Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River

JIANG Peng1,2,*,WU Lei1,2,HUANG Qian-Nan3,LI Chang1,WANG Hua-Dun1,2,HE Yi1,2,ZHANG Peng1,2,ZHANG Xu1,2,4,*   

  1. 1 CIMMYT-JAAS Joint Center for Wheat Diseases / the Research Center of Wheat Scab / Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; 2 Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, China; 3 Yili Institute of Agricultural Science, Yining 835000, Xinjiang, China; 4 Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing 210095, Jiangsu, China
  • Received:2025-01-24 Revised:2025-04-27 Accepted:2025-04-27 Published:2025-05-26
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32372186), Zhongshan Biological Breeding Laboratory (ZSBBL-KY2023-02), International Scientific and Technological Cooperation Projects of Jiangsu Province (BZ2024043), and the China Agriculture Research System of MOF and MARA (CARS-03-57).

Abstract:

Rht-B1 and Rht-D1 are the most widely utilized dwarfing genes in wheat breeding worldwide. In the long-term breeding practices of the middle and lower reaches of the Yangtze River in China, there has been a clear preference for dwarfing genes, with Rht-B1b being the predominant allele. To diversify dwarfing gene types and broaden the genetic base of local wheat varieties, this study aimed to introduce the major dwarfing allele Rht-D1b—commonly used in the Huang-Huai wheat region—into the middle and lower reaches of the Yangtze River. Parental lines from both regions were used for hybridization, and progeny carrying different dwarfing genes were selected. Field-based phenotypic evaluations were then conducted to provide theoretical and germplasm support for future breeding efforts. The results showed no significant differences between Rht-D1b and Rht-B1b lines in traits such as spike number per unit area, plant height, spike length, flag leaf length and width, or angles between leaf and stem. However, the lines carrying Rht-D1b exhibited a significantly higher number of spikelets, a favorable trait with potential to enhance yield. On the other hand, Rht-D1b lines showed a markedly higher incidence of Fusarium head blight (FHB) infection compared to Rht-B1b lines. Importantly, the incorporation of FHB resistance genes substantially improved FHB resistance in lines with both dwarfing gene types. This study demonstrates that the introduction of Rht-D1b into wheat breeding programs in the middle and lower reaches of the Yangtze River can effectively increase spikelet number and yield potential. Furthermore, the integration of FHB resistance genes can mitigate associated disease susceptibility. These newly developed lines also have potential as resistant parental materials for use in the Huang-Huai wheat breeding programs.

Key words: wheat, the middle and lower reaches of the Yangtze River, dwarfing genes, winter-spring hybridization, Fusarium head blight

[1] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T M, Zhang J, Parry M A J. Prospects of doubling global wheat yields. Food Energy Secur, 2013, 2: 34–48.

[2] 钟明志, 魏淑红, 彭正松, 杨在君. 小麦Rht矮秆基因研究和应用综述. 分子植物育种, 2018, 16: 6670–6677.

Zhong M Z, Wei S H, Peng Z S, Yang Z J. A review of the research and application of wheat Rht dwarfing genes. Mol Plant Breed, 2018, 16: 6670–6677 (in Chinese with English abstract).

[3] 刘和平, 程敦公, 吴娥, 曹新有. 黄淮麦区小麦倒伏的原因及对策浅析. 山东农业科学, 2012, 44(2): 55–56.

Liu H P, Cheng D G, Wu E, Cao X Y. Analysis of the causes and countermeasures of wheat lodging in the Huang-huai wheat region. Shandong Agric Sci, 2012, 44(2): 55–56 (in Chinese).

[4] Zhang Y X, Liu H, Yan G J. Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat. Mol Breed, 2021, 41: 4.

[5] 程顺和. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp 24–26.

Cheng S H. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Press, 2012. pp 24–26 (in Chinese).

[6] 刘晓宇, 禹海龙, 裴星旭, 梁秋芳, 岳超, 程西永, 许海霞, 詹克慧. 黄淮南部地区小麦品种矮秆基因的组成及其对茎秆特性的影响. 麦类作物学报, 2024, 44: 985–995.

Liu X Y, Yu H L, Pei X X, Liang Q F, Yue C, Cheng X Y, Xu H X, Zhan K H. Composition of dwarfing genes and their effects on stem characteristics of wheat varieties in the southern area of Huang-huai wheat region. J Triticeae Crops, 2024, 44: 985–995 (in Chinese with English abstract).

[7] 徐晴, 许甫超, 秦丹丹, 彭严春, 朱展望, 董静. 矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响. 麦类作物学报, 2022, 42: 790–798.

Xu Q, Xu F C, Qin D D, Peng Y C, Zhu Z W, Dong J. Distribution of the wheat dwarfing genes in China and their effects on fusarium head blight resistance. J Triticeae Crops, 2022, 42: 790–798 (in Chinese with English abstract).

[8] 张凯, 兰素缺, 金京京, 张颖君, 彭晓慧, 李杏普, 张业伦. 秋播冬麦区矮秆基因RhtB1bRhtD1bRht8的分布频率及其与产量性状的关系. 麦类作物学报, 2023, 43: 399408.

Zhang K, Lan S Q, Jin J J, Zhang Y J, Peng X H, Li X P, Zhang Y L. Distribution frequency of dwarf genes RhtB1b, RhtD1b, and Rht8 in autumn-sown winter wheat area and their relationship with yield traits. J Triticeae Crops, 2023, 43: 399–408 (in Chinese with English abstract).

[9]姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析. 中国农业科学, 2022, 55: 233–247.

Jiang P, Zhang P, Yao J B, Wu L, He Y, Li C, Ma H X, Zhang X. Trait characteristics and analysis of related gene loci of Ningmai series wheat varieties. Sci Agric Sin, 2022, 55: 233–247 (in Chinese with English abstract).

[10] Jiang P, Fan X Y, Zhang G X, Wu L, He Y, Li C, Zhang X. Cost-effective duplex competitive allele specific PCR markers for homologous genes facilitating wheat breeding. BMC Plant Biol, 2023, 23: 119.

[11] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42: 2088–2091.

[12] Su Z D, Jin S J, Zhang D D, Bai G H. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet, 2018, 131: 23712380.

[13] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020, 69: 249–258.

[14] 杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析. 作物学报, 2020, 46: 1870–1883.

Yang Z Z, Wang Z H, Hu Z R, Xin M M, Yao Y Y, Peng H R, You M S, Su Z Q, Guo W L. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agron Sin, 2020, 46: 1870–1883 (in Chinese with English abstract).

[15] 唐建卫, 殷贵鸿, 韩玉林, 黄峰, 王丽娜, 于海飞, 杨光宇, 李新平. 周麦16号主要农艺性状配合力及遗传效应分析. 河南农业科学, 2010, 39(11): 14–18.

Tang J W, Yin G H, Han Y L, Huang F, Wang L N, Yu H F, Yang G Y, Li X P. Analysis of combining ability and genetic effects of main agronomic traits of Zhoumai 16. J Henan Agric Sci, 2010, 39(11): 14–18 (in Chinese).

[16] 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9/扬麦158重组自交系群体产量性状的遗传解析. 作物学报, 2021, 47: 869–881.

Jiang P, Zhang X, Wu L, He Y, Zhang P P, Ma H X, Kong L R. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158. Acta Agron Sin, 2021, 47: 869–881 (in Chinese with English abstract).

[17] 许豪, 王益林, 于士男, 郝晓鹏, 高铭爽, 郑继周, 唐建卫, 李巧云, 高艳, 董纯豪, 等. 河南省抗赤霉病小麦新品种基因型、丰产性、农艺与品质性状测定. 河南农业大学学报, 2023, 57(2): 186–196.

Xu H, Wang Y L, Yu S N, Hao X P, Gao M S, Zheng J Z, Tang J W, Li Q Y, Gao Y, Dong C H, et al. Determination of genotype, high yield, agronomic and quality traits of new wheat varieties resistant to fusarium head blight in Henan province. J Henan Agric Univ, 2023, 57(2): 186–196 (in Chinese with English abstract).

[18] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, . 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44: 505–511.

Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, et al. Improvement of resistance of wheat cultivars to fusarium head blight in the Yellow–Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505–511 (in Chinese with English abstract).

[19] 孙苏阳, 王永军, 李海军, 李丽丽, 刘友华, 纪凤高. 小麦冬春轮回选择育种方法研究进展. 中国农学通报, 2013, 29(36): 15–20.

Sun S Y, Wang Y J, Li H J, Li L L, Liu Y H, Ji F G. Research progress of winter-spring recurrent selection wheat breeding method. Chin Agric Sci Bull, 2013, 29(36): 15–20 (in Chinese with English abstract).

[20] Giancaspro A, Giove S L, Zito D, Blanco A, Gadaleta A. Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Front Plant Sci, 2016, 7: 1381.

[21] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019, 51: 1106–1112.

[22] Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet, 2019, 51: 1099–1105.

[23] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.

[1] MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276.
[2] WANG Qing, WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na, CHENG Hong-Yan. Differences in transcriptomic responses to cadmium stress in high/low-Cd- accumulation wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1230-1247.
[3] WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229.
[4] WANG Dong, WANG Sen, SHANG Li, FENG Hao-Wei, ZHANG Yong-Qiao, CUI Jia-Ming, LI Shuang, ZHANG Jia-Cong, CHE Huan. Effect of supplementary irrigation on winter wheat yield and water use efficiency in semi humid areas of the Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(5): 1312-1325.
[5] CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942.
[6] LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862.
[7] LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130.
[8] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[9] WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076.
[10] ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649.
[11] ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620.
[12] YANG Fang-Ping, GUO Ying, TIAN Yuan-Yuan, XU Yu-Feng, WANG Lan-Lan, BAI Bin, ZHAN Zong-Bing, ZHANG Xue-Ting, XU Yin-Ping, LIU Jin-Dong. Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(2): 370-382.
[13] LIANG Miao, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Effect of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat [J]. Acta Agronomica Sinica, 2025, 51(2): 470-484.
[14] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[15] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!