 黄茫大麦92, ZYM21, Z1920057W, ZY 71-CA2
HM barley 92, ZYM21, Z1920057W, ZY 71-CA2
发芽率GP (%) 无影响No effect 6 IL-49, ZY 71-CA2, 21099-2316, 金山本地大麦, ZDM5430, E02703897
IL-49, ZY 71-CA2, 21099-2316, JSBD barley, ZDM5430, E02703897
发芽指数GI < 33% 3 金山本地大麦, 71200TTN, E02703897
JSBD barley, 71200TTN, E02703897
活力指数VI < 44% 5 黄茫大麦92, 金山本地大麦, ZDM5430, E02703897, 7DCADA
HM barley 92, JSBD Barley, ZDM5430, E02703897, 7DCADA
单株干重SSDW (mg) < 13% 4 IL-48, IL-54, IL-20, EZ04V021W
根长RL (cm) < 16% 3 ZY 144-C7067, ZY 71-CA2, ZYM21
苗长SL (cm) < 38% 3 黄茫大麦92, 金山本地大麦, 71200TTN
HM barley 92, JSBD barley, 71200TTN

Table S4

Barley germplasm resources with large reduction in germination growth indexes under drought stress"

指标
Index
降幅
Decrease amplitude
品种数量
Number of cultivars
品种名称
Cultivar name
发芽势GE (%) 40%-50% 4 118ZDM5512, BGLA HA, 33329, DM-1300
发芽率GP (%) 60%-80% 3 ZDM5160, TRADI70W, BONC785
发芽指数GI 60%-70% 8 BE-ATRJX, 118ZDM5512, GR5-419网8, BGLA HA, 沾益红毛大麦, IL-53, GERTR0V, 33329
BE-ATRJX, 118ZDM5512, GR5-419W8, BGLA HA, ZYHM Barley, IL-53, GERTR0V, 33329
活力指数VI 60%-75% 12 E03V005W, IL-49, IL-36, IL-3, Z145V020W, IL-34, 21099-2316, 33329, BGLA HA, GERTR0V, 黑龙江, DM-1300
E03V005W, IL-49, IL-36, IL-3, Z145V020W, IL-34, 21099-2316, 33329, BGLA HA, GERTR0V, HLJ, DM-1300
单株干重SSDW (g) 40%-60% 9 BE-ATRJX, 118ZDM5512, ZDM5160, GR5-419网8, TRADI70W, 33329, IL-3, DM-1300, ZY 144-C7067
BE-ATRJX, 118ZDM5512, ZDM5160, GR5-419W8, TRADI70W, 33329, IL-3, DM-1300, ZY 144-C7067
根长RL (cm) 30%-35% 6 GR5-419网8, TRADI70W, GERTR0V, E03V005W, IL-3, DM-1300
GR5-419W8, TRADI70W, GERTR0V, E03V005W, IL-3, DM-1300
苗长SL (cm) 52%-60% 5 沾益红毛大麦, 黑龙江, E03V005W, IL-3, Z145V020W
ZYHM barley, HLJ, E03V005W, IL-3, Z145V020W

Fig. 2

Differences in germination and early growth indices among different barley germplasm resources FT36: Feite 36; ZY69-G231M004M: Ziyuan 69-G231M004M. CK: control; DT: drought stress. n = 3; *, P < 0.05; **, P < 0.01."

Fig. 3

Comparison of seed germination stages and seedling morphology among different barley germplasm resources Abbreviations are the same as those given in Fig. 2."

Fig. 4

Differential expression of HVFPG and HVOGG1 genes in seed embryos of different barley germplasm resources under drought stress Abbreviations are the same as those given in Fig. 2. * and ** mean significant differences at the 0.05 and 0.01 probability levels, respectively."

Fig. 5

Drought tolerance coefficients of DNA repair gene expression in seed embryos of different barley germplasm resources under drought stress Abbreviations are the same as those given in Fig. 2."

Fig. 6

Effect of drought stress on SOD and POD activities during seed germination of different barley germplasm resources Abbreviations are the same as those given in Fig. 2. *, P < 0.05; **, P < 0.01."

Fig. 7

Correlation analysis between SOD and POD activities and drought tolerance coefficients of germination indices at different germination stages in barley seeds GE: germination energy; GP: germination percentage; GI: germination index; VI: vigor index; SSDW: single seedling dry weight. SOD: superoxide dismutase; POD: peroxidase. *, P < 0.05; **, P < 0.01."

Fig. 8

Effect of drought stress on α-amylase and cysteine protease activities during seed germination of different barley germplasm resources Abbreviations are the same as those given in Fig. 2. *, P < 0.05; **, P < 0.01."

Fig. 9

Correlation analysis between α-amylase and cysteine protease activities and drought tolerance coefficients of germination indices at different germination stages in barley seeds RT: number of root tips; RL: root length; SL: shoot length; TRSA: total root surface area. α-AL: α-amylase; CP: cysteine protease. *, P < 0.05; **, P < 0.01."

Fig. 10

Effect of drought stress on soluble sugar and soluble protein content during seed germination of different barley germplasm resources Abbreviations are the same as those given in Fig. 2. *, P < 0.05; **, P < 0.01."

[1] Abdelrady W A, Ma Z X, Elshawy E E, Wang L L, Askri S M H, Ibrahim Z, Dennis E, Kanwal F, Zeng F R, Shamsi I H. Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress. Plant Stress, 2024, 11: 100403.
[2] Akbari M, Sabouri H, Sajadi S J, Yarahmadi S, Ahangar L. Classification and prediction of drought and salinity stress tolerance in barley using GenPhenML. Sci Rep, 2024, 14: 17420.
doi: 10.1038/s41598-024-68392-w pmid: 39075223
[3] Sabouri H, Pezeshkian Z, Taliei F, Akbari M, Kazerani B. Detection of closely linked QTLs and candidate genes controlling germination indices in response to drought and salinity stresses in barley. Sci Rep, 2024, 14: 15656.
doi: 10.1038/s41598-024-66452-9 pmid: 38977885
[4] Bykova N V, Hu J J, Ma Z G, Igamberdiev A U. The role of reactive oxygen and nitrogen species in bioenergetics, metabolism, and signaling during seed germination. Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Cham: Springer International Publishing, 2015. pp 177-195.
[5] Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol, 2008, 51: 167-173.
[6] Chen H H, Chu P, Zhou Y L, Li Y, Liu J, Ding Y, Tsang E W T, Jiang L W, Wu K Q, Huang S Z. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot, 2012, 63: 4107-4121.
[7] El-Maarouf-Bouteau H, Mazuy C, Corbineau F, Bailly C. DNA alteration and programmed cell death during ageing of sunflower seed. J Exp Bot, 2011, 62: 5003-5011.
doi: 10.1093/jxb/err198 pmid: 21765164
[8] Kowalik S, Groszyk J. Profiling of barley, wheat, and rye FPG and OGG1 genes during grain germination. Int J Mol Sci, 2023, 24: 12354.
[9] Murphy T M, Gao M J. Multiple forms of formamidopyrimidine- DNA glycosylase produced by alternative splicing in Arabidopsis thaliana. J Photochem Photobiol B-Biol, 2001, 61: 87-93.
[10] Córdoba-Cañero D, Roldán-Arjona T, Ariza R R. Arabidopsis ZDP DNA 3′-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. Plant J, 2014, 79: 824-834.
[11] García-Ortiz M V, Ariza R R, Roldán-Arjona T. An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol Biol, 2001, 47: 795-804.
pmid: 11785940
[12] Chiara F, Ajay S, Anjali S, Alma B, Vishal P, Anca M. Medicago truncatula hydropriming and biopriming improve seed germination and upregulate DNA repair and antioxidant genes. Genes, 2020, 11: 242.
[13] Li B B, Zhang S B, Lyu Y Y, Wei S, Hu Y S. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One, 2022, 17: e0263553.
[14] 李婉玲, 陈晓龙, 蔡立群, 王正伟, 张军. PEG模拟干旱胁迫对玉米种子萌发的影响. 干旱地区农业研究, 2022, 40(5): 32-41.
Li W L, Chen X L, Cai L Q, Wang Z W, Zhang J. Effects of PEG simulated drought stress on maize seed germination. Agric Res Arid Areas, 2022, 40(5): 32-41 (in Chinese with English abstract).
[15] 赵慧, 宋利强, 张娜, 张玮, 李俊明, 纪军. 欧山羊草6Ub染色体附加对小麦萌发期抗旱性的改良作用. 麦类作物学报, 2019, 39: 639-644.
Zhao H, Song L Q, Zhang N, Zhang W, Li J. Improvement of drought resistance of wheat (Triticum aestivum L.) at seed germination stage by addition of 6Ub chromosome from Aegilops biuncialis. J Triticeae Crops, 2019, 39: 639-644 (in Chinese with English abstract).
[16] 黄万里, 王建平, 刘宁, 卜登攀. 不同水培时间下大麦苗的营养价值及CNCPS组分. 草业科学, 2019, 36: 1811-1818.
Huang W L, Wang J P, Liu N, Bu D P. Determination of nutritive value and analysis of the CNCPS contents in barley grass cultivated using a hydroponic system. Pratac Sci, 2019, 36: 1811-1818 (in Chinese with English abstract).
[17] Andriotis V M E, Rejzek M, Rugen M D, Svensson B, Smith A M, Field R A. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism. Biochem Soc Trans, 2016, 44: 159-165.
[18] Hu S M, Qin Q Q, Zhang C, Yu J H, Huang S L, Liu J, Yang Z X. The effect of L-cysteine on starch and protein degradation during barley germination. Biotechnol Lett, 2024, 46: 861-870.
[19] Shi C, Xu L L. Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol, 2009, 51: 52-57.
[20] Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky D K, Albacete A A, Stabentheiner E, Franzaring J, et al. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot, 2015, 66: 5531-5542.
doi: 10.1093/jxb/erv228 pmid: 26002973
[21] 马雪丽. 不同区域生产的小麦种子活力差异及生理基础研究. 山东农业大学硕士学位论文, 山东泰安, 2016.
Ma X L. Research of Difference in Vigor and Physiological of Wheat Seed Produced in Different Region. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[22] 曲思泛. 玉米正反交组合种子活力差异机理解析. 山东农业大学硕士学位论文, 山东泰安, 2021.
Qu S F. Seed Vigour Comparison of Reciprocal Crosses Hybrid on Maize Inbred Lines. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2021 (in Chinese with English abstract).
[23] 陈蕾太. 逆境条件下小麦种子活力与主要相关酶活性及其基因表达的关系. 山东农业大学硕士学位论文, 山东泰安, 2016.
Chen L T. Relation of Wheat Seed Vigor and Main Related Enzyme Activities and Gene Expression under Stress Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[24] Ansari O, Azadi M S, Sharif-Zadeh F, Younesi E. Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. J Stress Physiol Biochem, 2013, 9: 61-71.
[25] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究. 作物学报, 2024, 50: 1568-1583.
Qiao Z X, Zhang J D, Wang Y, Guo Q F, Liu Y J, Chen R, Hu W H, Sun A Q. Difference in germination characteristics of different winter wheat cultivars under drought stress. Acta Agron Sin, 2024, 50: 1568-1583 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.31037
[26] 韩家帆. 野大麦种质资源鉴定与评价. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2023.
Han J F. Identification and Evaluation of Germplasm Resources of Hordeum Brevisubulatium. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).
[27] 鞠乐. 大麦萌发期抗旱的生理机理及差异表达基因的筛选. 石河子大学硕士学位论文, 新疆石河子, 2013.
Ju L. Physiological and Biochemical Mechanism of Drought Stress of Barley During Seed Germination Period and Screening Differentially Expressed Genes. MS Thesis of Shihezi University, Shihezi, Xinjiang, 2013 (in Chinese with English abstract).
[28] 刘瑞, 周贵兰, 洪越, 路振宗, 袁雪, 王晔, 李润枝. 低温对小麦种子萌发不同阶段生理特性的影响. 北京农学院学报, 2024, 39(3): 32-38.
Liu R, Zhou G L, Hong Y, Lu Z Z, Yuan X, Wang Y, Li R Z. Effect of low temperature on physiological characteristics of wheat seeds at different stages of germination. J Beijing Univ Agric, 2024, 39(3): 32-38 (in Chinese with English abstract).
[29] Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, 362: 709-715.
[30] Waterworth W M, Bray C M, West C E. The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot, 2015, 66: 3549-3558.
doi: 10.1093/jxb/erv080 pmid: 25750428
[31] Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem, 2012, 60: 196-206.
[32] 李淑梅, 董丽平, 王付娟. PEG模拟干旱胁迫对大麦种子萌发及生理特性的响应. 种子, 2016, 35(10): 99-101.
Li S M, Dong L P, Wang F J. The response of PEG simulated drought stress to germination and physiological features of barley seed. Seed, 2016, 35(10): 99-101 (in Chinese with English abstract).
[33] 宋松泉, 唐翠芳, 程红焱, 舒凯. 种子萌发调控的研究进展. 中国科学:生命科学, 2024, 54: 1226-1253.
Song S Q, Tang C F, Cheng H Y, Shu K. Research progress in regulation of seed germination. Sci Sin Vitae, 2024, 54: 1226-1253 (in Chinese with English abstract).
[34] 李小东, 李倩, 张悦瑶, 于章龙, 蔡岳, 刘瑞, 孙元琳. 发芽对黑小麦营养成分的影响. 中国粮油学报, 2025, 40(2): 58-67.
Li X D, Li Q, Zhang Y Y, Yu Z L, Cai Y, Liu R, Sun Y L. Effect of germination on nutritional components of black wheat. J Chin Cereals Oils Assoc, 2025, 40(2): 58-67 (in Chinese with English abstract).
[35] 徐托明, 田斌强, 孙智达, 谢笔钧. 燕麦发芽过程中三大营养素的变化. 天然产物研究与开发, 2011, 23: 534-537.
Xu T M, Tian B Q, Sun Z D, Xie B J. Changes of three main nutrient during oat germination. Nat Prod Res Dev, 2011, 23: 534-537 (in Chinese with English abstract).
[36] Zhao M, Zhang H X, Yan H, Qiu L, Baskin C C. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci, 2018, 9: 234.
doi: 10.3389/fpls.2018.00234 pmid: 29535748
[1] WEN Xuan, ZHONG Xiu-Li, WANG Shang-Wen, JIN Tao, PENG Jun, LIU En-Ke. Screening of low nitrogen tolerant germplasm in seedling highland barley based on tolerance index and comprehensive evaluation of different nitrogen efficiency types [J]. Acta Agronomica Sinica, 2025, 51(7): 1949-1958.
[2] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[3] CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942.
[4] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[5] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[6] MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102.
[7] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[8] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[9] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[10] SUN Man, AN Chao-Dan, GAO Guang-Qi, GUO Jie, YANG Ping, JIANG Cong-Cong. Genetic dissection of the albino hull mutations in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2024, 50(12): 3046-3054.
[11] ZHENG Guang-Jie, YE Chang, XU Chun-Mei, CHEN Song, CHU Guang, CHEN Li-Peng, ZHANG Xiu-Fu, WANG Dan-Ying. Effect of low-temperature stress on glucose and water status in rice germ and its relationship with seedling emergence [J]. Acta Agronomica Sinica, 2024, 50(12): 3055-3068.
[12] WANG Zi-Ran, LU Yi-Wei, YANG Jing-Yi, WANG Cheng-Long, SONG Ya-Ping, MA Jin-Hu. Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress [J]. Acta Agronomica Sinica, 2024, 50(11): 2883-2895.
[13] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[14] ZHAN Xiao-Xiao, FENG Ju-Ling, ZHANG Zhen-Huan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun, YAO Li-Rong. Salt tolerance analysis of HvMBF1c in barley [J]. Acta Agronomica Sinica, 2024, 50(10): 2503-2514.
[15] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .