Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2399-2411.doi: 10.3724/SP.J.1006.2025.54027

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comparison of wound healing capacity of tubers of different potato varieties

YIN Li-Na(), ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang*()   

  1. College of Agriculture and Biotechnology, Yunnan Agricultural University / Potato Crops Research Institute, Kunming 650201, Yunnan, China
  • Received:2025-02-26 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-10
  • Contact: *E-mail: ndyangfang@126.com E-mail:1343793141@qq.com;ndyangfang@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-09-P15);National Key Research and Development Program of China(2022YFD1601802);National Natural Science Foundation of China(31660355)

Abstract:

The wound healing ability of potato tubers varies among cultivars. In this study, five tetraploid potato cultivars ‘Dianshu 47’ (D47), ‘Dianshu 14023’ (14023), ‘Dianshu 1208’ (1208), ‘Cooperation-88’ (C88), and ‘Qingshu 9’ (Q9) were used, as experimental materials. The accumulation of suberin and lignin at wound sites was observed, along with the activity of key enzymes and metabolite contents involved in the phenylpropanoid pathway, as well as the relative expression levels of genes related to suberin biosynthesis. The wound healing capacity of the five cultivars was comprehensively evaluated using the membership function method. The results showed that the activities of PAL, 4CL, C4H, and POD, as well as the relative expression levels of StPAL, StPOD, St4CL, and StC4H, increased rapidly during the early stage of wound healing (0-2 d) and peaked during the middle to late stages (4-8 d). As healing progressed, the contents of lignin, flavonoids, and total phenolics increased, while SPP and SPA were rapidly deposited to form the wound periderm. Among the whole cultivars, D47 exhibited, the lowest weight loss rate, 1208 and C88 showed the highest. The deposition rates of SPA, SPP, and lignin layers in D47 were relatively rapid, reaching maximum levels at 6 days post-injury, while deposition in 14023 and 1208 was comparatively slower. Additionally, D47 and C88 showed higher activities of PAL, POD, and C4H, and therelative expression levels of StPAL, StPOD, and StC4H were significantly higher in D47 and Q9 than in the other cultivars (P < 0.05), In contrast, 14023 and 1208 exhibited lower PAL and POD activities. During the wound-healing process, lignin, total phenolics, and flavonoid contents were consistently higher in D47 and lower in 1208 and 14023. Principal component analysis of 18 wound-healing indicators across the 0-8 day period identified weight loss rate, SPA cell layer thickness, SPP cell layer thickness, lignin layer thickness, and the relative expression levels of StPAL, StC4H, and StPOD as representative indicators for evaluating wound healing ability. Based on membership function analysis, the overall ranking of wound healing ability was: D47 (3.9808) > Q9 (3.5767) > C88 (3.4663) > 1208 (3.3546) > 14023 (2.0241). These findings suggest that the phenylpropanoid metabolic pathway plays a key role in the wound suberization process of potato tubers.

Key words: potato varieties, wound healing, phenylpropane metabolism, principal component analysis, membership function

Table 1

List of primers used for qRT-PCR"

基因名称
Gene name
登录号
Accession number
引物序列
Primer sequences (5′-3′)
StPAL Soltu.DM.03G004870.1 F: TTGGTGCAACATCTCATAGAAG
R: CAATGTGTGAGATGATTCTGTTCC
St4CL Soltu.DM.03G020790.1 F: GCATTTGTAGTCCGTTCGGCCC
R: GATGGAGACTTCGGAATCGCGTG
StC4H Soltu.DM.06G032860.1 F: GGAGAGATCAACGAGGATAACG
R: GAACTGTATCAATCTCATCACGGAG
StPOD Soltu.DM.06G010770.1 F: CCTCAGCTCAACTCACCACTGG
R: TCCAGGAACAATGATCCATCGC
StEF1α Soltu.DM.06G005620.1 F: ATTGGAAACGGATATGCTCCA
R: TCCTTACCTGAACGCCTGTCA

Table 2

Rate of tuber weight loss during wound healing in different potato varieties"

创伤时间
Days after wounding
失重率Weight loss (%)
14023 Q9 1208 C88 D47
2 d 11.37 ± 1.97 a 7.55 ± 0.47 b 10.15 ± 0.14 ab 7.43 ± 1.18 b 7.30 ± 0.20 b
4 d 16.89 ± 0.15 b 17.46 ± 0.09 ab 18.49 ± 0.14 a 16.46 ± 1.18 b 17.41 ± 0.82 ab
6 d 21.21 ± 0.79 b 25.68 ± 0.17 a 21.92 ± 0.23 b 22.20 ± 1.22 b 19.41 ± 1.70 b
8 d 31.33 ± 0.93 ab 26.02 ± 0.87 bc 32.42 ± 0.34 ab 33.72 ± 3.94 a 24.19 ± 1.78 c

Fig. 1

Changes in SPA during wound healing in different potato varieties Arrows point to SPA staining deposited in wound tubers, viewed at 10×10, scale bar: 200 μm. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Fig. 2

Changes in SPA (A), SPP (B) and lignin (C) cell layer thickness during wound healing in different potato varieties Lower case letters represent significant differences at the 0.05 level for different varieties at the same treatment time. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Fig. 3

Changes in SPP during wound healing in different potato varieties Arrows point to SPA staining deposited in wound tubers, viewed at 10×10, scale bar: 200 μm. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Fig. 4

Changes in lignin during wound healing in different potato varieties Arrows point to SPA staining deposited in wound tubers, viewed at 10×10, scale bar: 200 μm. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Fig. 5

Changes in the activities of key enzymes and related genes of phenylpropane metabolism during wound healing in different potato varieties A: PAL enzyme activity; B: StPAL relative expression level; C: POD enzyme activity; D: StPOD relative expression level; E: 4CL enzyme activity: F: St4CL relative expression level; G: C4H enzyme activity; H: StC4H relative expression level. Lowercase letters represent significant differences at the 0.05 level for different varieties at the same treatment time. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Fig. 6

Changes in lignin (A), flavonoid (B) and total phenol (C) contents during wound healing in different potato varieties Lower case letters represent significant differences at the 0.05 level for different varieties at the same treatment time. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Fig. 7

PCA analysis of wound healing indicators for different potato varieties a: weight loss rate; b: SPA cell thickness; c: SPP cell thickness; d: lignin cell thickness; e: PAL enzyme activity; f: POD enzyme activity; g: 4CL enzyme activity; h: C4H enzyme activity; i: lignin content; j: flavonoid content; k: total phenol content; l: StPAL relative expression; m: St4CL relative expression; n: St4CH relative expression; o: relative expression of StPOD. 14023: ‘Dianshu 14023’; Q9: ‘Qingshu 9’; 1208: ‘Dianshu 1208’; C88: ‘Cooperation-88’; D47: ‘Dianshu 47’."

Table 3

Comprehensive evaluation of wound healing ability of five potato materials based on membership function values"

指标 Index 14023 Q9 1208 C88 D47
失重率 Weight loss 0.7611 0.5583 1.0000 0.9301 0
SPA细胞层厚度Cell layers thickness of SPA 0 0.2584 0.6739 1.0000 0.5217
SPP细胞层厚度Cell layers thickness of SPP 0.2794 0.6682 1.0000 0.5161 0
木质素细胞层厚度Cell layers thickness of lignin 0.1817 0 0.4477 0.9958 1.0000
StPAL相对表达水平Relative expression of StPAL 0.5485 0.5092 0.1838 0 1.0000
StC4H相对表达水平Relative expression of StC4H 0.0804 0.5825 0 0.0242 1.0000
StPOD相对表达水平Relative expression of StPOD 0.1728 1.0000 0.0490 0 0.4590
综合评价D值Comprehensive evaluation D-value 2.0241 3.5767 3.3546 3.4663 3.9808
排序 Sequencing 5.0000 2.0000 4.0000 3.0000 1.0000
[1] 张志鹏, 谭芸秀, 李宝军, 李永才, 毕阳, 李守强, 王小晶, 张宇, 胡丹. 采后外源脱落酸处理对雾培微型马铃薯周皮木栓化的影响及其机理. 中国农业科学, 2023, 56: 1154-1167.
doi: 10.3864/j.issn.0578-1752.2023.06.011
Zhang Z P, Tan Y X, Li B J, Li Y C, Bi Y, Li S Q, Wang X J, Zhang Y, Hu D. Effects of exogenous abscisic acid treatment on periderm suberification of postharvest mini-tuber potato from aeroponic system and its possible mechanisms. Sci Agric Sin, 2023, 56: 1154-1167 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.06.011
[2] 姜红, 王毅, 王斌, 张静荣, 郑晓渊, 毕阳. 马铃薯‘青薯168’块茎浅层和深层损伤愈伤能力的比较. 园艺学报, 2018, 45: 908-918.
doi: 10.16420/j.issn.0513-353x.2017-0602
Jiang H, Wang Y, Wang B, Zhang J R, Zheng X Y, Bi Y. A comparison study of healing ability of shallow and deep wounds in potato tubers ‘Qingshu 168’. Acta Hortic Sin, 2018, 45: 908-918 (in Chinese with English abstract).
[3] Lulai E C, Corsini D L. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol Mol Plant Pathol, 1998, 53: 209-222.
[4] Sabba R P, Lulai E C. Immunocytological analysis of potato tuber periderm and changes in pectin and extensin epitopes associated with periderm maturation. Jashs, 2005, 130: 936-942.
[5] Sabba R P, Lulai E C. Histological analysis of the maturation of native and wound periderm in potato (Solanum tuberosum L.) tuber. Ann Bot, 2002, 90: 1-10.
[6] Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala V K R, Lyu S Y, Hammerschmidt R, Douches D, Yim W C, Santos P, et al. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. Plant J, 2021, 107: 77-99.
[7] Zhang X J, Yang R R, Zheng X Y, Wang Q H, Silvy E M, Li Y C, Han Y, Bi Y, Prusky D. UV-C irradiation accelerated the deposition of suberin and lignin at wounds by activating phenylpropanoid metabolism in potato tubers. Sci Hortic, 2023, 309: 111634.
[8] Zhou F H, Jiang A L, Feng K, Gu S T, Xu D Y, Hu W Z. Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes. Postharvest Biol Technol, 2019, 157: 110958.
[9] 张梅花, 杨芳, 马露, 宋嘉驰, 申亚桐. 外源NO和ABA处理对马铃薯块茎创伤周皮中软木脂积累的影响. 西南农业学报, 2021, 34: 1201-1207.
Zhang M H, Yang F, Ma L, Song J C, Shen Y T. Effects of exogenous NO and ABA treatments on accumulation of suberin in wound-healing periderm of potato tubers. Southwest China J Agric Sci, 2021, 34: 1201-1207 (in Chinese with English abstract).
[10] Zheng X Y, Jiang H, Bi Y, Wang B, Wang T L, Li Y C, Gong D, Wei Y N, Li Z C, Prusky D. Comparison of wound healing abilities of four major cultivars of potato tubers in China. Postharvest Biol Technol, 2020, 164: 111167.
[11] 姜红, 毕阳, 李昌健, 王毅, 李生娥, 刘耀娜, 王斌. 马铃薯品种‘青薯168’和‘陇薯3号’块茎愈伤能力的比较. 中国农业科学, 2017, 50: 774-782.
doi: 10.3864/j.issn.0578-1752.2017.04.017
Jiang H, Bi Y, Li C J, Wang Y, Li S E, Liu Y N, Wang B. Comparison of healing ability on potato tuber cultivars ‘Qingshu No.168’ and ‘Longshu No.3’. Sci Agric Sin, 2017, 50: 774-782 (in Chinese with English abstract).
[12] Jin L Q, Cai Q, Huang W L, Dastmalchi K, Rigau J, Molinas M, Figueras M, Serra O, Stark R E. Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase. Phytochemistry, 2018, 147: 30-48.
doi: S0031-9422(17)30404-1 pmid: 29288888
[13] Pollard M, Beisson F, Li Y H, Ohlrogge J B. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci, 2008, 13: 236-246.
doi: 10.1016/j.tplants.2008.03.003 pmid: 18440267
[14] 谢凤, 郝乐, 王振杰, 贾晋, 邵玉涛. 苯丙烷代谢途径分支对生物胁迫响应的研究进展. 中国植保导刊, 2023, 43(2): 23-30.
Xie F, Hao L, Wang Z J, Jia J, Shao Y T. Advances in understanding how branches of the phenylpropanoid pathway respond to biotic stress. China Plant Prot, 2023, 43(2): 23-30 (in Chinese with English abstract).
[15] 柴秀伟, 孔蕊, 李宝军, 朱亚同, 毕阳, Dov Prusky. 一氧化氮对苹果果实愈伤苯丙烷代谢的影响及生理机制分析. 西北植物学报, 2022, 42: 619-627.
Chai X W, Kong R, Li B J, Zhu Y T, Bi Y, Dov Prusky. Effect of nitric oxide on phenylpropanoid metabolism in healing of apple fruit and analysis of its physiological mechanism. Acta Bot Boreali-Occident Sin, 2022, 42: 619-627 (in Chinese with English abstract).
[16] 韩占红, 王斌, 杨瑞瑞, 杨乾, 李志程, Dov Prusky. 毕阳. 一氧化氮处理对马铃薯采后块茎愈伤的促进及机制. 食品科学, 2020, 41(21): 222-229.
Han Z H, Wang B, Yang R R, Yang Q, Li Z C, Prusky D, Bi Y. Effect and mechanism of postharvest nitric oxide treatment on promoting wound healing in potato tubers. Food Sci, 2020, 41(21): 222-229 (in Chinese with English abstract).
[17] 邢媛, 李凯峰, 周进华, 郭华春, 李俊. 不同马铃薯品种(系)耐旱性综合评价及其指标筛选. 生态学杂志, 2024, 43: 178-187.
Xing Y, Li K F, Zhou J H, Guo H C, Li J. Comprehensive evaluation of drought tolerance of different cultivars (lines) of potatoes and screening of the indicators. Chin J Ecol, 2024, 43: 178-187 (in Chinese with English abstract).
doi: 10.13292/j.1000-4890.202401.007
[18] Kolattukudy P E. Biopolyester membranes of plants: cutin and suberin. Science, 1980, 208: 990-1000.
doi: 10.1126/science.208.4447.990 pmid: 17779010
[19] Jiang H, Wang B, Ma L, Zheng X Y, Gong D, Xue H L, Bi Y, Wang Y, Zhang Z, Prusky D. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid s-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism. Postharvest Biol Technol, 2019, 153: 125-132.
[20] 张梅花, 马露, 杨芳, 郭华春. 外源NO处理对马铃薯块茎创伤木栓化的影响. 分子植物育种, 2021, 19: 3059-3064.
Zhang M H, Ma L, Yang F, Guo H C. Effects of nitric oxide on wound suberization of potato tuber. Mol Plant Breed, 2021, 19: 3059-3064 (in Chinese with English abstract).
[21] Zhu Y T, Zong Y Y, Liang W, Kong R, Gong D, Han Y, Li Y C, Bi Y, Prusky D. Sorbitol immersion accelerates the deposition of suberin polyphenolic and lignin at wounds of potato tubers by activating phenylpropanoid metabolism. Sci Hortic, 2022, 297: 110971.
[22] 杨芳, 李俊, 郭华春. 马铃薯块茎创伤木栓化过程中形态生理指标及内源激素的变化. 植物生理学报, 2017, 53: 824-830.
Yang F, Li J, Guo H C. Changes of morphological and physiological indices and endogenous hormones during potato tuber wound-healing suberization. Plant Physiol J, 2017, 53: 824-830 (in Chinese with English abstract).
[23] Lulai E C, Suttle J C, Pederson S M. Regulatory involvement of abscisic acid in potato tuber wound-healing. J Exp Bot, 2008, 59: 1175-1186.
doi: 10.1093/jxb/ern019 pmid: 18356146
[24] 王树斌, 全雪丽, 具红光, 朴世领, 吴松权. 膜荚黄芪肉桂酸- 4-羟化酶(C4H) 基因克隆与序列分析. 延边大学农学学报, 2012, 34(4): 277-281.
Wang S B, Quan X L, Ju H G, Piao S L, Wu S Q. Cloning and sequence analysis of cinnamate acid-4-hydroxylase (C4H) gene from Astragalus membranaceus. J Agric Sci Yanbian Univ, 2012, 34(4): 277-281 (in Chinese with English abstract).
[25] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能. 作物学报, 2022, 48: 63-75.
doi: 10.3724/SP.J.1006.2022.01100
Meng Y, Xing L L, Cao X H, Guo G Y, Chai J F, Mi C L. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants. Acta Agron Sin, 2022, 48: 63-75 (in Chinese with English abstract).
[26] Xie P D, Yang Y Y, Oyom W, Su T T, Tang Y B, Wang Y, Li Y C, Prusky D, Bi Y. Chitooligosaccharide accelerated wound healing in potato tubers by promoting the deposition of suberin polyphenols and lignin at wounds. Plant Physiol Biochem, 2023, 199: 107714.
[27] Han Y, Yang R R, Wang Q H, Wang B, Prusky D. Sodium silicate promotes wound healing by inducing the deposition of suberin polyphenolic and lignin in potato tubers. Front Plant Sci, 2022, 13: 942022.
[28] Liu L Y, Geng P, Jin X Y, Wei X P, Xue J, Wei X B, Zhang L H, Liu M P, Zhang L, Zong W, et al. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam (Dioscorea opposita) tubers. Funct Plant Biol, 2023, 50: 691-700.
[29] 张昌兵, 唐梅玲, 周洋, 张慧丽, 余静菠, 陈仕勇. 6个饲用燕麦品种苗期对低磷胁迫的响应及耐低磷评价. 西南民族大学学报(自然科学版), 2025, 51(1): 1-7.
Zhang C B, Tang M L, Zhou Y, Zhang H L, Yu J B, Chen S Y. Response of seedling growth and root morphology of six forage oat varieties to low phosphorus stress and evaluation of low phosphorus tolerance. J Southwest Minzu Univ (Nat Sci Edn), 2025, 51(1): 1-7 (in Chinese with English abstract).
[30] 王诗音, 李增辉, 吴冰瑞, 李天宇, 庞玉辉, 马指挥, 李家创, 王黎明, 董普辉. PEG胁迫下小麦新品系萌发期抗旱性鉴定. 山东农业科学, 2024, 56(10): 43-48.
Wang S Y, Li Z H, Wu B R, Li T Y, Pang Y H, Ma Z H, Li J C, Wang L M, Dong P H. Drought resistance identification of new wheat lines at germination stage under PEG stress. Shandong Agric Sci, 2024, 56(10): 43-48 (in Chinese with English abstract).
[1] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[2] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[3] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[4] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[5] LI A-Lei, DAI Zhi-Gang, CHEN Ji-Quan, DENG Can-Hui, TANG Qing, CHENG Chao-Hua, XU Ying, ZHANG Xiao-Yu, SU Jian-Guang, YANG Ze-Mao. Evaluation of cadmium tolerance in germination stage of 239 dark jute (Corchorus olitorius L.) germplasm resources and screening of cadmium tolerance resources [J]. Acta Agronomica Sinica, 2023, 49(10): 2677-2686.
[6] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[7] LIU Yan-Di, ZHAO Bao-Ping, ZHANG Yu, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui. Relationship between yield differences of different genotypes of oats and leaf physiological characteristics [J]. Acta Agronomica Sinica, 2022, 48(11): 2953-2964.
[8] CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination [J]. Acta Agronomica Sinica, 2020, 46(10): 1591-1604.
[9] JI Long,SHEN Hong-Fang,XU Chun-Chun,CHEN Zhong-Du,FANG Fu-Ping. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis [J]. Acta Agronomica Sinica, 2019, 45(7): 982-992.
[10] HU Yi-Bo, YANG Xiu-Shi, LU Ping*,REN Gui-Xing*. Diversity and Correlation of Quality Traits in Quinoa Germplasms from North China [J]. Acta Agron Sin, 2017, 43(03): 464-470.
[11] WU Qi,ZHOU Yu-Fei,GAO Yue,ZHANG Jiao,CHEN Bing-Ru,XU Wen-Juan,HUANG Rui-Dong. Screening and Identification for Drought Resistance during Germination in Sorghum Cultivars [J]. Acta Agron Sin, 2016, 42(08): 1233-1246.
[12] TANG Zhong-Hou,ZHANG Yun-Gang,WEI Meng,CHEN Xiao-Guang,SHI Xin-Min,ZHANG Ai-Jun,LI Hong-Min,DING Yan-Feng. Screening and Evaluation Indicators for Low Potassium-Tolerant and Potassium Efficient Sweetpotato (Ipomoea batatas L.) Varieties (Lines) [J]. Acta Agron Sin, 2014, 40(03): 542-549.
[13] WANG Yi-Tao,ZHOU Yu-Fei,LI Feng-Xian,YI Bing,BAI Wei,YAN Tong,XU Wen-Juan,GAO Ming-Chao,HUANG Rui-Dong. Identification and Classification of Sorghum Cultivars for Drought Resistance during Germination Stage Based on Principal Components Analysis and Self Organizing Map Cluster Analysis [J]. Acta Agron Sin, 2014, 40(01): 110-121.
[14] CHEN Yu-Liang,SHI You-Tai,LUO Jun-Jie,WANG Di,HOU Yi-Qing,LI Zhong-Wang,ZHANG Bing-Xian. Screening of Drought Tolerant Agronomic Trait Indices of Colored Cotton Varieties (Lines) in Gansu Province [J]. Acta Agron Sin, 2012, 38(09): 1680-1687.
[15] HU Biao-Lin,WAN Yong,LI Xia,LEI Jian-Guo,LUO Xiang-Dong,YAN Wen-Gui,XIE Jian-Kun. Analysis on Genetic Diversity of Phenotypic Traits in Rice (Oryza sativa) Core Collection and Its Comprehensive Assessment [J]. Acta Agron Sin, 2012, 38(05): 829-839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .