Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 2899-2910.doi: 10.3724/SP.J.1006.2025.55024

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of soybean protein, oil, and fatty acid components

LIN Yang1,2(), SHI Xiao-Lei2(), CHEN Qiang2, LIU Bing-Qiang2, YANG Qing2, YU Hui-Juan1,2, YAN Long2, WU Xiao-Xia1,*(), YANG Chun-Yan2,*()   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2 Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Shijiazhuang Branch Center of National Center for Soybean Improvement / Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs / Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
  • Received:2025-03-25 Accepted:2025-08-13 Online:2025-11-12 Published:2025-08-22
  • Contact: *E-mail: xxwu2012@126.com; E-mail: chyyang66@163.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-04-PS09);HAAFS Agriculture Science and Technology Innovation Project(2022KJCXZX-LYS-7);Hebei Agriculture Research System Project(HBCT2024060202)

Abstract:

Soybean is a major grain and oil crop that provides essential proteins and fats for human nutrition. In this study, a recombinant inbred line (RIL) population derived from the cross “Jidou 17 × Jidou 12”, developed by the Oil and Grain Crops Research Institute of the Hebei Academy of Agriculture and Forestry Sciences, was used as the experimental material. Based on a previously constructed genetic map, QTL mapping for protein content, oil content, and five fatty acid components was performed in three different environments using the QTL IciMapping 4.1 software. A total of 7, 7, and 45 QTLs related to protein, oil, and fatty acid contents, respectively, were identified. These QTLs were distributed across 17 chromosomes, excluding chromosomes 1, 7, and 16. One QTL for protein content, two for oil content, and nine for fatty acid content were consistently detected across multiple environments. Notably, two QTLs associated with palmitic acid content and one associated with linolenic acid content were identified for the first time. These stable and major loci provide valuable targets for molecular marker-assisted improvement of soybean quality.

Key words: soybean, protein, oil, fatty acid, QTL

Fig. 1

Histogram parental protein and oil content in three environments JD17: female material Jidou 17; JD12: paternal material Jidou 12; *: significant difference at P < 0.05; **: significant difference at P < 0.01."

Table 1

Phenotypic variation and genetic analysis of protein and oil content in RIL populations across three environments"

性状
Trait
年份Year 最大值Max. (%) 最小值
Min. (%)
平均值
Mean (%)
标准差
SD
偏度
Skew
峰度
Kurt
变异系数
CV (%)
遗传力
h2b
蛋白质含量Protein
content
2022 50.60 34.27 41.81 2.09 0.19 0.11 5.00 0.59
2023 51.89 35.91 41.58 2.01 0.58 -0.15 4.83
2024 46.60 36.33 41.79 1.99 -0.16 -0.27 4.76
脂肪
Oil content
2022 22.16 15.09 19.68 1.19 -0.50 0.47 6.06 0.55
2023 23.41 13.96 20.06 1.20 -0.34 -0.03 5.96
2024 23.13 15.06 19.38 1.31 -0.20 0.15 6.76

Fig. 2

Distribution of protein and oil contents in the RIL population across three environments M: female material Jidou 17; F: paternal material Jidou 12."

Fig. 3

Histograms of parental fatty acid content across three environments JD17: female material Jidou 17; JD12: paternal material Jidou 12; *: significant difference at P < 0.05; **: significant difference at P < 0.01; ns: no significant difference."

Table 2

Phenotypic variation and genetic analysis of fatty acid content in RIL populations across three environments"

性状
Trait
年份
Year
最大值Max. (%) 最小值 Min. (%) 平均值
Mean (%)
标准差
SD
偏度Skew 峰度
Kurt
变异系数
CV (%)
遗传力
h2b
棕榈酸Palmitic acid 2022 13.28 10.21 11.94 0.55 -0.05 -0.30 4.65 0.87
2023 13.61 10.63 12.09 0.51 -0.30 0.22 4.20
2024 14.05 10.91 12.38 0.54 -0.18 0.07 4.40
硬脂酸
Stearic acid
2022 4.79 3.04 3.67 0.31 0.42 0.13 8.52 0.82
2023 4.25 2.93 3.60 0.27 -0.05 -0.51 7.56
2024 4.87 3.25 4.08 0.31 0.02 -0.11 7.56
油酸
Oleic acid
2022 25.30 16.68 20.51 1.57 0.29 0.16 7.64 0.77
2023 28.84 13.81 19.34 2.04 0.34 1.94 10.54
2024 24.72 15.41 19.20 1.52 0.63 0.97 7.89
亚油酸
Linoleic acid
2022 56.85 50.74 53.80 1.20 -0.09 -0.34 2.23 0.80
2023 59.46 48.09 55.37 1.55 -0.39 2.21 2.81
2024 57.20 50.48 54.39 1.25 -0.33 -0.23 2.30
亚麻酸Linolenic acid 2022 13.05 6.28 10.07 0.99 0.11 0.64 9.83 0.73
2023 14.03 5.86 9.61 0.98 0.50 2.79 10.17
2024 12.41 5.53 9.95 1.01 -0.29 1.19 10.11

Fig. 4

Distribution of fatty acid contents in the RIL population across three environments M: female material Jidou 17; F: paternal material Jidou 12."

Fig. 5

Correlation analysis of protein oil content and fatty acid composition in RIL population across three environments PA: palmitic acid content; SA: stearic acid content; OA: oleic acid content; LA: linoleic acid content; LNA: linolenic acid content; PRO: protein content; OIL: oil content. *: significant correlation at P < 0.05; **: significant correlation at P < 0.01."

Table 3

QTL mapping of protein oil content and fatty acid composition in the RIL population"

性状
Trait
年份
Year
QTL名称
QTL name
染色体
Chr.
区间
Marker or interval
LOD值
LOD
贡献率
PVE (%)
加性效应
Add
前人研究结果
Results of previous studies
蛋白质含量Protein
content
2022 qPro_8_1* 8 41693316-41962208 6.34 9.55 0.7092
2022 qPro_8_2* 8 45846707-45966388 4.03 5.94 -0.5599
2022 qPro_10_1 10 3924898-4456438 2.77 4.03 -0.4609
2022 qPro_17_1* 17 12449434-12719216 6.78 10.28 -0.7442 28908011-11223368 [22]
2023 qPro_17_1* 17 13814520-14279713 4.01 9.16 -0.6019 23721038-12509368 [23]
2024 qPro_2_1 2 14955863-15294566 3.37 8.43 -0.5445
2024 qPro_9_1 9 38482381-38838245 2.58 6.31 0.4730
脂肪含量
Oil content
2022 qOil_15_1 15 6021048-6794000 3.34 7.77 0.3105 6823519-7537521 [24]
2022 qOil_17_1 17 37078396-37231634 2.70 6.12 0.2753 38763354-23948117 [22]
2022 qOil_19_1 19 46485195-47204138 3.15 7.62 0.3087
2023 qOil_15_1 15 7526080-7586529 3.37 7.67 0.3165 6823519-7537521 [24]
2023 qOil_17_1 17 37231634-37565269 3.42 7.91 0.3218 38763354-23948117 [22]
2024 qOil_2_1 2 14955863-15294566 3.13 7.04 0.3343
2024 qOil_3_1* 3 39055845-39396577 6.81 16.37 -0.5110
棕榈酸Palmitic acid content 2022 qPA_2_1* 2 4627941-5028055 6.64 12.54 -0.0021
2022 qPA_2_2* 2 46571256-47064901 4.51 8.50 -0.0017
2022 qPA_9_1 9 37059124-37604876 2.93 5.07 0.0013
2023 qPA_2_1* 2 4627941-5028055 3.93 7.92 -0.0015
2023 qPA_2_2* 2 47064901-47262439 3.94 7.70 -0.0015
2023 qPA_8_1* 8 44829555-45597124 3.50 7.93 0.0015 41292087-43461936 [25]
2024 qPA_5_1* 5 41669462-41926452 3.62 8.20 -0.0015
2024 qPA_8_1* 8 44829555-45597124 3.93 8.91 0.0016 41292087-43461936 [25]
硬脂酸含量
Stearic acid content
2022 qSA_12_1 12 36622894-36860564 3.28 5.53 0.0006
2022 qSA_14_1* 14 41921137-42499704 12.73 24.27 -0.0013 45041539-17206268 [17,26]
2022 qSA_18_1 18 9853074-12244773 2.76 4.63 -0.0006 7031610-10011867 [23]
2022 qSA_6_1 6 44468034-45504017 3.12 5.23 0.0006 18736894-17218677 [26-27]
2023 qSA_14_2 14 7265117-7319673 3.19 3.89 0.0007
2023 qSA_14_1* 14 41921137-42499704 19.26 28.19 -0.0018 45041539-17206268 [17,26]
2023 qSA_18_1 18 19650949-18718990 2.78 3.32 -0.0006 7031610-10011867 [23]
2023 qSA_6_1 6 16721800-44379906 3.45 4.97 0.0007 18736894-17218677 [26-27]
2024 qSA_3_1* 3 37826833-37844905 6.84 9.58 0.0010
2024 qSA_10_1* 10 39754114-39830221 5.40 7.46 0.0009
2024 qSA_14_1* 14 32133459-32469801 7.79 11.30 -0.0011
2024 qSA_17_1 17 10209159-12449434 2.91 3.93 -0.0007 45041539-17206268 [17-18,20 -26]
2024 qSA_18_1* 18 19650949-18718990 4.43 6.00 -0.0008 7031610-10011867 [23]
油酸含量
Oleic acid content
2022 qOA_11_1* 11 27919630-15919569 3.71 8.15 0.0045
2022 qOA_6_1 6 5919686-6318489 2.90 6.06 -0.0038
2022 qOA_8_1 8 540525-913491 2.94 5.99 -0.0039
2023 qOA_10_1 10 41173098-42740210 2.76 4.84 -0.0035
2023 qOA_13_1 13 38339398-39073288 3.22 5.96 -0.0039
2023 qOA_17_1 17 40269550-40624722 3.45 6.19 0.0039
2023 qOA_4_1 4 49758551-49991113 3.30 5.77 0.0038
油酸含量
Oleic acid content
2023 qOA_5_1 5 662392-1499171 3.25 5.83 0.0038
2024 qOA_3_1* 3 38103441-38132250 3.78 8.03 -0.0043
2024 qOA_19_1 19 37779653-38151343 2.62 5.56 -0.0035
亚油酸含量
Linoleic acid content
2022 qLA_13_1 13 41484449-41723456 2.66 6.87 0.0031
2022 qLA_2_1* 2 3425604-3542335 4.64 11.99 0.0040
亚麻酸含量
Linolenic acid content
2022 qLNA_10_1* 10 43482211-43577420 4.37 8.86 0.0030 44695771-44718071 [28]
2022 qLNA_20_1 20 45682176-45921670 2.81 5.58 -0.0024
2022 qLNA_8_1* 8 45846707-45966388 7.06 14.92 -0.0039 45939584-43498672 [29]
2023 qLNA_10_1* 10 43482211-43577420 7.07 9.85 0.0034 44695771-44718071 [28]
2023 qLNA_17_1* 17 36947820-37078396 4.20 5.64 -0.0026
2023 qLNA_6_1* 6 16721800-44379906 3.96 6.86 -0.0029
2023 qLNA_8_1* 8 45846707-45966388 5.89 8.28 -0.0031 45939584-43498672 [29]
2024 qLNA_3_1* 3 38132250-38684678 4.93 8.60 0.0030
2024 qLNA_8_1* 8 45846707-45966388 5.40 9.49 -0.0031 45939584-43498672 [29]
2024 qLNA_12_1 12 301836-683675 2.62 4.42 0.0021
2024 qLNA_17_1 17 37485073-37917956 3.06 5.16 -0.0023
2024 qLNA_19_1 19 46485195-47204138 2.58 4.50 0.0021

Fig. 6

QTL mapping of protein, fat, and fatty acid content in the RIL population Blue: Shijiazhuang’s pilot program in 2022; Green: Shijiazhuang’s pilot program in 2023; Brown: pilot project in Sanya in 2024; Red: interval in which the locus is located; SZJ: Shijiazhuang pilot; SY: Sanya pilot; Pro: protein content; Oil: oil content; PA: palmitic acid content; SA: stearic acid content; OA: oleic acid content; LA: linoleic acid content; LNA: linolenic acid content."

[1] 唐芳, 王亚文, 杜丽娟, 高佳荷, 曾媛韬. 30份大豆品种在内蒙古乌兰察布地区引种试验初报. 草原与草业, 2023, 35(3): 7-14.
Tang F, Wang Y W, Du L J, Gao J H, Zeng Y T. Preliminary report of introduction experiment of 30 soybean varieties in Inner Mongolia Wulanchabu area. Grassland Pratac, 2023, 35(3): 7-14 (in Chinese with English abstract).
[2] Kudełka W, Kowalska M, Popis M. Quality of soybean products in terms of essential amino acids composition. Molecules, 2021, 26: 5071.
[3] Dhakal K H, Jung K H, Chae J H, Shannon J G, Lee J D. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions. Food Chem, 2014, 164: 70-73.
doi: 10.1016/j.foodchem.2014.04.113 pmid: 24996307
[4] 庄无忌, 韩华琼, 谢发明, 张乔, 李福山, 舒世珍, 常汝镇. 栽培、野生、半野生大豆脂肪酸组成的初步分析研究. 大豆科学, 1984, 3: 223-230.
Zhuang W J, Han H Q, Xie F M, Zheng Q, Li F S, Shu S Z, Chang R Z. Preliminary analysis of fatty acid composition of cultivated, wild and semi-wild soybeans. Soybean Sci, 1984, 3: 223-230 (in Chinese with English abstract).
[5] 王亚萍, 姚小华, 曹永庆, 常君, 任华东, 张成才, 王开良. 6种植物油料油脂的品质及氧化稳定性研究. 中国油脂, 2024, 49(9): 50-58.
Wang Y P, Yao X H, Cao Y Q, Chang J, Ren H D, Zhang C C, Wang K L. Quality and oxidation stability of the oils from six vegetable oilseeds. China Oils Fats, 2024, 49(9): 50-58 (in Chinese with English abstract).
[6] 宋晓昆, 张颖君, 闫龙, 杨春燕, 郑艳艳, 蒋春志, 荆慧贤, 张孟臣, 黄占景. 大豆脂肪酸组份相关、变异特点分析. 华北农学报, 2010, 25(增刊2): 68-73.
Song X K, Zhang Y J, Yan L, Yang C Y, Zheng Y Y, Jiang C Z, Jing H X, Zhang M C, Huang Z J. Analysis of Correlation and variation characteristics of fatty acid composition in soybean. Acta Agric Boreali-Sin, 2010, 25(S2): 68-73 (in Chinese with English abstract).
[7] Mensink R P, Temme E H M, Hornstra G. Dietary saturated and trans fatty acids and lipoprotein metabolism. Ann Med, 1994, 26: 461-464.
pmid: 7695873
[8] 王新风, 汪辉, 陈健, 王跃强. 大豆母性影响遗传分析与研究进展. 大豆科技, 2023, (3): 43-47.
Wang X F, Wang H, Chen J, Wang Y Q. Genetic analysis and research progress on maternal effects of soybean. Soybean Sci Technol, 2023, (3): 43-47 (in Chinese with English abstract).
[9] Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H. QTL analysis of major agronomic traits in soybean. Agric Sci China, 2007, 6: 399-405.
[10] Liu J Q, Jiang A H, Ma R H, Gao W R, Tan P T, Li X, Zhang J J. Du C Z, Zhang J J, Zhang X C, Zhang L, et al. QTL mapping for seed quality traits under multiple environments in soybean (Glycine max L.). Agronomy, 2023, 13: 2382.
[11] Zhong Y W, Li X G, Wang S S, Li S S, Zeng Y H, Cheng Y B, Ma Q B, Wang Y Y, Pang Y T, Nian H, et al. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.). J Integr Agric, 2024, 23: 3966-3982.
[12] Akond M, Yuan J Z, Liu S M, Kantartzi S K, Meksem K, Bellaloui N, Lightfoot D A, Kassem M A. Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr. Can J Plant Sci, 2018, 98: 881-888.
[13] Silva L C C, da Matta L B, Pereira G R, Bueno R D, Piovesan N D, Cardinal A J, God P I V G, Ribeiro C, Dal-Bianco M. Association studies and QTL mapping for soybean oil content and composition. Euphytica, 2021, 217: 24.
[14] Yao Y J, You Q B, Duan G Z, Ren J J, Chu S S, Zhao J Q, Li X, Zhou X N, Jiao Y Q. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biol, 2020, 20: 51.
doi: 10.1186/s12870-019-2199-7 pmid: 32005156
[15] Chen Q, Liu B Q, Ai L J, Yan L, Lin J, Shi X L, Zhao H T, Wei Y, Feng Y, Liu C J, et al. QTL and candidate genes for heterophylly in soybean based on two populations of recombinant inbred lines. Front Plant Sci, 2022, 13: 961619.
[16] 渠可心, 韩露, 谢建国, 潘文婧, 张泽鑫, 辛大伟, 刘春燕, 陈庆山, 齐照明. 基于RIL和CSSL群体定位大豆脂肪酸组分QTL. 中国农业科学, 2021, 54: 3168-3182.
doi: 10.3864/j.issn.0578-1752.2021.15.003
Qu K X, Han L, Xie J G, Pan W J, Zhang Z X, Xin D W, Liu C Y, Chen Q S, Qi Z M. Mapping QTL for soybean fatty acid composition based on RIL and CSSL population. Sci Agric Sin, 2021, 54: 3168-3182 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.15.003
[17] 王茜, 刘兵强, 贾馨元, 杨庆, 黄冀楠, 史晓蕾, 杨春燕, 陈庆山. RIL群体中大豆籽粒脂肪酸组分QTL分析. 大豆科学, 2023, 42: 416-423.
Wang X, Liu B Q, Jia X Y, Yang Q, Huang J N, Shi X L, Yang C Y, Chen Q S. QTL analysis of fatty acid composition in soybean seeds from RIL population. Soybean Sci, 2023, 42: 416-423 (in Chinese with English abstract).
[18] 闫龙, 蒋春志, 于向鸿, 杨春燕, 张孟臣. 大豆粗蛋白、粗脂肪含量近红外检测模型建立及可靠性分析. 大豆科学, 2008, 27: 833-837.
Yan L, Jiang C Z, Yu X H, Yang C Y, Zhang M C. Development and reliability of near infrared spectroscopy (NIS) models of protein and oil content in soybean. Soybean Sci, 2008, 27: 833-837 (in Chinese with English abstract).
[19] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[20] Yang Q, Lin G M, Lyu H Y, Wang C H, Yang Y Q, Liao H. Environmental and genetic regulation of plant height in soybean. BMC Plant Biol, 2021, 21: 63.
doi: 10.1186/s12870-021-02836-7 pmid: 33494700
[21] McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89-99.
pmid: 9291963
[22] Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
[23] Reinprecht Y, Poysa V W, Yu K F, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase- free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006, 49: 1510-1527.
doi: 10.1139/g06-112 pmid: 17426766
[24] Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theor Appl Genet, 1992, 83: 608-612.
doi: 10.1007/BF00226905 pmid: 24202678
[25] Panthee D R, Pantalone V R, Saxton A M. Modifier QTL for fatty acid composition in soybean oil. Euphytica, 2006, 152: 67-73.
[26] Li H W, Zhao T J, Wang Y F, Yu D Y, Chen S Y, Zhou R B, Gai J Y. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica, 2011, 182: 117-132.
[27] Hyten D L, Pantalone V R, Saxton A M, Schmidt M E, Sams C E. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. J Am Oil Chem Soc, 2004, 81: 1115-1118.
[28] Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci, 2008, 58: 361-366.
[29] Bachlava E, Dewey R E, Burton J W, Cardinal A J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci, 2009, 49: 433-442.
[30] Guyomarc’h S, Boutté Y, Laplaze L. AP2/ERF transcription factors orchestrate very long chain fatty acid biosynthesis during Arabidopsis lateral root development. Mol Plant, 2021, 14: 205-207.
[31] Todd J, Post-Beittenmiller D, Jaworski J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J, 1999, 17: 119-130.
doi: 10.1046/j.1365-313x.1999.00352.x pmid: 10074711
[32] Huang H D, Yang X P, Zheng M L, Chen Z X, Yang Z, Wu P, Jenks M A, Wang G C, Feng T, Liu L, et al. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. Plant Cell, 2023, 35: 2251-2270.
[33] Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell, 2008, 20: 752-767.
doi: 10.1105/tpc.107.054858 pmid: 18326828
[34] Wang X Y, Li Q Y, Zhang Q, Huang S Y, Yu J Y, Qin H T, Qi H D, Li Y L, Li Y Y, Yin Z G, et al. Identification of soybean genes related to fatty acid content based on a soybean genome collinearity analysis. Plant Breed, 2019, 138: 696-707.
[35] Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Lepiniec L, Rochat C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J, 2003, 33: 75-86.
doi: 10.1046/j.1365-313x.2003.016010.x pmid: 12943542
[1] HE Hong-Li, ZHANG Yu-Han, YANG Jing, CHENG Yun-Qing, ZHAO Yang, LI Xing-Nuo, SI Hong-Liang, ZHANG Xing-Zheng, YANG Xiang-Dong. Creation and physiological analysis of an e1-as gene mutant in soybean [J]. Acta Agronomica Sinica, 2025, 51(8): 2228-2239.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] WANG Ke-Jing, LI Xiang-Hua. Endangerment assessment of the perennial species G. tabacina and G. tomentella of the genus Glycine Willd. in China [J]. Acta Agronomica Sinica, 2025, 51(8): 2009-2019.
[4] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[5] LIU Xiao-Ning, ZHANG Ying, CAI Man-Lei, MA Hao, MIAO Zhi-Bo, CAO Ning, LIAN Rong-Fang, XU Quan-Le. Regulation of ODAP levels in Lathyrus sativus L. via interaction between LsSAT2 and LsAAE3 [J]. Acta Agronomica Sinica, 2025, 51(8): 2220-2227.
[6] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[7] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[8] LI Bing-Lin, YE Xiao-Lei, XIAO Hong, XIAO Guo-Bin, LYU Wei-Sheng, LIU Jun-Quan, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium fertilization rates on rapeseed yield, magnesium uptake, and yield loss caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(7): 1850-1860.
[9] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[10] GUO Teng-Da, CUI Meng-Jie, CHEN Lin-Jie, HAN Suo-Yi, GUO Jing-Kun, WU Chen-Di, FU Liu-Yang, HUANG Bing-Yan, DONG Wen-Zhao, ZHANG Xin-You. Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection [J]. Acta Agronomica Sinica, 2025, 51(6): 1489-1500.
[11] LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700.
[12] GUO Dong-Cai, LYU Tao, CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying, ZHENG Kai. Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton [J]. Acta Agronomica Sinica, 2025, 51(6): 1445-1466.
[13] WANG Qiong, ZOU Dan-Xia, CHEN Xing-Yun, ZHANG Wei, ZHANG Hong-Mei, LIU Xiao-Qing, JIA Qian-Ru, WEI Li-Bin, CUI Xiao-Yan, CHEN Xin, WANG Xue-Jun, CHEN Hua-Tao. Genome-wide association analysis and candidate genes prediction of flowering time and maturity date traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1558-1568.
[14] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[15] YIN Cong-Cong, LI Rui-Qi, YUE Pei-Yao, LI Chen, NIU Jing-Ping, ZHAO Jin-Zhong, DU Wei-Jun, YUE Ai-Qin. Establishment and application of a visual detection method for soybean mosaic virus SC15 based on closed dumbbell mediated isothermal amplification [J]. Acta Agronomica Sinica, 2025, 51(5): 1248-1260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!