Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2387-2398.doi: 10.3724/SP.J.1006.2025.51019

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA

LI Yun-Xiang1,3(), GUO Qian-Qian1,2, HOU Wan-Wei1,3,4, ZHANG Xiao-Juan1,2,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2College of Eco-Environmental Engineering, Qinghai University, Xining 810016, Qinghai, China
    3Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China
    4National Crop Germplasm Resources Duplicate, Xining 810016, Qinghai, China
  • Received:2025-02-19 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-10
  • Contact: *E-mail: xiaojuan830136@163.com E-mail:648752668@qq.com;xiaojuan830136@163.com
  • Supported by:
    Kunlun Talents, High-end Innovative Talents, and Cultivation of Top-notch Talents (Thousand Talents Program) Project of Qinghai Province

Abstract:

Wheat is one of the most important staple crops globally, and drought stress can severely impact its growth and development. Therefore, understanding the genetic basis of drought tolerance in wheat and identifying superior drought-resistance- related genes is of great importance for ensuring national food security. In this study, 159 wheat accessions introduced from ICARDA were used as experimental materials. A 20% PEG-6000 solution was applied to simulate drought conditions at the seedling stage in hydroponic experiments. Phenotypic data were collected for five root traits—total root length, root surface area, root volume, average root diameter, and root fork number. Correlation analysis was conducted, and drought tolerance coefficients for the five traits were calculated using data obtained from a 55K SNP chip. The results revealed substantial phenotypic variation in root traits under both control and drought conditions. Under normal conditions, the coefficients of variation ranged from 27.10% to 40.46%, while under drought stress they ranged from 24.95% to 57.04%. Correlation analysis of the drought tolerance coefficients showed no significant relationship between the coefficient for average root diameter and those for root surface area and root fork number. However, a significant negative correlation was observed between average root diameter and total root length, while the other traits exhibited significant positive correlations with each other. Genome-wide association analysis (GWAS) identified a total of 39 SNP loci significantly associated with root traits at the P ≤ 0.001 level. These loci were distributed across 16 chromosomes (1B, 1D, 2B, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6A, 6D, 7A, 7B, and 7D), with explained phenotypic variation ranging from 7.12% to 14.44%. Six pleiotropic loci were identified, all significantly associated with both root surface area and total root length, and located on chromosomes 3B and 4A, with contribution rates ranging from 7.15% to 14.44%. Based on these 39 significant loci, candidate gene prediction identified 12 genes potentially related to drought tolerance in wheat. Among them, TraesCS5B01G556300 (MYB transcription factor 60), TraesCS7A01G508700 (WRKY transcription factor WRKY28), TraesCS2B01G002700 (dehydration-responsive element-binding protein 1C), and TraesCS3D01G055500 (14-3-3-like protein) are likely to play important roles in regulating drought tolerance in wheat.

Key words: wheat, roots, drought resistance, 55K SNP, genome-wide association analysis

Table S1

The material information"

品种
Variety
谱系
Pedigree
ICARDA1 WEAVER/WL 3928//SW 89.3064/3/SOMAMA-3
ICARDA2 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/PFAU/MILAN
ICARDA3 YMI #6/GEN//TIA.1/3/VEE#5//DOVE/BUC/4/ASFOOR-4
ICARDA4 WEAVER/WL 3928//SW 89.3064/3/LAKTA-7
ICARDA5 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/FLORKWA-1
ICARDA6 PBW343*2/KUKUN//22SAWSN - 97
ICARDA7 CHAMARAN/LAKTA-7
ICARDA8 ATENA-1//MILAN/DUCULA
ICARDA9 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/6/LFN/II58.57//PRL/3/HAHN/4/KAUZ/5/KAUZ
ICARDA10 HUBARA-13/4/TRAP#1/BOW//PFAU/3/MILAN
ICARDA11 PASTOR-2/3/SHUHA-7//SERI 82/SHUHA'S'
ICARDA12 HUBARA-1/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR
ICARDA13 SERI.1B//KAUZ/HEVO/3/AMAD/4/SHUHA-7//SERI 82/SHUHA'S'
ICARDA14 TEVEE-11/SHUHA-19/7/KEA/TAN/4/TSH/3/KAL/BB//TQFN/5/WL7168/6/SNB
ICARDA15 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA16 SERI.1B//KAUZ/HEVO/3/AMAD/4/MNCH/3*BCN
ICARDA17 KAUZ'S'/SERI/4/SERI.1B*2/3/KAUZ*2/BOW//KAUZ
ICARDA18 P1.861/RDWG//DAJAJ-10
ICARDA19 VEE7/KAUZ//PFAU/MILAN
ICARDA20 SERI.1B//KAUZ/HEVO/3/AMAD/4/WEAVER/JACANA
ICARDA21 SERI.1B//KAUZ/HEVO/3/AMAD/4/ESDA/SHWA//BCN
ICARDA22 KAUZ'S'/SERI/3/TEVEE'S'//CROW/VEE'S'
ICARDA23 KAUZ'S'/SERI/3/TEVEE'S'//CROW/VEE'S'
ICARDA24 ATTILA*2/PBW65//PFAU/MILAN
ICARDA25 ATTILA*2/PBW65//PFAU/MILAN
ICARDA26 WHEATEAR/22SAWSN - 156
ICARDA27 YMI #6/GEN//TIA.1/3/VEE#5//DOVE/BUC/4/MILAN/PASTOR
ICARDA28 TRACHA-2/SHUHA-3//KAUZ/FLORKWA-1
ICARDA29 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/TEVEE'S'/BOBWHITE #1
ICARDA30 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/TEVEE'S'/BOBWHITE #1
ICARDA31 DEBEIRA/4/KAUZ//ALTAR 84/AOS/3/KAUZ
ICARDA32 KAUZ/SAMAR-15//RDWG/MILAN
ICARDA33 CHILERO-1/4/VEE'S'/3/HORK/4MH//KAL-BB/5/CATBIRD-10
ICARDA34 HAMAM-2/FLAG-4
ICARDA35 STAR*3/LOTUS-5/4/TAM200/TUI//MILAN/KAUZ/3/CROC-1/AE.SQUARROSA (224)//OPATA
ICARDA36 VEE/PJN//2*KAUZ/3/MILAN/DUCULA
ICARDA37 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/PFAU/MILAN
ICARDA38 SHUHA-4//NS732/HER/3/MILAN/DUCULA
ICARDA39 SHUHA-4//NS732/HER/3/MILAN/DUCULA
ICARDA40 HADIAH-14/3/MUNIA/CHTO//MILAN
ICARDA41 GIZA-164//TNMU/MILAN
ICARDA42 GIZA-164//TNMU/MILAN
ICARDA43 SERI.1B//KAUZ/HEVO/3/AMAD/4/KAUZ'S'/FLORKWA-1
ICARDA44 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/FLORKWA-1
ICARDA45 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/FLORKWA-1
ICARDA46 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/FLORKWA-1
ICARDA47 OPATA/RAYON//KAUZ/3/PFAU/MILAN
ICARDA48 SHUHA-4//NS732/HER/3/TNMU/MILAN
ICARDA49 SHUHA-4//NS732/HER/3/TNMU/MILAN
ICARDA50 ATTILA 50Y//ATTILA/BCN/3/PFAU/MILAN
ICARDA51 JAWAHIR-1/GIRWILL-5
ICARDA52 SEKSAKA-7//SHUHA-3/PGO/SERI 82
ICARDA53 KBG-01/TOWPE
ICARDA54 SIDS-1//ATTILA*2/RAYON
ICARDA55 SIDS-1//ATTILA*2/RAYON
ICARDA56 GIZA-168/4/ATTILA*2/3/KAUZ*2/TRAP//KAUZ
ICARDA57 GIZA-168/4/ATTILA*2/3/KAUZ*2/TRAP//KAUZ
ICARDA58 GIZA-168/4/ATTILA*2/3/KAUZ*2/TRAP//KAUZ
ICARDA59 ATTILA*2/RAYON//CATBIRD-1
ICARDA60 ATTILA*2/RAYON//CATBIRD-1
ICARDA61 ATTILA*2/CROW/3/VEE#5/SARA//DUCULA
ICARDA62 ATTILA*2/CROW/3/VEE#5/SARA//DUCULA
ICARDA63 SERI.1B//KAUZ/HEVO/3/AMAD/4/HXL8246/KAUZ
ICARDA64 SERI.1B//KAUZ/HEVO/3/AMAD/4/HXL8246/KAUZ
ICARDA65 SERI.1B//KAUZ/HEVO/3/AMAD/4/HXL8246/KAUZ
ICARDA66 SERI.1B//KAUZ/HEVO/3/AMAD/4/KAUZ/GYS//KAUZ
ICARDA67 SERI.1B//KAUZ/HEVO/3/AMAD/4/KAUZ/GYS//KAUZ
ICARDA68 SERI.1B//KAUZ/HEVO/3/AMAD/4/PFAU/MILAN
ICARDA69 SERI.1B//KAUZ/GEN/3/AMAD/4/TEVEE'S'/SHUHA'S'
ICARDA70 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/HUBARA-13
ICARDA71 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/HUBARA-13
ICARDA72 VEE/PJN//2*KAUZ/3/SHUHA-4/FOW-2
ICARDA73 ATTILA//VEE#5/DOBUC'S'/3/WATAN-7
ICARDA74 ATTILA//VEE#5/DOBUC'S'/3/WATAN-7
ICARDA75 ATTILA//VEE#5/DOBUC'S'/3/QADANFER-9
ICARDA76 HAR-1685 = ATILLA-7/REBWAH-12
ICARDA77 VEE/NAC//REBWAH-19
ICARDA78 VEE/NAC//REBWAH-19
ICARDA79 VEE/NAC//REBWAH-19
ICARDA80 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/FLORKWA-2
ICARDA81 TILILA/MUBASHIIR-1
ICARDA82 TILILA/MUBASHIIR-1
ICARDA83 CHAM-4/MUBASHIIR-9
ICARDA84 CHAM-4/MUBASHIIR-9
ICARDA85 VAGA 92/EID-6
ICARDA86 HUW 234/REBWAH-19
ICARDA87 QAFZAH-7/FLAG-4
ICARDA88 QAFZAH-23/ZEMAMRA-2
ICARDA89 QAFZAH-27/SEKSAKA-6
ICARDA90 K6295-4A/FLAG-8
ICARDA91 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/SHIHAB-7
ICARDA92 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/SHIHAB-7
ICARDA93 WATAN-7/SEKHRAH-2
ICARDA94 WATAN-7/SEKHRAH-2
ICARDA95 PASTOR-5/SHIHAB-5
ICARDA96 MILAN/DUCULA//AL-ZEHRAA-1
ICARDA97 PVN//KAUZ/PVN/4/CROC1/AE.SQUARROSSA(205)//KAUZ/3/ATTILA
ICARDA98 CROC1/AE.SQUARROSSA(205)//KAUZ/3/ATTILA/4/FLAG-1
ICARDA99 CROC-1/AE.SQUARROSA (224)//OPATA/3/FLAG-7
ICARDA100 CROC-1/AE.SQUARROSA (224)//OPATA/3/FLAG-7
ICARDA101 AMIR-2/TAJAN
ICARDA102 CHIL/CHUM18//ATTILA*2/RAYON
ICARDA103 KAUZ//MON/CROW'S'/3/SHUHA-4//NS732/HER/4/MILAN/PASTOR
ICARDA104 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/REBWAH-13/5/FLAG-8
ICARDA105 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/GYS//KAUZ/5/MUNIA/ALTAR 84//MILAN
ICARDA106 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/GYS//KAUZ/5/ICARDA-SRRL-9
ICARDA107 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/6/LFN/II58.57//PRL/3/HAHN/4/KAUZ/5/KAUZ/7/SITE/MO/3/VORONA/BAU//BAU
ICARDA108 KAUZ/AA//KAUZ/3/SOMAMA-3/4/WATAN-10
ICARDA109 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/ANGI-1/5/KABOWSH-1
ICARDA110 GOUBARA-1/ANGI-1//QAFZAH-21
ICARDA111 VEE7/KAUZ/3/KAUZ//MON/CROW'S'/4/QAFZAH-33
ICARDA112 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/SARA 1/STAR//SW89.3064
ICARDA113 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/SARA 1/STAR//SW89.3064
ICARDA114 QIMMA-12/REBWAH-13/3/NG8675/CBRD//MILAN
ICARDA115 STAR*3/LOTUS-5/3/CHUM//7*BCN/4/FLAG-2
ICARDA116 STAR*3/LOTUS-5/3/CHUM//7*BCN/4/FLAG-2
ICARDA117 SERI.1B//KAUZ/HEVO/3/AMAD/4/TNMU/MILAN/5/WATAN-12
ICARDA118 HUBARA-1/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR/6/WATAN-5
ICARDA119 HUBARA-1/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR/6/WATAN-5
ICARDA120 HUBARA-1/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR/6/WATAN-5
ICARDA121 HUBARA-1/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR/6/WATAN-5
ICARDA122 P1.861/RDWG//KAPSW/SHUHA-17/3/MUBASHIIR-12
ICARDA123 KAUZ//MON/CROW'S'/3/KAUZ//KAUZ/STAR/5/SHAMIEKH-7
ICARDA124 KASYON/GENARO 81//TEVEE-1/../4/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/KAUZ/5/FLAG-8
ICARDA125 SERI.1B//KAUZ/HEVO/3/AMAD/4/SHUHA-7//SERI 82/SHUHA'S'/5/OPATA/RAYON//KAUZ
ICARDA126 SERI.1B//KAUZ/HEVO/3/AMAD/4/PYN/BAU//MILAN/5/OPATA/RAYON//KAUZ
ICARDA127 HOOSAM-8//CHAM-6/FLORKWA-2/3/ICARDA-SRRL-3
ICARDA128 HOOSAM-8//CHAM-6/FLORKWA-2/3/ICARDA-SRRL-3
ICARDA129 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA130 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA131 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA132 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA133 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA134 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA135 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA136 SERI.1B//KAUZ/HEVO/3/AMAD/4/ATTILA//PSN/BOW/3/ATTILA/5/KAUZ'S'/SHUHA-15
ICARDA137 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA138 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA139 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA140 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA141 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA142 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA143 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/ATTILA//PSN/BOW/3/ATTILA
ICARDA144 P1.861/RDWG//DAJAJ-10/3/MILAN/PASTOR
ICARDA145 P1.861/RDWG//DAJAJ-10/3/MILAN/PASTOR
ICARDA146 VEE7/KAUZ/6/LFN/II58.57//PRL/3/HAHN/4/KAUZ/5/KAUZ/7/MILAN/PASTOR
ICARDA147 VEE7/KAUZ/6/LFN/II58.57//PRL/3/HAHN/4/KAUZ/5/KAUZ/7/MILAN/PASTOR
ICARDA148 VEE7/KAUZ//PFAU/MILAN/3/MILAN/PASTOR
ICARDA149 VEE7/KAUZ//PFAU/MILAN/3/MILAN/PASTOR
ICARDA150 VEE7/KAUZ//PFAU/MILAN/3/MILAN/PASTOR
ICARDA151 SERI.1B//KAUZ/HEVO/3/AMAD/4/WEAVER/JACANA/5/CROC-1/AE.SQUARROSA (224)//OPATA
ICARDA152 ATTILA*2/CROW//MILAN/PASTOR/3/FLAG-6
ICARDA153 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/SAMAR-15/5/ICARDA-SRRL-1
ICARDA154 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/SAMAR-15/5/P1.861/RDWG/3/KAUZ//MON/CROW'S'
ICARDA155 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/SAMAR-15/5/P1.861/RDWG/3/KAUZ//MON/CROW'S'
ICARDA156 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/SAMAR-15/5/P1.861/RDWG/3/KAUZ//MON/CROW'S'
ICARDA157 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KAUZ/SAMAR-15/5/P1.861/RDWG/3/KAUZ//MON/CROW'S'
ICARDA158 QIMMA-12/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR/6/LUCO-M/BL1133//OCI/3/WEAVER
ICARDA159 KATILA-7/4/CROC-1/AE.SQUARROSA (224)//OPATA/3/PASTOR/5/PASTOR//MUNIA/ALTAR 84

Table 1

Phenotypic variation of root traits in wheat at the seedling stage"

性状
Trait
对照Control 干旱处理Drought treatment 广义
遗传力 H2
最大值 Max. 最小值 Min. 平均值 Average 标准差 SD 变异系数
CV (%)
最大值 Max. 最小值 Min. 平均值 Average 标准差 SD 变异系数
CV (%)
总根长
TRL (cm)
300.58 62.17 151.41 50.33 33.24 160.14 43.86 89.57 22.35 24.95 0.56
根表面积 RSA (cm2) 55.64 12.45 31.38 9.05 28.85 40.51 9.57 21.69 7.43 34.27 0.68
根体积
RV (cm3)
1.17 0.17 0.57 0.23 39.89 1.43 0.14 0.48 0.27 57.04 0.91
根平均直径 RAD (mm) 1.28 0.47 0.70 0.19 27.10 1.26 0.36 0.71 0.23 31.71 0.99
根叉数
RF (n)
297.80 33.60 111.79 45.23 40.46 147.73 25.53 68.43 26.57 38.82 0.66

Fig. 1

Correlation among drought resistance coefficients of root traits at the seedling stage in wheat DCTRL: drought resistance coefficient of total root length; DCRSA: drought resistance coefficient of root surface area; DCRV: drought resistance coefficient of root volume; DCRAD: drought resistance coefficient of root average diameter; DCRF: drought resistance coefficient of root forks. *: P ≤ 0.05, **: P ≤ 0.01."

Fig. 2

Linkage disequilibrium plot"

Table 2

Significant SNP loci associated with drought resistance traits in wheat root systems at the seedling stage"

关联性状
Association traits
标记
Marker
染色体
Chromosome
位置
Position (bp)
P
P-value
贡献率
R2 (%)
DCTRL AX-111049575 3B 770,348,042 1.42E-04 12.74
AX-108951629 3B 771,057,295 2.39E-05 14.44
AX-110197792 3B 771,421,688 1.20E-04 12.12
AX-111556007 4A 665,628,227 4.18E-05 11.27
AX-110383547 4A 665,729,277 6.00E-05 10.77
AX-110970460 4A 665,754,221 6.00E-05 10.77
AX-110437859 4A 665,842,598 6.00E-05 10.77
AX-110499015 4A 665,969,616 4.61E-05 11.12
AX-109995035 5B 705,084,863 5.70E-04 7.83
AX-109580698 7A 696,712,310 4.25E-04 8.21
DCRSA AX-108951629 3B 771,057,295 3.70E-04 10.53
AX-111556007 4A 665,628,227 1.85E-04 9.29
AX-110383547 4A 665,729,277 2.53E-04 8.88
AX-110970460 4A 665,754,221 2.53E-04 8.88
AX-110437859 4A 665,842,598 2.53E-04 8.88
AX-110499015 4A 665,969,616 2.84E-04 8.73
DCRV AX-108965412 1D 20,398,472 3.03E-04 10.81
AX-109889130 3A 683,037,703 5.57E-04 8.04
AX-110951388 3B 561,840,472 8.07E-04 7.39
AX-108848922 3B 561,855,964 8.07E-04 7.39
AX-111732875 4B 167,379,783 1.60E-04 11.70
AX-108939841 4B 483,030,122 8.43E-04 9.38
AX-94573388 4D 7,757,872 9.78E-04 7.15
AX-108963849 5A 681,561,527 2.55E-05 11.92
AX-111555641 5A 682,615,465 2.55E-05 11.92
AX-111116889 5A 683,122,187 2.58E-05 11.91
AX-109320458 6A 24,226,008 7.61E-04 7.69
AX-111476251 7B 564,637,619 2.40E-05 14.44
DCRAD AX-110592775 1B 4,508,702 6.35E-04 7.90
AX-108984355 1D 6,723,255 5.70E-04 7.83
AX-111466210 2B 1,662,911 6.91E-04 9.65
AX-110370454 5B 684,689,943 6.36E-04 9.77
AX-111020045 6D 222,949,424 7.00E-04 7.57
AX-110707055 7D 15,916,875 3.36E-04 10.66
AX-110056358 7D 16,293,809 8.73E-04 9.33
DCRF AX-110569944 3B 10,354,519 4.80E-04 8.05
AX-111450196 3D 23,219,190 1.00E-03 7.12
AX-111135246 5B 502,107,832 9.80E-05 10.12
AX-108868591 7A 575,315,436 4.00E-04 10.56

Fig. 3

Manhattan diagram (A1-E1) and Q-Q diagram (A2-E2) of drought resistance coefficients for root-related traits in 159 wheat accessions A1 and A2: drought resistance coefficient of total root length; B1 and B2: drought resistance coefficient of root surface area; C1 and C2: drought resistance coefficient of root volume; D1 and D2: drought resistance coefficient of average root diameter; E1 and E2: drought resistance coefficient of root fork number."

Table 3

Pleiotropic SNP loci associated with drought resistance traits in wheat roots at the seedling stage"

标记
Marker
染色体 Chromosome 位置
Position (bp)
P
P-value
贡献率
R2 (%)
标记所关联的性状
Associated traits
AX-108951629 3B 771,057,295 2.39E-05-3.70E-04 10.53-14.44 DCTRL, DCRSA
AX-111556007 4A 665,628,227 4.18E-05-1.85E-04 9.29-11.27 DCTRL, DCRSA
AX-110383547 4A 665,729,277 6.00E-05-2.53E-04 8.88-10.77 DCTRL, DCRSA
AX-110970460 4A 665,754,221 6.00E-05-2.53E-04 8.88-10.77 DCTRL, DCRSA
AX-110437859 4A 665,842,598 6.00E-05-2.53E-04 8.88-10.77 DCTRL, DCRSA
AX-110499015 4A 665,969,616 4.61E-05-2.84E-04 8.73-11.12 DCTRL, DCRSA

Table 4

Candidate genes associated with drought resistance traits in wheat roots at the seedling stage"

性状
Trait
标记
Marker
基因
Gene
染色体Chr. 位置
Position (bp)
基因注释或编码蛋白
Gene annotation or coding protein
DCTRL, DCRSA AX-111556007 TraesCS4A01G387400 4A 665,182,616 小泛素相关修饰物2
Small ubiquitin-related modifier 2
DCTRL AX-109995035 TraesCS5B01G556300 5B 704,915,102 MYB 转录因子60
Transcription factor MYB60
DCTRL AX-109580698 TraesCS7A01G508700 7A 696,552,429 WRKY转录因子WRKY28
WRKY transcription factor WRKY28
DCRV AX-108965412 TraesCS1D01G040500 1D 19,763,058 包含BURP结构域的蛋白
BURP domain-containing protein
DCRV AX-109889130 TraesCS3A01G439700 3A 682,972,239 E3泛素蛋白连接酶
E3 ubiquitin-protein ligase
DCRV AX-94573388 TraesCS4B01G011700 4D 7,540,783 含组氨酸的磷酸转移蛋白
Histidine-containing phosphotransfer protein
DCRAD AX-108984355 TraesCS1D01G013700 1D 6,864,265 12-氧代植物二烯酸还原酶1
12-oxophytodienoate reductase 1
DCRAD AX-111466210 TraesCS2B01G002700 2B 1,706,362 脱水反应元件结合蛋白1C
Dehydration-responsive element-binding protein 1C
DCRF AX-110569944 TraesCS3B01G024500 3B 10,562,122 富含半胱氨酸的受体样蛋白激酶
Cysteine-rich receptor-like protein kinase
DCRF AX-111450196 TraesCS3D01G055500 3D 23,061,692 14-3-3样蛋白B
14-3-3-like protein B
DCRF AX-111135246 TraesCS5B01G318100 5B 502,264,691 细胞色素P450
Cytochrome P450
DCRF AX-108868591 TraesCS7A01G396500 7A 574,971,513 过氧化物酶
Peroxidase
[1] 张林刚, 邓西平. 小麦抗旱性生理生化研究进展. 干旱地区农业研究, 2000, 18(3): 87-92.
Zhang L G, Deng X P. Research progress on drought resistance physiology and biochemistry of wheat. Agric Res Arid Areas, 2000, 18(3): 87-92 (in Chinese with English abstract).
[2] Sallam A, Alqudah A M, Dawood M F A, Stephen Baenziger P, Börner A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci, 2019, 20: 3137.
[3] 严如玉, 赵希梅, 向风云, 李雅琼, 李绪勋, 司转运, 李鹏慧, 高阳, 李继福. 中国小麦优势区域生产格局及施肥现状研究. 麦类作物学报, 2024, 44: 230-241.
Yan R Y, Zhao X M, Xiang F Y, Li Y Q, Li X X, Si Z Y, Li P H, Gao Y, Li J F. Research on the production pattern and fertilization status in China’s dominant regions of wheat. J Triticeae Crops, 2024, 44: 230-241 (in Chinese with English abstract).
[4] 黄蕾, 潘志华, 邵长秀, 董智强, 赫迪, 王立为. 北方旱作农区农业气候资源时空变化特征. 干旱地区农业研究, 2014, 32(3): 238-243.
Huang L, Pan Z H, Shao C X, Dong Z Q, He D, Wang L W. Spatiotemporal changing characteristics of agricultural climate resources in northern dry crops farming area. Agric Res Arid Areas, 2014, 32(3): 238-243 (in Chinese with English abstract).
[5] 徐平印. 国际干旱地区农业研究中心(ICARDA)麦类作物育种情况. 青海农林科技, 1993, (1): 58-63.
Xu P Y. Breeding of wheat crops in international agricultural research center for arid areas (ICARDA). Sci Technol Qinghai Agric For, 1993, (1): 58-63 (in Chinese).
[6] 蔡义忠. ICARDA麦类种质资源研究. 世界农业, 1993, (11): 17-19.
Cai Y Z. Study on ICARDA wheat germplasm resources. World Agric, 1993, (11): 17-19 (in Chinese).
[7] 蔡义忠. ICARDA麦类作物抗虫育种. 麦类作物学报, 1993, 13(4): 37-40.
Cai Y Z. ICARDA insect-resistant breeding of wheat crops. J Triticeae Crops, 1993, 13(4): 37-40 (in Chinese).
[8] 戴妙飞. ICARDA小麦种质抗条锈资源筛选和抗病基因分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.
Dai M F. Screening of Stripe Rust Resistance Resources and Analysis of Disease Resistance Genes in ICARDA Wheat Germplasm. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract).
[9] 罗闰良. ICARDA硬粒小麦遗传资源的研究和利用. 世界农业, 1992, (10): 17-18.
Luo R L. Research and utilization of ICARDA durum wheat genetic resources. World Agric, 1992, (10): 17-18 (in Chinese).
[10] Tadesse W, El-Hanafi S, El-Fakhouri K, Imseg I, Ezzahra Rachdad F, El-Gataa Z, El Bouhssini M. Wheat breeding for hessian fly resistance at ICARDA. Crop J, 2022, 10: 1528-1535.
doi: 10.1016/j.cj.2022.07.021
[11] 温家兴, 张鑫, 王云, 王文亚. 多时间尺度干旱对青海省东部农业区小麦的影响. 灌溉排水学报, 2016, 35(4): 92-97.
Wen J X, Zhang X, Wang Y, Wang W Y. Effects of drought in multi-time scale on wheat crop in eastern agricultural region of Qinghai province. J Irrig Drain, 2016, 35(4): 92-97 (in Chinese with English abstract).
[12] 徐澜, 刘艳超, 安伟, 高志强. 冬麦春播小麦对苗期干旱胁迫的生理响应. 甘肃农业大学学报, 2020, 55 (6): 40-47.
Xu L, Liu Y C, An W, Gao Z Q. Physiological response of winter wheat and spring-sown wheat to drought stress at seedling stage. J Gansu Agric Univ, 2020, 55(6): 40-47 (in Chinese with English abstract).
[13] Manschadi A M, Christopher J, deVoil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006, 33: 823-837.
doi: 10.1071/FP06055 pmid: 32689293
[14] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Analysis of root traits and drought resistance characteristics of wheat seedlings in Shanxi province. Acta Agron Sin, 2021, 47: 714-727 (in Chinese with English abstract).
[15] 王荣荣, 王海琪, 蒋桂英, 尹豪杰, 谢冰莹, 张婷. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4): 253-264.
Wang R R, Wang H Q, Jiang G Y, Yin H J, Xie B Y, Zhang T. Response of water consumption and root physiological characteristics of two different drought-tolerant wheat varieties to anthesis stage drought. J Soil Water Conserv, 2022, 36(4): 253-264 (in Chinese with English abstract).
[16] Adeleke E, Millas R, McNeal W, Faris J, Taheri A. Variation analysis of root system development in wheat seedlings using root phenotyping system. Agronomy, 2020, 10: 206.
[17] 魏良迪. 小麦苗期抗旱品种资源的筛选与抗旱性全基因组关联分析. 山西农业大学硕士学位论文, 山西太谷, 2022.
Wei L D. Screening of Drought Resistant Varieties and Genome-wide Association Analysis of Drought Resistance in Wheat at Seedling Stage. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2022 (in Chinese with English abstract).
[18] Sallam A, Awadalla R A, Elshamy M M, Börner A, Heikal Y M. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population. Comput Struct Biotechnol J, 2024, 23: 870-882.
[19] Nouraei S, Mia M S, Liu H, Turner N C, Yan G J. Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Mol Genet Genomics, 2024, 299: 22.
doi: 10.1007/s00438-024-02104-x pmid: 38430317
[20] Zaman Z, Iqbal R, Jabbar A, Zahra N, Saleem B, Kiran A, Maqbool S, Rasheed A, Naeem M K, Khan M R. Genetic signature controlling root system architecture in diverse spring wheat germplasm. Physiol Plant, 2024, 176: e14183.
[21] 张颖, 石婷瑞, 曹瑞, 潘文秋, 宋卫宁, 王利, 聂小军. ICARDA引进小麦苗期抗旱性的全基因组关联分析. 中国农业科学, 2024, 57: 1658-1681.
doi: 10.3864/j.issn.0578-1752.2024.09.004
Zhang Y, Shi T R, Cao R, Pan W Q, Song W N, Wang L, Nie X J. Genome-wide association study of drought tolerance at seedling stage in ICARDA introduced wheat. Sci Agric Sin, 2024, 57: 1658-1681 (in Chinese with English abstract).
[22] 王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021, 54: 2249-2265.
doi: 10.3864/j.issn.0578-1752.2021.11.001
Wang J Q, Ren Y, Shi X L, Wang L L, Zhang X Z, Sulitan·G Z L A Y, Xie L, Geng H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grain. Sci Agric Sin, 2021, 54: 2249-2265 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.001
[23] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742-2753.
doi: 10.3724/SP.J.1006.2024.41007
Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742-2753 (in Chinese with English abstract).
[24] 职蕾, 者理, 孙楠楠, 杨阳, Dauren Serikbay, 贾汉忠, 胡银岗, 陈亮. 小麦苗期铅耐受性的全基因组关联分析. 中国农业科学, 2022, 55: 1064-1081.
doi: 10.3864/j.issn.0578-1752.2022.06.002
Zhi L, Zhe L, Sun N N, Yang Y, Serikbay D, Jia H Z, Hu Y G, Chen L. Genome-wide association analysis of lead tolerance in wheat at seedling stage. Sci Agric Sin, 2022, 55: 1064-1081 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.06.002
[25] Maulana F, Huang W Q, Anderson J D, Ma X F. Genome-wide association mapping of seedling drought tolerance in winter wheat. Front Plant Sci, 2020, 11: 573786.
[26] 张余周, 王一钊, 高茹茜, 刘逸凡. 小麦根系构型及抗旱性研究进展. 中国农业科学, 2024, 57: 1633-1645.
doi: 10.3864/j.issn.0578-1752.2024.09.002
Zhang Y Z, Wang Y Z, Gao R X, Liu Y F. Research progress on root system architecture and drought resistance in wheat. Sci Agric Sin, 2024, 57: 1633-1645 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.09.002
[27] 滕政凯, 王春艳, 卜明娜, 周苏玫, 胡乃月, 谢松鑫, 贾晓雯, 杨习文, 贺德先. 抗旱小麦品种根系垂直分布和根尖特征分析研究. 麦类作物学报, 2024, 44: 1172-1184.
Teng Z K, Wang C Y, Bu M A, Zhou S M, Hu N Y, Xie S X, Jia X W, Yang X W, He D X. Analysis of vertical root distribution and root tip characteristics of drought-resistant wheat varieties. J Triticeae Crops, 2024, 44: 1172-1184 (in Chinese with English abstract).
[28] Lucas S J, Salantur A, Yazar S, Budak H. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct Integr Genomics, 2017, 17: 667-685.
[29] 曲可佳, 时晓磊, 王兴州, 耿洪伟, 丁孙磊, 张恒, 严勇亮. PEG胁迫下春麦根部性状全基因组关联分析. 植物遗传资源学报, 2023, 24: 396-407.
doi: 10.13430/j.cnki.jpgr.20220911002
Qu K J, Shi X L, Wang X Z, Geng H W, Ding S L, Zhang H, Yan Y L. Genome-wide association analysis of root traits of spring wheat under PEG stress. J Plant Genet Resour, 2023, 24: 396-407 (in Chinese with English abstract).
[30] Lin Y, Yi X, Tang S, Chen W, Wu F K, Yang X L, Jiang X J, Shi H R, Ma J, Chen G D, et al. Dissection of phenotypic and genetic variation of drought-related traits in diverse Chinese wheat landraces. Plant Genome, 2019, 12: 1-14.
doi: 10.3835/plantgenome2019.03.0025 pmid: 33016597
[31] Siddiqui N, Gabi M T, Kamruzzaman M, Ambaw A M, Teferi T J, Dadshani S, Léon J, Ballvora A. Genetic dissection of root architectural plasticity and identification of candidate loci in response to drought stress in bread wheat. BMC Genom Data, 2023, 24: 38.
doi: 10.1186/s12863-023-01140-7 pmid: 37495985
[32] Mathew I, Shimelis H, Shayanowako A I T, Laing M, Chaplot V. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS One, 2019, 14: e0225383.
[33] Ma J H, Zhao D Y, Tang X X, Yuan M, Zhang D J, Xu M Y, Duan Y Z, Ren H Y, Zeng Q D, Wu J H, et al. Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum L.). Int J Mol Sci, 2022, 23: 1843.
[34] 王博华, 任毅, 时晓磊, 王继庆, 谢磊, 加娜尔·拜合提, 耿洪伟. 干旱胁迫下小麦苗期根系性状的全基因组关联分析. 植物遗传资源学报, 2022, 23: 1111-1123.
doi: 10.13430/j.cnki.jpgr.20220113003
Wang B H, Ren Y, Shi X L, Wang J Q, Xie L, Ganal B, Geng H W. Genome-wide association analysis of root traits in wheat seedlings under drought stress. J Plant Genet Resour, 2022, 23: 1111-1123.
[35] Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, IWGSC, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. Funct Integr Genomics, 2019, 19: 91-107.
[36] Zhao P, Ma X Y, Zhang R Z, Cheng M Z, Niu Y X, Shi X, Ji W Q, Xu S B, Wang X M. Integration of genome-wide association study, linkage analysis, and population transcriptome analysis to reveal the TaFMO1-5B modulating seminal root growth in bread wheat. Plant J, 2023, 116: 1385-1400.
[37] Ghimire S, Hasan M M, Fang X W. Small ubiquitin-like modifiers E3 ligases in plant stress. Funct Plant Biol, 2024, 51: FP24032.
[38] Ren J X, Feng L, Guo L L, Gou H M, Lu S X, Mao J. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica. Physiol Mol Biol Plants, 2023, 29: 1717-1731.
[39] Rodríguez-Hoces de la Guardia A, Ugalde M B, Lobos-Diaz V, Romero-Romero J L, Meyer-Regueiro C, Inostroza-Blancheteau C, Reyes-Diaz M, Aquea F, Arce-Johnson P. Isolation and molecular characterization of MYB60 in Solanum lycopersicum. Mol Biol Rep, 2021, 48: 1579-1587.
doi: 10.1007/s11033-021-06168-5 pmid: 33502700
[40] Oh J E, Kwon Y, Kim J H, Noh H, Hong S W, Lee H. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol, 2011, 77: 91-103.
[41] Babitha K C, Ramu S V, Pruthvi V, Mahesh P, Nataraja K N, Udayakumar M. Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res, 2013, 22: 327-341.
doi: 10.1007/s11248-012-9645-8 pmid: 22948308
[42] Li S M, Zhang Y F, Liu Y L, Zhang P Y, Wang X M, Chen B, Ding L, Nie Y X, Li F F, Ma Z B, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605-625.
[43] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014-5025.
[44] Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci, 2005, 14: 202-208.
pmid: 15576555
[45] Huang F Y, Abbas F, Rothenberg D O, Imran M, Fiaz S, Rehman N U, Amanullah S, Younas A, Ding Y, Cai X J, et al. Molecular cloning, characterization and expression analysis of two 12-oxophytodienoate reductases (NtOPR1 and NtOPR2) from Nicotiana tabacum. Mol Biol Rep, 2022, 49: 5379-5387.
[46] Gabay G, Wang H C, Zhang J L, Moriconi J I, Burguener G F, Gualano L D, Howell T, Lukaszewski A, Staskawicz B, Cho M J, et al. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat Commun, 2023, 14: 539.
[47] Akhtar M, Jaiswal A, Taj G, Jaiswal J P, Qureshi M I, Singh N K. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet, 2012, 91: 385-395.
pmid: 23271026
[48] Zhang Y X, Tian H D, Chen D, Zhang H, Sun M H, Chen S X, Qin Z, Ding Z J, Dai S J. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. Trends Plant Sci, 2023, 28: 776-794.
doi: 10.1016/j.tplants.2023.03.028 pmid: 37105805
[49] Gupta S, Mishra S K, Misra S, Pandey V, Agrawal L, Nautiyal C S, Chauhan P S. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem, 2020, 151: 88-102.
[50] Xia Y Y, Yang J F, Ma L, Yan S, Pang Y Z. Genome-wide identification and analyses of drought/salt-responsive cytochrome P450 genes in Medicago truncatula. Int J Mol Sci, 2021, 22: 9957.
[51] Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45-60.
[1] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[2] YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484.
[3] LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284.
[4] KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466.
[5] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[6] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[7] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[8] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[9] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[10] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[11] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[12] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[13] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[14] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[15] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .