Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2971-2983.doi: 10.3724/SP.J.1006.2024.44071

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mechanism of reduced insecticidal protein expression in Bt cotton under low-iron stress based on transcriptome analysis

WANG Yong-Hui(), HE Jiang, ZHANG Xiang-Xiang, LOU Xiang-Di, GAO Jing, SUN Yan-Ru, CAO Ting, SHI Yang   

  1. Institute of Agricultural Sciences of Jiangsu Coastal Area / Observation and Experimental Station of Saline land of Costal Area, Ministry of Agriculture and Rural Affairs, Yancheng 224001, Jiangsu, China
  • Received:2024-04-26 Accepted:2024-08-15 Online:2024-12-12 Published:2024-09-02
  • Contact: *E-mail: huiyw2008@163.com
  • Supported by:
    National Natural Science Foundation of China(31501267);Jiangsu Agriculture Science and Technology Innovation Fund [(CX(20)2065)

Abstract:

To provide a theoretical basis for the safety of insecticidal efficiency in Bt cotton, this study investigated the effects of low iron on Bt insecticidal protein content and the physiological and molecular mechanisms in Bt cotton. Transgenic Bt cotton cultivar Zhongmian 50 was grown under low iron (LI, 0.1 μmol L-1 Fe(II)-EDTA) and normal iron (CK, 20.0 μmol L-1 Fe(II)-EDTA) conditions in hydroponic culture to assess the impact of low iron stress on Bt insecticidal protein content, activities of nitrogen metabolism-related enzymes, and substances in cotton seedlings. Differentially expressed genes (DEGs) were screened, and their relative expression patterns were analyzed by high-throughput sequencing, with results verified by qRT-PCR. The results showed that, compared with the control, the insecticidal protein contents significantly decreased under low iron conditions, with a more pronounced reduction in roots than in leaves. Iron deficiency decreased NH4+-N and NO3--N levels in leaves and reduced soluble protein and nitrogen contents in both roots and leaves. Significant reductions in the activities of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) were observed when Bt insecticidal protein contents in roots and leaves were significantly reduced. High-throughput sequencing identified 11,661 DEGs in roots and 8972 in leaves, with 1652 genes down-regulated in both organs. GO annotation revealed that the functions of the differential genes in two organs were mainly concentrated in response to stimulus, cell wall, plasma membrane, binding, and catalytic activity. KEGG enrichment analysis demonstrated significant changes in phenylpropanoid biosynthesis, phenylalanine metabolism, cysteine and methionine metabolism, plant hormone signal transduction, zeatin biosynthesis, nitrogen metabolism, starch and sucrose metabolism, alanine, aspartate and glutamate metabolism, and tyrosine metabolism in both roots and leaves. Genes coding for NR, NiR1, and GLT1 related to the nitrogen reduction and assimilation pathway were significantly down-regulated under iron deficiency treatment. Therefore, low iron stress inhibits the transcription levels of genes related to nitrogen metabolism in Bt cotton, weakens the physiological activities of nitrogen metabolism, and subsequently reduces Bt insecticidal protein.

Key words: Bt cotton, insecticidal protein, low iron, transcriptome

Table 1

Primers for qRT-PCR"

基因名称
Gene name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
基因 ID
Gene ID
ACT14 CTGGAGACTGCCAAGAGCAGCT CCGGGCAACGGAATCTCTCAGC
NR GAGCATATCCCGGTGGGTTC GCTGCACAGCGAACTGAATC Gh_D02G0815
NiR1 GGGGCAGACATATTCTTGGGA AGCTCCAAAGTGTTCCACCA Gh_A13G0352
GS1.1 CAATTCGTGTTGGGCGAGAC CAAACATGGGCTTCCCCTCA Gh_A13G0512
GLT1 CGGAGGCTTGTGCTGAGTAT TCTGTACAGTGTGGGGCAAG Gh_D12G2422

Fig. 1

Effects of low iron stress on dry weight and iron content in the roots and leaves of Bt cotton A: effects of low iron stress on dry weight in the roots and leaves of Bt cotton; B: effects of low iron stress on iron content in the roots and leaves of Bt cotton. CK: 20 μmol L-1 Fe (II)-EDTA; LI: 0.1 μmol L-1 Fe (II)-EDTA. Different lowercase letters represent significant difference among treatments at the P < 0.05."

Fig. 2

Effects of low iron stress on insecticidal protein content in the roots and leaves of Bt cotton Treatments are the same as those given in Fig. 1. Different lowercase letters represent significant difference among treatments at the P < 0.05."

Table 2

Effects of low iron stress on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the roots and leaves of Bt cotton"

器官/处理
Organ/ treatment
硝酸还原酶活性
Nitrate reductase activities
(μmol g-1 h-1)
亚硝酸还原酶活性
Nitrite reductase activities
(μmol g-1 h-1)
谷氨酰胺合成酶活性
Glutamine synthetase
activities
(ΔA g-1 h-1)
谷氨酸合成酶活性
Glutamate synthase activities
(µmol g-1 min-1)
根系Root
CK 3.35 a 7.85 a 0.77 a 0.76 a
LI 2.79 b 6.97 b 0.34 b 0.44 b
叶片Leaf
CK 5.13 a 10.82 a 0.86 a 1.02 a
LI 3.54 b 9.03 b 0.83 a 0.81 b

Table 3

Effects of low iron stress on NH4+-N, NO3--N, soluble protein, and N content in the roots and leaves of Bt cotton"

器官/处理
Organ/ treatment
铵态氮
NH4+-N
(μg g-1 FW)
硝态氮
NO3--N
(μmol g-1 FW)
可溶性蛋白含量
Soluble protein content
(mg g-1 FW)
全氮含量
N content
(mg g-1 DW)
根系Root
CK 6.6 a 13.4 a 12.7 a 41.4 a
LI 6.8 a 14.1 a 9.3 b 35.8 b
叶片Leaf
CK 13.2 a 26.4 a 21.3 a 57.1 a
LI 10.3 b 17.6 b 17.8 b 51.8 b

Table 4

Statistical analysis of transcriptome sequencing basic data"

样品
Sample
原始数据
Raw reads
有效数据
Clean reads
总映射率
Total mapped rate (%)
唯一映射率
Uniquely mapped rate (%)
Q30
(%)
GC 含量
GC content (%)
RCK_1 46,179,118 45,290,042 98.13 93.01 94.27 42.77
RCK_2 47,909,866 46,989,512 98.17 93.05 94.05 42.76
RCK_3 46,776,936 45,955,806 98.20 93.17 94.41 42.73
RLI_1 36,534,072 35,735,176 96.03 92.59 94.18 43.28
RLI_2 42,611,888 41,690,972 96.02 92.72 94.18 43.29
RID_3 36,994,328 36,155,932 95.98 92.77 94.03 43.30
LCK_1 47,984,028 47,017,502 98.50 91.19 94.25 44.13
LCK_2 54,041,314 53,158,296 98.55 92.01 94.24 44.13
LCK_3 45,829,824 44,978,082 98.55 91.28 94.13 44.15
LLI_1 37,090,636 36,270,280 98.48 91.46 94.09 43.65
LLI_2 46,722,582 45,791,778 98.49 91.67 94.26 43.65
LLI_3 50,516,840 49,554,758 98.46 91.53 94.34 43.62

Fig. 3

Differentially expressed genes (DEGs) under low iron stress A: numbers of up-regulate and down-regulate genes in each sample; B: Venn diagram of differentially expressed genes. Abbreviations are the same as those given in Table 4."

Table 5

GO annotation of differentially expressed genes (DEGs)"

GO号
GO ID
GO功能
GO function
总基因数目
Total numbers
RCK vs RLI
差异基因数目
DEG numbers in
RCK vs RLI
LCK vs LLI
差异基因数目
DEG numbers in
LCK vs LLI
GO类别
Category
GO:0071555 细胞壁组织
Cell wall organization
1433 349 319 BP
GO:0071554 细胞壁组织或生物发生
Cell wall organization or biogenesis
1904 447 398 BP
GO:0050896 刺激反应
Response to stimulus
15,817 3040 2434 BP
GO:0009725 对激素的反应
Response to hormone
5317 1134 885 BP
GO:0055072 铁离子平衡
Iron ion homeostasis
148 62 50 BP
GO:0005576 胞外区
Extracellular region
2833 733 588 CC
GO:0071944 细胞外围
Cell periphery
9137 1803 1528 CC
GO:0030312 外部封装结构
External encapsulating structure
1816 466 387 CC
GO:0005618 细胞壁
Cell wall
1775 453 375 CC
GO:0005886 质膜
Plasma membrane
7785 1470 1263 CC
GO:0031226 质膜的内在成分
Intrinsic component of plasma membrane
922 237 224 CC
GO:0031224 膜的内在成分
Intrinsic component of membrane
10,103 1841 1646 CC
GO:0031225 膜锚定组件
Anchored component of membrane
412 122 125 CC
GO:0003700 DNA结合转录因子活性
DNA-binding transcription factor activity
3821 899 644 MF
GO:0016491 氧化还原酶活性
Oxidoreductase activity
3512 827 671 MF
GO:0046906 四吡咯结合
Tetrapyrrole binding
863 246 194 MF
GO:0020037 血红素结合
Heme binding
736 236 156 MF

Fig. 4

Scatter diagram of KEGG pathway enrichment Abbreviations are the same as those given in Table 4."

Fig. 5

Heatmaps of differentially expressed genes (DEGs) related NRT and AMT family Abbreviations are the same as those given in Table 4."

Table 6

Relative expression profiles of differentially expressed genes (DEGs) in the nitrogen metabolism pathway"

基因ID
Gene ID
基因功能注释
Gene function annotation
调控Regulation 基因名称
Gene name
RCK vs RLI LCK vs LLI
Gh_D02G0815 硝酸还原酶[NADH]
Nitrate reductase [NADH]
NR
Gh_A02G0769 硝酸还原酶[NADH]
Nitrate reductase [NADH]
NR
Gh_A01G1586 硝酸还原酶[NADH]
Nitrate reductase [NADH]
-- NR
Gh_D01G1872 硝酸还原酶[NADH]
Nitrate reductase [NADH]
NR
Gh_A13G0352 铁氧还蛋白-亚硝酸盐还原酶, 叶绿体 NiR1
Ferredoxin-nitrite reductase, chloroplastic
Gh_D07G1773 谷氨酰胺合成酶, 胞质同工酶1 GS1;1
Glutamine synthetase, cytosolic isozyme 1
Gh_A13G0512 谷氨酰胺合成酶, 胞质同工酶1 GS1;1
Glutamine synthetase, cytosolic isozyme 1
Gh_D13G0620 谷氨酰胺合成酶, 胞质同工酶1 -- GS1;1
Glutamine synthetase, cytosolic isozyme 1
Gh_D11G3479 谷氨酰胺合成酶, 结节同工酶 GS
Glutamine synthetase, nodule isozyme
Gh_D09G1909 谷氨酰胺合成酶, 叶同工酶, 叶绿体 -- GS
Glutamine synthetase, leaf isozyme, chloroplastic
Gh_A09G1788 谷氨酰胺合成酶, 叶同工酶, 叶绿体 -- GS
Glutamine synthetase, leaf isozyme, chloroplastic
Gh_D12G2422 谷氨酸合成酶 1 [NADH], 叶绿体 GLT1
Glutamate synthase 1 [NADH], chloroplastic
Gh_A12G2272 谷氨酸合成酶 1 [NADH], 叶绿体 -- GLT1
Glutamate synthase 1 [NADH], chloroplastic

Fig. 6

Verification of the differentially expressed genes by qRT-PCR"

[1] Wu K M, Lu Y H, Feng H Q, Jiang Y H, Zhao J Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 2008, 321: 1676-1678.
[2] Qiao F B. Fifteen years of Bt cotton in China: the economic impact and its dynamics. World Dev, 2015, 70: 177-185.
[3] 邢羽桐, 滕永康, 吴天凡, 刘媛媛, 陈源, 陈媛, 陈德华, 张祥. 高温干旱下缩节胺通过调节碳和氨基酸代谢提高Bt棉杀虫蛋白含量的生理机制. 中国农业科学, 2023, 56: 1471-1483.
doi: 10.3864/j.issn.0578-1752.2023.08.004
Xing Y T, Teng Y K, Wu T F, Liu Y Y, Chen Y, Chen Y, Chen D H, Zhang X. Mepiquat chloride increases the Cry1Ac protein content through regulating carbon and amino acid metabolism of Bt cotton under high temperature and drought Stress. Sci Agric Sin, 2023, 56: 1471-1483 (in Chinese with English abstract).
[4] 戴雨阳, 岳野, 刘震宇, 何润, 刘雨婷, 张祥, 陈德华, 陈媛. 低温胁迫对Bt棉纤维中杀虫蛋白含量及氮代谢的影响. 作物学报, 2024, 50: 709-720.
doi: 10.3724/SP.J.1006.2024.34088
Dai Y Y, Yue Y, Liu Z Y, He R, Liu Y T, Zhang X, Chen D H, Chen Y. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism. Acta Agron Sin, 2024, 50: 709-720 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34088
[5] Wang Y H, Gao J, Sun M F, Chen J P, Zhang X, Chen Y, Chen D H. Impacts of soil salinity on Bt protein concentration in square of transgenic Bt cotton. PLoS One, 2018, 13: e207013.
[6] Rochester I J. Effect of genotype, edaphic, environmental conditions, and agronomic practices on Cry1Ac protein expression in transgenic cotton. J Cotton Sci, 2006, 10: 252-262.
[7] Chen Y, Liu Z Y, Tambel L I M, Zhang X, Chen Y, Chen D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. J Integr Agric, 2021, 20: 100-108.
[8] Liang G. Iron uptake, signaling, and sensing in plants. Plant Commun, 2022, 3: 100349.
[9] Yuan J P, Li D H, Shen C W, Wu C H, Khan N, Pan F F, Yang H L, Li X, Guo W L, Chen B H, Li X Z. Transcriptome analysis revealed the molecular response mechanism of non-heading Chinese cabbage to iron deficiency stress. Front Plant Sci, 2022, 13: 848424.
[10] Li J, Nie K, Wang L Y, Zhao Y Y, Qu M N, Yang D L, Guan X Y. The molecular mechanism of GhbHLH121 in response to iron deficiency in cotton seedlings. Plants, 2023, 12: 1955.
[11] 张文静, 程建峰, 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕. 植物铁素(Fe)营养的生理研究进展. 中国农学通报, 2021, 37(36): 103-110.
doi: 10.11924/j.issn.1000-6850.casb2021-0187
Zhang W J, Cheng J F, Liu J, He P, Wang Z W, Zhang Z J, Jiang H Y. Nutrition physiology of iron (Fe) in plants: research progress. Chin Agric Sci Bull, 2021, 37(36): 103-110 (in Chinese with English abstract).
[12] Colombo C, Palumbo G, He J Z, Roberto P, Stefano C. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments, 2014, 14: 538-548.
[13] Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. Bmc Plant Biol, 2012, 12: 189.
doi: 10.1186/1471-2229-12-189 pmid: 23057967
[14] Li J, Cao X M, Jia X C, Liu L Y, Cao H W, Qin W Q, Li M. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci, 2021, 12: 710093.
[15] Dong H Z, Li W J. Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci, 2007, 193: 21-29.
[16] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005, 53: 333-342.
[17] Meng S, Zhang C, Su L, Li Y, Zhao Z. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ Exp Bot, 2016, 123: 78-87.
[18] Hu W, Zhao W Q, Yang J S, Oosterhuis D M, Loka D A, Zhou Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.)boll during the boll development stage. Plant Physiol Biochem, 2016, 101: 113-123.
[19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem, 1976, 72: 248-254.
pmid: 942051
[20] Guo K, Tu L L, Wang P C, Du X Q, Ye S, Luo M, Zhang X L. Ascorbate alleviates Fe deficiency-induced stress in cotton (Gossypium hirsutum) by modulating ABA levels. Front Plant Sci, 2017, 7: 01997.
[21] Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 2011, 12: R22.
[22] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[23] 周冬生, 吴振廷, 王学林, 倪春耕, 郑厚今. 施肥量和环境温度对转Bt基因棉抗虫性的影响. 安徽农业大学学报, 2000, 27: 352-357.
Zhou D S, Wu Z T, Wang X L, Ni C G, Zheng J H. Effects of fertilization and enviromental temperature on the resistance of Bt transgenic cotton to cotton bollworm. J Anhui Agric Univ, 2000, 27: 352-357 (in Chinese with English abstract).
[24] Chen Y, Li Y B, Zhou M Y, Cai Z Z, Tambel L I M, Zhang X, Chen Y, Chen D H. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiol Biochem, 2019, 141: 114-121.
[25] Jin L F, Liu Y Z, Du W, Fu L N, Hussain S B, Peng S A. Physiological and transcriptional analysis reveals pathways involved in iron deficiency chlorosis in fragrant citrus. Tree Genet Genomes, 2017, 13: 51.
[26] 朱彭玲, 杜秉海, 丁延芹, 杜志兵, 于素芳, 陈强. 新疆棉花根际土壤铁载体产生菌的遗传多样性及系统发育研究. 中国农业科学, 2009, 42: 1568-1574.
Zhu P L, Du B H, Ding Y Q, Du Z B, Yu S F, Chen Q. Genetic diversity and phylogeny of siderophore producing bacteria isolated from cotton rhizosphere in China’s Xinjiang. Sci Agric Sin, 2009, 42: 1568-1574 (in Chinese with English abstract).
[27] 彭正萍. 植物氮素吸收、运转和分配调控机制研究. 河北农业大学学报, 2019, 42(2): 1-5.
doi: 10.13320/j.cnki.jauh.2019.0024
Peng Z P. Absorption, transportation and regulation of nitrogen element in plants. J Hebei Agric Univ, 2019, 42(2): 1-5 (in Chinese with English abstract).
[28] 李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展. 核农学报, 2020, 34: 982-993.
doi: 10.11869/j.issn.100-8551.2020.05.0982
Li C Y, Kong Q X, Dong H Z. Nitrate uptake, transport and signaling regulation pathways. J Nucl Agric Sci, 2020, 34: 982-993 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2020.05.0982
[29] 丁伟. 缺铁胁迫对梨氮代谢及赤霉素信号转导相关基因表达的影响. 安徽农业大学硕士学位论文,安徽合肥, 2015.
Ding W. Effects of Iron-deficiency Stress on the Related Genes Expression of Nitrogen Metabolism and GA Signal Transduction of Pear. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015 (in Chinese with English abstract).
[30] Xin W, Zhang L, Zhang W Z, Gao J P, Yi J, Zhen X X, Li Z, Zhao Y, Peng C C, Zhao C. An integrated analysis of the rice transcriptome and metabolome reveals differential regulation of carbon and nitrogen metabolism in response to nitrogen availability. Int J Mol Sci, 2019, 20: 2349.
[31] Abouelsaad I, Weihrauch D, Renault S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Sci Hortic, 2016, 211: 70-78.
[32] Rae T D, Goff H M. The heme prosthetic group of lactoperoxidase: structural characteristics of heme I and heme I-peptides. J Biol Chem, 1998, 273: 27968-27977.
doi: 10.1074/jbc.273.43.27968 pmid: 9774411
[33] 冯万军, 邢国芳, 牛旭龙, 窦晨, 韩渊怀. 植物谷氨酰胺合成酶研究进展及其应用前景. 生物工程学报, 2015, 31: 1301-1312.
Feng W J, Xing G F, Niu X L, Dou C, Han Y H. Progress and application prospects of glutamine synthetase in plants. Chin J Biotechnol, 2015, 31: 1301-1312 (in Chinese with English abstract).
[34] Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004, 45: 1640-1647.
pmid: 15574840
[35] Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67: 89-105.
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[3] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[4] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[5] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[6] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[7] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[8] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[9] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[10] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[11] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[12] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[13] JIN Xin-Xin, SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Metabolome and transcriptome analysis of flavonoids in peanut testa [J]. Acta Agronomica Sinica, 2024, 50(12): 2950-2961.
[14] ZHANG Jin-Hui, XIAO Zi-Yi, LI Xu-Hua, ZHANG Ming, JIA Chun-Lan, PAN Zhen-Yuan, QIU Fa-Zhan. Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2 [J]. Acta Agronomica Sinica, 2024, 50(12): 3144-3154.
[15] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .