Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 2911-2922.doi: 10.3724/SP.J.1006.2025.51044

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of low-phosphorus tolerant germplasm and comprehensive evaluation of low phosphorus tolerance in Tartary buckwheat at seedling stage

GE Jia-Hao(), LEI Xin-Yue, WANG Qing-Ming, HAN Hui-Bing, LI Shao-Fei, WANG Qi-Xuan, FENG Bai-Li, GAO Jin-Feng()   

  1. College of Agronomy, Northwest A&F University / State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Yangling 712100, Shaanxi, China
  • Received:2025-05-06 Accepted:2025-08-13 Online:2025-11-12 Published:2025-08-21
  • Contact: *E-mail: gaojf7604@126.com
  • Supported by:
    National Key Research and Development Program(2023YFD1202700);Key Research and Development Program of Shaanxi Province(2023-ZDLNY-06);Key Research and Development Program of Shaanxi Province(2025NC-YBXM-082);Modern Seed Industry Revitalization Special Fund of Shaanxi Province(K3031223130)

Abstract:

Low phosphorus availability in soil has become a major limiting factor for improving Tartary buckwheat production in China. To comprehensively evaluate the low-phosphorus tolerance of Tartary buckwheat germplasm and identify tolerant varieties, this study examined 200 germplasm resources under two phosphorus treatments: normal phosphorus (2.00 mmol L-1 KH2PO4) and low phosphorus (0.05 mmol L-1 KH2PO4). Seventeen seedling-stage traits were measured, including plant height, taproot length, shoot fresh weight, and root surface area. Principal component analysis (PCA), correlation analysis, membership function analysis, and cluster analysis were employed to comprehensively assess and classify the low-phosphorus tolerance of the germplasm. In addition, stepwise regression analysis was used to develop a predictive model for low-phosphorus tolerance. The results revealed significant variation in seedling traits under both phosphorus conditions. PCA reduced the 17 traits to five independent comprehensive indices, which were then used to calculate the comprehensive evaluation value (D) based on membership function analysis. Cluster analysis based on D values grouped the 200 accessions into five categories: 11 highly tolerant, 15 moderately tolerant, 80 tolerant, 81 sensitive, and 13 highly sensitive to low-phosphorus stress. Stepwise multiple regression produced a predictive model for low-phosphorus tolerance at the seedling stage: D = -0.38+0.07X1+ 0.42X2+0.07X3+0.06X4+0.06X5+0.05X6+0.08X7+0.05X8 (R2 = 0.98). Key traits contributing to this model included total root length, total fresh weight, plant height, root projection area, number of root tips, number of root forks, total dry weight, and root volume. This study established a comprehensive evaluation system for low-phosphorus tolerance in Tartary buckwheat and identified 11 highly tolerant and 13 highly sensitive accessions. These findings provide a theoretical foundation for understanding the mechanisms of low-phosphorus tolerance and for breeding low-phosphorus-tolerant Tartary buckwheat varieties.

Key words: Tartary buckwheat, germplasm resources, seedling stage, low phosphorus tolerant, comprehensive evaluation

Table 1

Measured traits and low-phosphorus tolerance coefficients of Tartary buckwheat under two phosphorus treatments"

测量指标
Measurement indices
正常磷处理
Normal phosphorus
低磷处理
Low phosphorus
耐低磷系数
LP/CK (%)
平均

Mean
范围
Range
标准

SD
变异
系数
CV (%)
平均值
Mean
范围
Range
标准差
SD
变异
系数
CV (%)
平均

Mean
范围
Range
标准差
SD
变异
系数
CV (%)
SPAD 42.14 30.13-55.07 5.18 12.30 37.86 26.93-48.46 4.50 11.88 90.13 70.39-115.05 6.69 7.43
PH (cm) 8.97 5.43-12.76 1.60 17.81 7.54 4.82-12.22 1.29 17.16 86.19 50.31-193.66 19.72 22.88
TRL (cm) 10.09 5.11-15.99 2.60 25.78 11.35 5.57-17.76 2.48 21.86 115.14 76.19-223.53 20.52 17.82
SFW (mg) 102.91 53.75-156.45 21.05 20.46 90.18 40.50-147.58 19.46 21.58 87.91 49.22-117.23 9.50 10.80
RFW (mg) 17.44 5.83-37.28 6.35 36.42 20.04 7.21-37.90 6.63 33.08 118.64 71.90-262.38 26.67 22.48
SDW (mg) 6.84 3.48-11.08 1.38 20.22 5.90 3.10-8.95 1.26 21.35 86.82 41.31-111.02 10.60 12.21
RDW (mg) 1.37 0.63-2.65 0.42 30.48 1.56 0.40-2.78 0.45 28.85 116.21 51.61-196.97 20.67 17.78
TFW (mg) 120.35 70.56-181.03 24.74 20.55 110.22 58.50-172.48 23.33 21.17 91.80 62.22-121.93 8.32 9.07
TDW (mg) 8.21 4.85-12.38 1.58 19.15 7.45 4.47-10.82 1.49 20.00 91.34 46.38-115.12 9.64 10.55
R/S (%) 0.20 0.06-0.43 0.07 31.83 0.27 0.09-0.55 0.08 29.93 136.78 62.27-313.80 35.36 25.85
TRH (cm) 61.48 20.25-110.28 18.03 29.33 70.29 26.41-123.37 19.27 27.42 117.39 51.93-204.57 23.77 20.25
RPA (cm2) 1.30 0.46-2.06 0.34 26.35 1.47 0.52-2.68 0.38 25.94 115.48 60.24-206.99 23.75 20.56
RSA (cm2) 3.98 1.11-7.58 1.30 32.75 4.57 1.42-8.28 1.40 30.66 118.95 59.75-279.71 28.83 24.24
RV (cm3) 0.04 0.02-0.08 0.01 31.83 0.05 0.02-0.09 0.01 31.85 118.68 37.78-242.83 26.58 22.40
RAD (mm) 0.30 0.16-0.49 0.06 20.83 0.26 0.15-0.42 0.06 22.14 87.22 63.18-112.65 7.90 9.06
RTN 220.80 109.00-382.67 51.99 23.55 251.92 116.33-387.83 56.51 22.43 117.18 33.90-215.95 24.79 21.16
RFN 203.66 110.00-349.00 54.19 26.61 232.96 128.00-358.00 51.26 22.00 118.77 57.66-244.74 27.37 23.04

Fig. 1

Distribution and correlation analysis of relative trait values in Tartary buckwheat under two phosphorus treatments Abbreviations are the same as those given in Table 1. The diagonal panels show density plots representing the distribution of each trait under low-phosphorus (blue) and normal-phosphorus (red) treatments. The panels below the diagonal display scatter plots showing pairwise relationships between traits under both phosphorus conditions. The numerical values above the diagonal indicate the correlation coefficients between traits under low-phosphorus (low) and normal-phosphorus (high) treatments. * and ** indicate significant correlations at the 0.05 and 0.01 probability levels, respectively."

Fig. 2

Principal component (PC) scatter plot of low-phosphorus tolerance coefficients Abbreviations are the same as those given in Table 1."

Table 2

Principal component (PC) eigenvalues and variance contribution rates of comprehensive indices"

主成分
Principal component
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累积贡献率
Cumulative contributive ratio (%)
PC1 4.86 28.60 28.60
PC2 3.64 21.40 50.00
PC3 1.94 11.39 61.38
PC4 1.14 6.71 68.10
PC5 1.10 6.48 74.58

Table 3

Principal component (PC) loading matrix"

测量指标
Measurement indices
主成分Principal component
PC1 PC2 PC3 PC4 PC5
叶绿素相对含量SPAD -0.09 0.61 0.26 0.19 -0.44
株高PH -0.19 0.14 -0.08 0.69 0.54
主根长度TRL 0.60 0.10 0.07 -0.20 -0.40
地上部鲜重SFW -0.17 0.82 0.26 0.31 -0.22
地下部鲜重RFW 0.06 -0.20 0.58 -0.06 0.34
地上部干重SDW -0.21 0.84 -0.07 -0.38 0.28
地下部干重RDW 0.09 -0.22 0.86 -0.21 0.15
总鲜物重TFW -0.15 0.76 0.46 0.27 -0.10
总干物重TDW -0.19 0.78 0.16 -0.45 0.33
根冠比R/S 0.19 -0.66 0.66 0.11 -0.06
总根长TRH 0.91 0.17 -0.01 0 -0.03
根系投影面积RPA 0.78 0.21 -0.13 0 0.10
根系表面积RSA 0.83 0.13 0.06 0.05 0.08
根体积RV 0.83 0.15 0 0.07 0.02
根平均直径RAD -0.24 0.03 -0.06 0.05 0.07
根尖数RTN 0.84 0.09 -0.02 0.10 0.18
根分叉数RFN 0.83 0.14 -0.09 0.04 0.11

Fig. 3

Cluster analysis of low-phosphorus tolerance in 200 Tartary buckwheat germplasm accessions I: highly tolerant to low phosphorus; II: tolerant to low phosphorus; III: moderate tolerant to low phosphorus; IV: sensitive to low phosphorus; V: highly sensitive to low phosphorus. Detailed information on the germplasm accessions is provided in Table S1."

Table 4

Optimal model prediction of low-phosphorus tolerance in Tartary buckwheat varieties"

多元回归方程
Multiple regression equation
决定系数
R2
F
F-value
P
P-value
D = 0.20+0.24X1 0.52 160.37 ≤ 0.001
D = -0.22+0.24X1+0.48X2 0.83 358.77 ≤ 0.001
D = -0.29+0.25X1+0.46X2+0.08X3 0.88 354.39 ≤ 0.001
D = -0.32+0.18X1+0.45X2+0.08X3+0.11X4 0.93 445.76 ≤ 0.001
D = -0.34+0.11X1+0.47X2+0.07X3+0.10X4+0.09X5 0.95 590.24 ≤ 0.001
D = -0.34+0.10X1+0.47X2+0.07X3+0.09X4+0.06X5+0.05X6 0.96 632.82 ≤ 0.001
D = -0.37+0.09X1+0.44X2+0.07X3+0.08X4+0.07X5+0.05X6+0.07X7 0.97 698.95 ≤ 0.001
D = -0.38+0.07X1+0.42X2+0.07X3+0.06X4+0.06X5+0.05X6+0.08X7+0.05X8 0.98 1005.07 ≤ 0.001

Fig. 4

Correlation analysis between low-phosphorus tolerance coefficients of seedling traits and the comprehensive low-phosphorus tolerance index (D) in Tartary buckwheat Abbreviations are the same as those given in Table 1. * and ** indicate significant correlations at the 0.05 and 0.01 probability levels, respectively."

Fig. 5

Analysis of key indicators for identifying low-phosphorus tolerance levels in Tartary buckwheat seedlings Abbreviations are the same as those given in Table 1. I, III, and V represent three types of tartary buckwheat germplasm: highly tolerance to low phosphorus (n = 11), moderate tolerance to low phosphorus (n = 80), and highly sensitive to low phosphorus (n = 13), respectively. * and ** indicate significant differences at the P < 0.05 and P < 0.01 levels, respectively; ns indicates no significant difference."

[1] 杨俊诚, 李桂花, 姜慧敏, 张建峰, 张娟. 同位素示踪农业应用的研究热点. 同位素, 2019, 32(3): 162-170.
Yang J C, Li G H, Jiang H M, Zhang J F, Zhang J. Hotspot fields of isotopes tracing in agricultural science. J Isot, 2019, 32(3): 162-170 (in Chinese with English abstract).
[2] Blackwell M, Darch T, Haslam R. Phosphorus use efficiency and fertilizers: future opportunities for improvements. Front Agric Sci Eng, 2019, 6: 332-340.
doi: 10.15302/J-FASE-2019274
[3] 彭晓云, 魏亮. 新型磷肥—农用聚磷酸铵发展现状及田间应用效果. 磷肥与复肥, 2024, 39(5): 49-52.
Peng X Y, Wei L. Development status and field application effects of a new type phosphate fertilizer-agricultural ammonium polyphosphate. Phos Comp Fert, 2024, 39(5): 49-52 (in Chinese with English abstract).
[4] He Y Q, Zhang K X, Shi Y L, Lin H, Huang X, Lu X, Wang Z R, Li W, Feng X B, Shi T X, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol, 2024, 25: 61.
doi: 10.1186/s13059-024-03203-z pmid: 38414075
[5] Zou L, Wu D T, Ren G X, Hu Y C, Peng L X, Zhao J L, Garcia-Perez P, Carpena M, Prieto M A, Cao H, et al. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit Rev Food Sci Nutr, 2023, 63: 657-673.
[6] 于秋竹, 邱俊华, 杜含梅, 王安虎. 不同苦荞种质资源生长发育及硒响应特征综合评价研究. 作物杂志, 网络首发[2025-03-28], https://link.cnki.net/urlid/11.1808.S.20250327.1906.014.
Yu Q Z, Qiu J H, Du H M, Wang A H. Comprehensive evaluation study on growth, development, and selenium response characteristics of different Tartary buckwheat germplasm resources. Crops, Published online [2025-03-28], https://link.cnki.net/urlid/11.1808.S.20250327.1906.014 (in Chinese with English abstract).
[7] 张伟丽. 氮磷钾素对苦荞产量性状及其淀粉理化特性的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.
Zhang W L. Effects of Nitrogen Phosphorus and Potassium on Yield Traits and Physicochemical Characters of Tartary Buckwheat Starch. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract).
[8] 张裕川. 遮阴和磷肥互作对苦荞生长发育及籽粒品质的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2022.
Zhang Y C. Effects of Interaction Between Shading and Phosphate Fertilizer on Growth and Grain Quality of Tartary Buckwheat Starch. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[9] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831-845.
doi: 10.3864/j.issn.0578-1752.2024.05.001
Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831-845 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.05.001
[10] 李敏, 时振坤, 晁召飞, 袁天宇, 陈士林, 吴向远. 玉米苗期耐低磷种质筛选及综合评价. 河南科技学院学报(自然科学版), 2024, 52(6): 9-15.
Li M, Shi Z K, Chao Z F, Yuan T Y, Chen S L, Wu X Y. Screening and comprehensive evaluation of maize germplasm with low phosphorus tolerance during seedling stage. J Henan Inst Sci Technol (Nat Sci Edn), 2024, 52(6): 9-15 (in Chinese with English abstract).
[11] Lu H, Wang F, Wang Y, Lin R B, Wang Z Y, Mao C Z. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ, 2023, 46: 1104-1119.
[12] 王晶琴, 石贵阳, 杨松花, 陈竹, 杨通黎, 马秀国. 不同基因型大豆苗期耐低磷性鉴定及指标筛选. 福建农业学报, 2022, 37: 702-711.
Wang J Q, Shi G Y, Yang S H, Chen Z, Yang T L, Ma X G. Determination and index selection on tolerance of soybean seedlings to phosphorus deficiency in soil. Fujian J Agric Sci, 2022, 37: 702-711 (in Chinese with English abstract).
[13] 杨春婷, 张永清, 马星星, 陈伟, 董璐, 张楚, 路之娟. 苦荞耐低磷基因型筛选及评价指标的鉴定. 应用生态学报, 2018, 29: 2997-3007.
doi: 10.13287/j.1001-9332.201809.021
Yang C T, Zhang Y Q, Ma X X, Chen W, Dong L, Zhang C, Lu Z J. Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus tolerance. Chin J Appl Ecol, 2018, 29: 2997-3007 (in Chinese with English abstract).
[14] 汪燕, 廖凯, 喻武鹃, 黄娟, 邓娇, 霍冬敖, 孙艳红, 王鹏程, 梁成刚. 苦荞耐低磷力鉴定及其产量和品质分析. 江苏农业学报, 2018, 34: 503-510.
Wang Y, Liao K, Yu W J, Huang J, Deng J, Huo D A, Sun Y H, Wang P C, Liang C G. Identification of low-phosphorus tolerance and analysis of yield and quality in Tartary buckwheat. Jiangsu J Agric Sci, 2018, 34: 503-510 (in Chinese with English abstract).
[15] Brownlie W J, Sutton M A, Reay D S, Heal K V, Hermann L, Kabbe C, Spears B M. Global actions for a sustainable phosphorus future. Nat Food, 2021, 2: 71-74.
doi: 10.1038/s43016-021-00232-w pmid: 37117414
[16] Peng Y, Huo W G, Feng G. Maximising cotton phosphorus utilisation for zero surplus and high yields: a review of innovative P management strategies. Field Crops Res, 2024, 313: 109429.
[17] López-Arredondo D L, Leyva-González M A, González-Morales S I, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol, 2014, 65: 95-123.
doi: 10.1146/annurev-arplant-050213-035949 pmid: 24579991
[18] Zhang Z L, Liao H, Lucas W J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol, 2014, 56: 192-220.
doi: 10.1111/jipb.12163
[19] Zhang B B, Zhu X X, Yuan P, Han B, Wu T, Din I, Wang C, Hammond J P, Wang S L, Ding G D, et al. Root morphological adaptation and leaf lipid remobilization drive differences in phosphorus use efficiency in rapeseed seedlings. Crop J, 2025, 13: 524-535.
doi: 10.1016/j.cj.2024.12.022
[20] 解斌, 安秀红, 陈艳辉, 程存刚, 康国栋, 周江涛, 赵德英, 李壮, 张艳珍, 杨安. 不同苹果砧木对持续低磷的响应及适应性评价. 中国农业科学, 2022, 55: 2598-2612.
doi: 10.3864/j.issn.0578-1752.2022.13.010
Xie B, An X H, Chen Y H, Cheng C G, Kang G D, Zhou J T, Zhao D Y, Li Z, Zhang Y Z, Yang A. Response and adaptability evaluation of different apple rootstocks to continuous phosphorus deficiency. Sci Agric Sin, 2022, 55: 2598-2612 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.13.010
[21] Ma B, Zhang Y, Fan Y F, Zhang L, Li X Y, Zhang Q Q, Shu Q Y, Huang J R, Chen G Y, Li Q, et al. Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci USA, 2024, 121: e2404199121.
[22] Vejchasarn P, Lynch J P, Brown K M. Genetic variability in phosphorus responses of rice root phenotypes. Rice, 2016, 9: 29.
doi: 10.1186/s12284-016-0102-9 pmid: 27294384
[23] Deng Y, Teng W, Tong Y P, Chen X P, Zou C Q. Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Front Plant Sci, 2018, 9: 1614.
doi: 10.3389/fpls.2018.01614 pmid: 30459796
[24] Grossman J D, Rice K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol Appl, 2012, 5: 850-857.
doi: 10.1111/j.1752-4571.2012.00263.x pmid: 23346229
[25] Liu D. Root developmental responses to phosphorus nutrition. J Integr Plant Biol, 2021, 63: 1065-1090.
doi: 10.1111/jipb.13090
[26] Xie B X, Chen Q Q, Lu X, Chen K, Yang Y S, Tian J, Liang C Y. Proton exudation mediated by GmVP2 has widespread effects on plant growth, remobilization of soil phosphorus, and the structure of the rhizosphere microbial community. J Exp Bot, 2023, 74: 1140-1156.
[27] 高洋, 刘斯嘉, 刘天昊, 李书鑫, 张锋, 刘海峰, 王斌, 李向楠. 基于叶绿素荧光动力学的小麦耐渍品种筛选. 分子植物育种, 网络首发[2025-04-16], https://link.cnki.net/urlid/46.1068.S.20250416.1616.004.
Gao Y, Liu S J, Liu T H, Li S X, Zhang F, Liu H F, Wang B, Li X N. Screening of wheat varieties with waterlogging stress based on chlorophyll fluorescence kinetics. Mol Plant Breed, Published online [2025-04-16], https://link.cnki.net/urlid/46.1068.S.20250416.1616.004 (in Chinese with English abstract).
[28] 文璇, 钟秀丽, 王尚文, 金涛, 彭君, 刘恩科. 基于耐性指数的青稞苗期耐低氮种质筛选及不同氮效率类型综合评价. 作物学报, 2025, 51: 1949-1958.
doi: 10.3724/SP.J.1006.2025.41075
Wen X, Zhong X L, Wang S W, Jin T, Peng J, Liu E K. Screening of low nitrogen tolerant germplasm in seedling highland barley based on tolerance index and comprehensive evaluation of different nitrogen efficiency types. Acta Agron Sin, 2025, 51: 1949-1958 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2025.41075
[29] 郑焕斌, 李明, 杨素欣, 吴委林. 大豆种质资源苗期耐碱筛选及评价分析. 中国农业科技导报(中英文), 2025, 27(7): 54-71.
Zheng H B, Li M, Yang S X, Wu W L. Alkaline tolerance screening and evaluation analysis of soybean germplasm resources at seedling stage. J Agric Sci Technol, 2025, 27(7): 54-71 (in Chinese with English abstract).
[30] 李阿蕾, 戴志刚, 陈基权, 邓灿辉, 唐蜻, 程超华, 许英, 张小雨, 粟建光, 杨泽茂. 239份长果种黄麻种质资源萌发期耐镉性评价及耐镉资源筛选. 作物学报, 2023, 49: 2677-2699.
Li A L, Dai Z G, Chen J Q, Deng C H, Tang Q, Cheng C H, Xu Y, Zhang X Y, Su J G, Yang Z M. Evaluation of cadmium tolerance in germination stage of 239 dark jute (Corchorus olitorius L.) germplasm resources and screening of cadmium tolerance resources. Acta Agron Sin, 2023, 49: 2677-2699 (in Chinese with English abstract).
[31] 李亮, 徐梦强, 丁凡, 林苡婧, 王飞, 许卫锋, 许飞云. 水稻耐酸性综合评价及耐酸种质筛选. 植物营养与肥料学报, 2024, 30: 1718-1730.
Li L, Xu M Q, Ding F, Lin Y J, Wang F, Xu W F, Xu F Y. Comprehensive evaluation of acid tolerance rice and screening of acid-tolerant germplasm in rice. J Plant Nutr Fert, 2024, 30: 1718-1730 (in Chinese with English abstract).
[32] 米热扎提江·喀由木, 西尔艾力·吾麦尔江, 李晓曈, 王香茹, 贵会平, 张恒恒, 张西岭, 董强, 宋美珍. 棉花苗期耐低磷种质筛选及耐低磷综合评价. 中国农业科学, 2023, 56: 4150-4162.
doi: 10.3864/j.issn.0578-1752.2023.21.002
Mirezhatijiang K, Xieraili W, Li X T, Wang X R, Gui H P, Zhang H H, Zhang X L, Dong Q, Song M Z. Screening of low phosphorus tolerant germplasm in cotton at seedling stage and comprehensive evaluation of low phosphorus tolerance. Sci Agric Sin, 2023, 56: 4150-4162 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.21.002
[33] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应. 作物学报, 2019, 45: 601-612.
doi: 10.3724/SP.J.1006.2019.82029
Yuan Y C, Chen X Y, Li M M, Li P, Jia Y T, Han Y H, Xing G F. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet. Acta Agron Sin, 2019, 45: 601-612 (in Chinese with English abstract).
[34] 罗佳, 候银莹, 程军回, 王宁宁, 陈波浪. 低磷胁迫下不同磷效率基因型棉花的根系形态特征. 中国农业科学, 2016, 49: 2280-2289.
doi: 10.3864/j.issn.0578-1752.2016.12.004
Luo J, Hou Y Y, Cheng J H, Wang N N, Chen B L. Root morphological characteristics of cotton genotypes with different phosphorus efficiency under phosphorus stress. Sci Agric Sin, 2016, 49: 2280-2289 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2016.12.004
[35] 姚锋剑. 大豆根系表型性状可塑性及其对低磷胁迫的适应特征. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Yao J F. Plasticity of Soybean Root Phenotypic Traits and Their Adaptation to Low Phosphorus Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[1] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[2] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[3] LIANG Hong-Kai, ZHAO Su-Meng, LU Qiong, ZHOU Peng, ZHI Hui, DIAO Xian-Min, HE Qiang. A mini-core collection of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(6): 1435-1444.
[4] WANG Mu, ZHUO Ga, ZHA Sang, XIRUO Qu-Zong, DAWA Dondup, GUO Gang-Gang, ZHANG Jing, ZHUO Ga, LHUNDRUP Namgyal. Genetic diversity analysis and comprehensive evaluation of Qingke germplasm based on six phenotypic traits [J]. Acta Agronomica Sinica, 2025, 51(6): 1526-1537.
[5] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[6] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[7] TANG Yong-Yan, YIN Jun-Jie, HOU Qing-Qing, FENG Jun-Yan, LI Jun, YANG Wu-Yun, CHEN Xue-Wei, HU Pei-Song, WAN Jian-Min. Current status and countermeasures for crop seed industry development in Sichuan province, China [J]. Acta Agronomica Sinica, 2025, 51(11): 2845-2859.
[8] JIANG Ang-Chen, LI Yan, LI Yu-Chen, ZHANG Jing, CHEN Ai-Ping. Comprehensive evaluation of agronomic traits and seed yield of 21 Bromus inermis germplasm and screening of superior germplasm [J]. Acta Agronomica Sinica, 2025, 51(11): 2958-2970.
[9] HU Zhi-Kang, SHU Yu, WANG Hui, YANG Ying-Ying, LIAO Jun-Yu, LIU Jia, CHENG Hong-Tao, GUO Chen, ZHANG Yuan-Yuan, LIU Sheng-Yi, HU Qiong, MEI De-Sheng, LI Chao. Comprehensive evaluation of alkaline tolerance in Brassica napus at the seedling stage [J]. Acta Agronomica Sinica, 2025, 51(10): 2681-2692.
[10] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[11] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[12] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[13] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
[14] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[15] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!