Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1445-1466.doi: 10.3724/SP.J.1006.2025.44108
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
GUO Dong-Cai**,LYU Tao**,CAI Yong-Sheng,MAI WU-LU-DA·AI He-Mai-Ti,CHEN Quan-Jia,QU Yan-Ying*,ZHENG Kai*
[1] Wendel J F, Grover C E. Taxonomy and evolution of the cotton genus, Gossypium. In: Cotton. Madison, WI, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., 2015. [2] 杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展. 中国农业科学, 2016, 49: 4310–4322. Yang J, Ma Z Y, Wang X F. Progress in studies on genes related to fiber quality improvement of cotton. Sci Agric Sin, 2016, 49: 4310–4322 (in Chinese with English abstract). [3] 郭晓豪, 王寒涛, 魏鑫, 张晶晶, 付小康, 马亮, 魏恒玲, 喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL. 棉花学报, 2021, 33: 33–41. Guo X H, Wang H T, Wei X, Zhang J J, Fu X K, Ma L, Wei H L, Yu S X. QTL mapping of fiber quality traits in two lower generation populations of upland cotton. Cotton Sci, 2021, 33: 33–41 (in Chinese with English abstract). [4] 李兴河, 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 张香云, 张建宏. 利用海岛棉染色体片段导入系定位纤维品质性状QTL. 作物杂志, 2023, (5): 1–9. Li X H, Wang H T, Liu C J, Tang L Y, Zhang S J, Cai X, Zhang X Y, Zhang J H. QTL mapping for fiber quality traits using Gossypium barbadense chromosome segment introgression lines. Crops, 2023, (5): 1–9 (in Chinese with English abstract). [5] 姜骁. 中棉所70重组自交系群体纤维品质QTL和优质基因全基因组挖掘. 中国农业科学院博士学位论文, 北京, 2021. Jiang X. Genome-wide Mining of Fiber Quality QTL and High-quality Genes in Recombinant Inbred Line Population of China Cotton Institute 70. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract). [6] Madden L V, Piepho H P, Paul P A. Statistical models and methods for network meta-analysis. Phytopathology, 2016, 106: 792–806. [7] Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324–2326. [8] 左煜昕, 马靖福, 刘媛, 张沛沛, 栗孟飞, 程宏波, 陈思瑾, 幸华, 杨德龙. 小麦穗粒数QTL整合与元分析. 麦类作物学报, 2020, 40: 771–779. Zuo Y X, Ma J F, Liu Y, Zhang P P, Li M F, Cheng H B, Chen S J, Xing H, Yang D L. Mapping and meta-analysis of QTLs for the kernel number per spike in wheat (Triticum aestivum L.). J Triticeae Crops, 2020, 40: 771–779 (in Chinese with English abstract). [9] 闫伟, 李元, 宋茂兴, 张旷野, 孙铭泽, 瞿会, 李凤海, 钟雪梅, 朱敏, 杜万里, 等. 玉米抗灰斑病QTL元分析及其验证. 作物学报, 2016, 42: 758–767. Yan W, Li Y, Song M X, Zhang K Y, Sun M Z, Qu H, Li F H, Zhong X M, Zhu M, Du W L, et al. Meta-analysis and validation of QTL for resistance to gray leaf spot in maize. Acta Agron Sin, 2016, 42: 758–767 (in Chinese with English abstract). [10] 程宇坤, 何万龙, 任毅, 耿洪伟. 小麦耐盐性QTL的元分析. 麦类作物学报, 2023, 43: 1319–1325. Cheng Y K, He W L, Ren Y, Geng H W. Meta-analysis of QTL for wheat salt tolerance. J Triticeae Crops, 2023, 43: 1319–1325 (in Chinese with English abstract). [11] 杨鑫雷, 周晓栋, 王省芬, 李志坤, 张艳, 刘恒蔚, 吴立强, 张桂寅, 马峙英. 棉花纤维品质性状QTL的元分析. 棉花学报, 2013, 25: 503–509. Yang X L, Zhou X D, Wang X F, Li Z K, Zhang Y, Liu H W, Wu L Q, Zhang G Y, Ma Z Y. Quantitative traits locus meta-analysis of fiber quality traits in cotton. Cotton Sci, 2013, 25: 503–509 (in Chinese with English abstract). [12] Said J I, Lin Z X, Zhang X L, Lin Z X, Zhang X L, Song M Z, Zhang J F. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 2013, 14: 776. [13] Said J I, Song M Z, Wang H T, Lin Z X, Zhang X L, Fang D D, Zhang J F. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015, 290: 1003–1025. [14] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27: 125–132. [15] Blenda A, Fang D D, Rami J F, Garsmeur O, Luo F, Lacape J M. A high-density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One, 2012, 7: e45739. [16] Glass G V. Primary, secondary, and meta-analysis of research. Educ Res, 1976, 5: 3. [17] Duan Y J, Chen Q, Chen Q J, Zheng K, Cai Y S, Long Y L, Zhao J Y, Guo Y P, Sun F L, Qu Y Y. Analysis of transcriptome data and quantitative trait loci enables identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3 (Bethesda), 2022, 12: jkac167. [18] Goldberg D H, Victor J D, Gardner E P, Gardner D. Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165–178. [19] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P. Quality control for RNA-seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7–14. [20] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114–2120. [21] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650–1667. [22] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224–229. [23] Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923–930. [24] 邓晓英. 杂交棉中棉所70产量和纤维品质性状的QTL定位. 山西农业大学硕士学位论文, 山西太谷, 2016. Deng X Y. Identification of QTL for Yield and Fiber Quality Traits in Hybrid Cotton CCRI 70. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2016 (in Chinese with English abstract). [25] 郭丽雪, 石玉真, 李俊文, 龚举武, 刘爱英, 商海红, 巩万奎, 陈婷婷, 葛群, 孙杰, 袁有禄. 陆海渐渗系分离群体(F2)产量和纤维品质性状的QTL定位. 棉花学报, 2015, 27: 550–560. Guo L X, Shi Y Z, Li J W, Gong J W, Liu A Y, Shang H H, Gong W K, Chen T T, Ge Q, Sun J, Yuan Y L. Mapping QTL of fiber yield and quality traits in F2 populations of chromosome segment substitution lines from Gossypium hirsutum × Gossypium barbadense. Cotton Sci, 2015, 27: 550–560 (in Chinese with English abstract). [26] 何蕊. 陆地棉中棉所36背景的海岛棉染色体片段代换系(BC5F3、BC5F3:4、BC5F3:5)的评价及QTL定位. 西南大学硕士学位论文, 重庆, 2014. He R. The Evaluation and Identifying QTL of Chromosome Segment Substitution Lines (BC5F3, BC5F3:4, C5F3:5) in CCRI36 Background of Gossypium hirsutum L. MS Thesis of Southwest University, Chongqing, China, 2014 (in Chinese with English abstract). [27] 江晗. 陆地棉超高强纤维品质与产量相关性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2013. Jiang H. QTL Mapping of Fiber Qualities and Yield Components in Ultra-high Strength Upland Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract). [28] 焦梦佳. 利用棉花优质渐渗系进行纤维长度及其相关性状QTL的定位. 山东师范大学硕士学位论文, 山东济南, 2020. Jiao M J. QTL Mapping for Fiber Length and Other Related Traits of Cotton Using Elite Germplasm with Introgression of Gossypium barbadense. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2020 (in Chinese with English abstract). [29] 李爱国. AB-QTL法定位海岛棉产量及纤维品质基因. 湖南农业大学硕士学位论文, 湖南长沙, 2008. Li A G. QTL Analysis of Fiber Yield and Quality Using Gossypium hirsutum × G. Barbadense Advanced Backcross Populations. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2008 (in Chinese with English abstract). [30] Liang Q Z, Hu C, Hua H, Li Z H, Hua J P. Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull, 2013, 58: 3233–3243. [31] 梁燕. 早熟陆地棉染色体片段代换系的构建及QTL初步定位. 中国农业科学院硕士学位论文, 北京, 2010. Liang Y. Construction of Chromosome Segment Substitution Lines and Primary QTL Mapping in Early-maturing Upland Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract). [32] 李超, 李志坤, 谷淇深, 杨君, 柯会锋, 吴立强, 王国宁, 张艳, 吴金华, 张桂寅, 等. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位. 作物学报, 2018, 44: 1114–1126. Li C, Li Z K, Gu Q S, Yang J, Ke H F, Wu L Q, Wang G N, Zhang Y, Wu J H, Zhang G Y, et al. Molecular evaluation for chromosome segment substitution lines of Gossypium barbadense and QTL mapping for fiber quality and yield. Acta Agron Sin, 2018, 44: 1114–1126 (in Chinese with English abstract). [33] Liu X Y, Teng Z H, Wang J X, Wu T T, Zhang Z Q, Deng X P, Fang X M, Tan Z Y, Ali I, Liu D X, et al. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2017, 292: 1281–1306. [34] 秦永生. 陆地棉重要农艺性状QTL定位研究. 南京农业大学硕士学位论文, 江苏南京, 2009. Qin Y S. Research on QTL Mapping for Agronomic Traits in Upland Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract). [35] Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012, 30: 569–582. [36] Wang F R, Xu Z Z, Sun R, Gong Y C, Liu G D, Zhang J X, Wang L M, Zhang C Y, Fan S J, Zhang J. Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breed, 2013, 32: 547–562. [37] 王娟, 郭旺珍, 张天真. 渝棉1号优质纤维QTL的标记与定位. 作物学报, 2007, 33: 1915–1921. Wang J, Guo W Z, Zhang T Z. QTL mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin, 2007, 33: 1915–1921 (in Chinese with English abstract). [38] 王义青. 陆地棉优异纤维品质及产量性状的QTL挖掘. 中国农业科学院硕士学位论文, 北京, 2010. Wang Y Q. Identification of QTLs for Yield and Elite Fiber Quality Traits in Upland Cotton (Gossypium hirsutum L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract). [39] 杨芮, 李鹏涛, 肖向辉, 李俊文, 龚举武, 刘爱英, 巩万奎, 商海红, 葛群, 卢全伟, 等. 棉花陆海渐渗系次级分离群体产量和纤维品质QTL定位. 棉花学报, 2022, 34: 401–415. Yang R, Li P T, Xiao X H, Li J W, Gong J W, Liu A Y, Gong W K, Shang H H, Ge Q, Lu Q W, et al. QTL mapping for yield and fiber quality traits in secondary segregate population of cotton chromosome segment introgression lines. Cotton Sci, 2022, 34: 401–415 (in Chinese with English abstract). [40] 杨昶, 郭旺珍, 张天真. 陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位. 分子植物育种, 2007, 5: 797–805. Yang C, Guo W Z, Zhang T Z. QTL mapping for resistance to Verticillium wilt, fiber quality and yield traits in upland cotton (Gossypium hirsutum L.). Mol Plant Breed, 2007, 5: 797–805 (in Chinese with English abstract). [41] 杨泽茂. 陆地棉染色体片段代换系的构建及QTL定位初探. 湖南农业大学硕士学位论文, 湖南长沙, 2009. Yang Z M. Development of Chromosome Segment Substitution Lines and Primary Identification of QTL in Upland Cotton (Gossypium hirsutum). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2009 (in Chinese with English abstract). [42] Chen Y, Liu G D, Ma H H, Song Z Q, Zhang C Y, Zhang J X, Zhang J H, Wang F R, Zhang J. Identification of introgressed alleles conferring high fiber quality derived from Gossypium barbadense L. in secondary mapping populations of G. hirsutum L. Front Plant Sci, 2018, 9: 1023. [43] Yu J W, Yu S X, Gore M, Wu M, Zhai H H, Li X L, Fan S L, Song M Z, Zhang J F. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 2013, 191: 375–389. [44] 周晓栋. 棉纤维品质主效QTL的挖掘与验证. 河北农业大学硕士学位论文, 河北保定, 2013. Zhou X D. Mining and Identification of Major QTL for Fiber Quality in Allotetraploid Cotton. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2013 (in Chinese with English abstract). [45] Nnaemeka Ekene Vitalis. GhC/VIF2, GhCML45和GhMYB308调控陆地棉纤维发育的机理探讨. 浙江理工大学硕士学位论文, 浙江杭州, 2022. Nnaemeka E. Exploring the Mechanism of GhC/VIF2, GhCML45 and GhMYB308 Regulating the Fiber Development in Upland Cotton. MS Thesis of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 2022 (in Chinese with English abstract). [46] 窦玲玲, 田再垄, 李婷婷, 马雄风, 肖光辉. 陆地棉OFP基因家族的全基因组鉴定及表达分析. 中国科学: 生命科学, 2022, 52: 510–522. Dou L L, Tian Z L, Li T T, Ma X F, Xiao G H. Genome-wide identification and expression analysis of OFP gene family in upland cotton. Sci Sin Vitae, 2022, 52: 510–522 (in Chinese with English abstract). [47] 张丽雅. 棉花黄萎病抗性相关基因GhPrx14的功能分析和棉花OFP家族的生物信息学分析. 郑州大学硕士学位论文, 河南郑州, 2022. Zhang L Y. Functional Analysis of Cotton Verticillium Wilt Resistance Related Gene GhPrxl4 and Bioinformatics Analysis of OFP Family in Cotton. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2022 (in Chinese with English abstract). [48] 王艳鸽, 孙全, 李祖亮. 棉花GbCML24基因的克隆及其功能分析. 分子植物育种, 2019, 17: 4873–4882. Wang Y G, Sun Q, Li Z L. Cloning and functional analysis of cotton (Gossypium barbadense) GbCML24 gene. Mol Plant Breed, 2019, 17: 4873–4882 (in Chinese with English abstract). [49] 张成伟, 郭林林, 王秀兰, 张辉, 石海燕, 许文亮, 李学宝. 4个棉花ADF基因的分子鉴定及其差异表达. 遗传学报, 2007, 34: 347–354. Zhang C W, Guo L L, Wang X L, Zhang H, Shi H Y, Xu W L, Li X B. Molecular characterization of four ADF genes differentially expressed in cotton. J Genet Genom, 2007, 34: 347–354 (in Chinese with English abstract). [50] Chen F, Guo Y J, Chen L, Gan X L, Liu M, Li J, Xu W L. Global identification of genes associated with xylan biosynthesis in cotton fiber. J Cotton Res, 2020, 3: 25. [51] 李颖, 彭佳泺, 巨吉生, 王彩香, 宿俊吉. 响应赤霉素GA3调控陆地棉开花关键基因GhGASA9和GhGASA14的鉴定. 见: 第二十届中国作物学会学术年会论文摘要集. 北京: 中国作物学会, 2023. p 1. Li Y, Peng J L, Ju J S, Wang J J, Su J J. Identification of key flowering genes GhGASA9 and GhGASA14 in response to gibberellin GA3 regulation in upland cotton. In: Abstracts of the 20th Annual Meeting of the Crop Science Society of China. Beijing: The Crop Science Society of China, 2023. p 1 (in Chinese with English abstract). [52] Qiao K K, Ma C K, Lyu J Y, Zhang C J, Ma Q F, Fan S L. Identification, characterization, and expression profiles of the GASA genes in cotton. J Cotton Res, 2021, 4: 7. [53] 高雅楠. GhERF41调控初生壁与次生壁合成的研究. 郑州大学硕士学位论文, 河南郑州, 2022. Gao Y N. Study on the Roles of GhERF41 in Regulating Biosynthesis of Primary Cell Wall and Secondary Cell Wall. MS Thesis of Zhengzhou University, Zhengzhou, Henan, Chian, 2022 (in Chinese with English abstract). [54] 何绍萍. GhERF108调控棉纤维细胞次生壁发育的机制研究. 华中师范大学硕士学位论文, 湖北武汉, 2020. He S P. The Role of GhERF108 in Regulating Secondary Cell Wall Synthesis of Cotton Fibers. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract). [55] 王晔. 亚洲棉LBDs同源基因的克隆及应用. 华中农业大学硕士学位论文, 湖北武汉, 2015. Wang Y. Molecular Cloning and Application of LBDs from Cotton (Gossypium arboreum L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract). [56] 汤孟玲. GbKCS14响应温度调控棉纤维发育的分子机理. 浙江农林大学硕士学位论文, 浙江杭州, 2019. Tang M L. Molecular Mechanism of GbKCS14 Responsive to Temperature in Regulation of Cotton Fiber Development. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract). [57] 杜雪琼. 棉花纤维发育相关基因GhKCS13的克隆与功能验证. 华中农业大学硕士学位论文, 湖北武汉, 2011. Du X Q. Cloning and Function Analysis of GhKCS13 in Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract). [58] 闫飞林. 棉花纤维起始相关长链非编码RNA的功能鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2019. Yan F L. The Functional Identification of Long non-coding RNA Related to Cotton Fiber Initial. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract). [59] Tan H Z, Tang B H, Sun M L, Yin Q L, Ma Y Z, Li J Y, Wang P C, Li Z H, Zhao G N, Wang M J, et al. Identification of new cotton fiber-quality QTL by multiple genomic analyses and development of markers for genomic breeding. Crop J, 2024, 12: 866–879. [60] Wang M J, Qi Z Y, Thyssen G N, Naoumkina M, Jenkins J N, McCarty J C, Xiao Y J, Li J Y, Zhang X L, Fang D D. Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton. Commun Biol, 2022, 5: 60–60. [61] 李娜, 王鹏, 孔斌雪, 马靖福, 窦佳欣, 陈涛, 张沛沛, 刘媛, 杨德龙. 小麦品质性状QTL元分析及候选基因挖掘. 农业生物技术学报, 2024, 32: 11–25. Li N, Wang P, Kong B X, Ma J F, Dou J X, Chen T, Zhang P P, Liu Y, Yang D L. Meta-analysis of QTL and mining of candidate genes for quality traits in wheat (Triticum aestivum). J Agric Biotechnol, 2024, 32: 11–25 (in Chinese with English abstract). [62] 邵晓宇, 宋希云, 潘顺祥, 赵美爱. 玉米穗粗性状的全基因组关联分析及QTL元分析. 植物生理学报, 2017, 53: 2091–2102. Shao X Y, Song X Y, Pan S X, Zhao M A. Genome-wide association study and Meta-QTL analysis of ear diameter trait in maize. Plant Physiol J, 2017, 53: 2091–2102 (in Chinese with English abstract). [63] Xu S D, Pan Z Y, Yin F F, Yang Q Y, Lin Z X, Wen T W, Zhu L F, Zhang D W, Nie X H. Identification of candidate genes controlling fiber quality traits in upland cotton through integration of meta-QTL, significant SNP and transcriptomic data. J Cotton Res, 2020, 3: 34. [64] 何永辉. 棉花钙调素与类钙调素基因家族表达分析及棉花纤维离子组测定. 华中农业大学硕士学位论文, 湖北武汉, 2015. He Y H. Expression Analysis of Calmodulin and Calmodulin-like Gene Family and Ionome Analysis of Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract). [65] Bao Y, Wei Y Y, Liu Y L, Gao J J, Cheng S, Liu G Q, You Q, Liu P, Lu Q W, Li P T, et al. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol, 2023, 21: 165. [66] Olas J J, Apelt F, Annunziata M G, John S, Richard S I, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol Plant, 2021, 14: 1508–1524. [67] Yu S H, Wu J X, Sun Y M, Zhu H F, Sun Q G, Zhao P C, Huang R S, Guo Z F. A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. Plant Physiol, 2022, 190: 1321–1333. [68] Tian X H, Ji M Y, You J Q, Zhang Y Q, Lindsey K, Zhang X L, Tu L L, Wang M J. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. Plant J, 2024, 118: 405–422. |
[1] | WANG Ya-Wen, QI Zheng-Yang, YOU Jia-Qi, NIE Xin-Hui, CAO Juan, YANG Xi-Yan, TU Li-Li, ZHANG Xian-Long, WANG Mao-Jun. Preparation of cotton 60K functional locus gene chip and its application to genetic research [J]. Acta Agronomica Sinica, 2025, 51(5): 1178-1188. |
[2] | XIE Zhang-Shu, XIE Xue-Fang, TU Xiao-Ju, LIU Ai-Yu, DONG He-Zhong, ZHOU Zhong-Hua. Research progress in phytohormone regulation of square and boll shedding in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 1-29. |
[3] | XIN Ming-Hua, MI Ya-Di, WANG Guo-Ping, LI Xiao-Fei, LI Ya-Bing, DONG He-Lin, HAN Ying-Chun, FENG Lu. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 221-232. |
[4] | LI Chao, FU Xiao-Qiong. Comprehensive evaluation of regional trial varieties of medium mature hybrid cotton in the Yellow River Basin based on GYT biplot [J]. Acta Agronomica Sinica, 2025, 51(1): 30-43. |
[5] | AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278. |
[6] | LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502. |
[7] | XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596. |
[8] | LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157. |
[9] | LE Yu, WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu. Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1172-1180. |
[10] | LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052. |
[11] | DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720. |
[12] | KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293. |
[13] | LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528. |
[14] | WANG Yong-Hui, HE Jiang, ZHANG Xiang-Xiang, LOU Xiang-Di, GAO Jing, SUN Yan-Ru, CAO Ting, SHI Yang. Mechanism of reduced insecticidal protein expression in Bt cotton under low-iron stress based on transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(12): 2971-2983. |
[15] | SHANG Hong-Yan, PU Jing, KE Hui-Feng, GU Qi-Shen, SUN Zheng-Wen, YANG Jun, WANG Guo-Ning, ZHANG Yan, LU Huai-Yu, XU Dong-Yong, WU Li-Qiang, MA Zhi-Ying, WANG Xing-Fen, WU Jin-Hua. Genetic diversity analysis and evaluation of domestic and international cotton germplasm resources under different planting environments [J]. Acta Agronomica Sinica, 2024, 50(10): 2528-2537. |
|