Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Mechanism of reduced insecticidal protein expression in Bt cotton under low-iron stress based on transcriptome analysis

WANG Yong-Hui*,HE Jiang,ZHANG Xiang-Xiang,LOU Xiang-Di,GAO Jing,SUN Yan-Ru,CAO Ting,SHI Yang   

  1. Institute of Agricultural Sciences of Jiangsu Coastal Area / Observation and Experimental Station of Saline land of Costal Area, Ministry of Agriculture and Rural Affairs, Yancheng 224001, Jiangsu, China
  • Received:2024-04-26 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-09-02
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31501267) and the Jiangsu Agriculture Science and Technology Innovation Fund [CX(20)2065]. 

Abstract:

To provide a theoretical basis for the safety of insecticidal efficiency in Bt cotton, this study investigated the effects of low iron on Bt insecticidal protein content and the physiological and molecular mechanisms in Bt cotton. Transgenic Bt cotton cultivar Zhongmian 50 was grown under low iron (LI, 0.1 μmol L-1 Fe(II)-EDTA) and normal iron (CK, 20 μmol L-1 Fe(II)-EDTA) conditions in hydroponic culture to assess the impact of low iron stress on Bt insecticidal protein content, activities of nitrogen metabolism-related enzymes, and substances in cotton seedlings. Differentially expressed genes (DEGs) were screened, and their relative expression patterns were analyzed by high-throughput sequencing, with results verified by qRT-PCR. The results showed that, compared with the control, the insecticidal protein contents significantly decreased under low iron conditions, with a more pronounced reduction in roots than in leaves. Iron deficiency decreased NH4+-N and NO3--N levels in leaves and reduced soluble protein and nitrogen contents in both roots and leaves. Significant reductions in the activities of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) were observed when Bt insecticidal protein contents in roots and leaves were significantly reduced. High-throughput sequencing identified 11,661 DEGs in roots and 8,972 in leaves, with 1,652 genes down-regulated in both organs. GO annotation revealed that the functions of the differential genes in two organs were mainly concentrated in response to stimulus, cell wall, plasma membrane, binding, and catalytic activity. KEGG enrichment analysis demonstrated significant changes in phenylpropanoid biosynthesis, phenylalanine metabolism, cysteine and methionine metabolism, plant hormone signal transduction, zeatin biosynthesis, nitrogen metabolism, starch and sucrose metabolism, alanine, aspartate and glutamate metabolism, and tyrosine metabolism in both roots and leaves. Genes coding for NR, NiR1, and GLT1 related to the nitrogen reduction and assimilation pathway were significantly down-regulated under iron deficiency treatment. Therefore, low iron stress inhibits the transcription levels of genes related to nitrogen metabolism in Bt cotton, weakens the physiological activities of nitrogen metabolism, and subsequently reduces Bt insecticidal protein.

Key words: Bt cotton, insecticidal protein, low iron, transcriptome

 [1] Wu K M, Lu Y H, Feng H Q, Jiang Y H, Zhao J Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 2008, 321: 1676–1678.

 [2] Qiao F B. Fifteen years of Bt cotton in China: the economic impact and its dynamics. World Dev, 2015, 70: 177–185.

 [3] 邢羽桐, 滕永康, 吴天凡, 刘媛媛, 陈源, 陈媛, 陈德华, 张祥. 高温干旱下缩节胺通过调节碳和氨基酸代谢提高Bt棉杀虫蛋白含量的生理机制. 中国农业科学, 2023, 56: 1471–1483.

Xing Y T, Teng Y K, Wu T F, Liu Y Y, Chen Y, Chen Y, Chen D H, Zhang X. Mepiquat chloride increases the Cry1Ac protein content through regulating carbon and amino acid metabolism of Bt cotton under high temperature and drought Stress. Sci Agric Sin, 2023, 56: 1471–1483 (in Chinese with English abstract).

 [4] 戴雨阳, 岳野, 刘震宇, 何润, 刘雨婷, 张祥, 陈德华, 陈媛. 低温胁迫对Bt棉纤维中杀虫蛋白含量及氮代谢的影响. 作物学报, 2024, 50: 709–720.

Dai Y Y, Yue Y, Liu Z Y, He R, Liu Y T, Zhang X, Chen D H, Chen Y. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism. Acta Agron Sin, 2024, 50: 709–720 (in Chinese with English abstract).

 [5] Wang Y H, Gao J, Sun M F, Chen J P, Zhang X, Chen Y, Chen D H. Impacts of soil salinity on Bt protein concentration in square of transgenic Bt cotton. PLoS One, 2018, 13: e207013.

 [6] Rochester I J. Effect of genotype, edaphic, environmental conditions, and agronomic practices on Cry1Ac protein expression in transgenic cotton. J Cotton Sci, 2006, 10: 252–262.

 [7] Chen Y, Liu Z Y, Tambel L I M, Zhang X, Chen Y, Chen D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. J Integr Agric, 2021, 20: 100–108.

 [8] Liang G. Iron uptake, signaling, and sensing in plants. Plant Commun, 2022, 3: 100349.

 [9] Yuan J P, Li D H, Shen C W, Wu C H, Khan N, Pan F F, Yang H L, Li X, Guo W L, Chen B H, Li X Z. Transcriptome analysis revealed the molecular response mechanism of non-heading Chinese cabbage to iron deficiency stress. Front Plant Sci, 2022, 13: 848424.

[10] Li J, Nie K, Wang L Y, Zhao Y Y, Qu M N, Yang D L, Guan X Y. The molecular mechanism of GhbHLH121 in response to iron deficiency in cotton seedlings. Plants, 2023, 12: 1955.

[11] 张文静, 程建峰, 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕. 植物铁素(Fe)营养的生理研究进展. 中国农学通报, 2021, 37(36): 103–110.

Zhang W J, Chen J F, Liu J, He P, Wang Z W, Zhang Z J, Jiang H Y. Nutrition physiology of iron (Fe) in plants: research progress. ChiAgric Sci Bull, 2021, 37(36): 103–110 (in Chinese with English abstract).

[12] Colombo C, Palumbo G, He J Z, Roberto P, Stefano C. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments, 2014, 14: 538–548.

[13] Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. Bmc Plant Biol, 2012, 12: 189.

[14] Li J, Cao X M, Jia X C, Liu L Y, Cao H W, Qin W Q, Li M. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci, 2021, 12: 710093.

[15] Dong H Z, Li W J. Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci, 2007, 193: 21–29.

[16] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005, 53: 333–342.

[17] Meng S, Zhang C, Su L, Li Y, Zhao Z. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ Exp Bot, 2016, 123: 78–87.

[18] Hu W, Zhao W Q, Yang J S, Oosterhuis D M, Loka D A, Zhou Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiol Biochem, 2016, 101: 113–123.

[19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem, 1976, 72: 248–254.

[20] Guo K, Tu L L, Wang P C, Du X Q, Ye S, Luo M, Zhang X L. Ascorbate alleviates Fe deficiency-induced stress in cotton (Gossypium hirsutum) by modulating ABA levels. Front Plant Sci, 2017, 7: 01997.

[21] Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 2011, 12: R22.

[22] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25: 402–408.

[23] 周冬生, 吴振廷, 王学林, 倪春耕, 郑厚今. 施肥量和环境温度对转Bt基因棉抗虫性的影响. 安徽农业大学学报, 2000, 27: 352–357.

Zhou D S, Wu Z T, Wang X L, Ni C G, Zheng J H. Effects of fertilization and enviromental temperature on the resistance of Bt transgenic cotton to cotton bollworm. J Anhui Agric Univ, 2000, 27: 352–357 (in Chinese with English abstract).

[24] Chen Y, Li Y B, Zhou M Y, Cai Z Z, Tambel L I M, Zhang X, Chen Y, Chen D H. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiol Biochem, 2019, 141: 114–121.

[25] Jin L F, Liu Y Z, Du W, Fu L N, Hussain S B, Peng S A. Physiological and transcriptional analysis reveals pathways involved in iron deficiency chlorosis in fragrant citrus. Tree Genet Genomes, 2017, 13: 51.

[26] 朱彭玲, 杜秉海, 丁延芹, 杜志兵, 于素芳, 陈强. 新疆棉花根际土壤铁载体产生菌的遗传多样性及系统发育研究. 中国农业科学, 2009, 42: 1568–1574.

Zhu P L, Du B H, Ding Y Q, Du Z B, Yu S F, Chen Q. Genetic diversity and phylogeny of siderophore producing bacteria isolated from cotton rhizosphere in China’s Xinjiang. Sci Agric Sin, 2009, 42: 1568–1574 (in Chinese with English abstract).

[27] 彭正萍. 植物氮素吸收、运转和分配调控机制研究. 河北农业大学学报, 2019, 42(2): 1–5.

Peng Z P. Absorption, transportation and regulation of nitrogen element in plants. J Hebei Agric Univ, 2019, 42(2): 1–5 (in Chinese with English abstract).

[28] 李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展. 核农学报, 2020, 34: 982–993.

Li C Y, Kong Q X, Dong H Z. Nitrate uptake, transport and signaling regulation pathways. J Nucl Agric Sci, 2020, 34: 982–993 (in Chinese with English abstract).

[29] 丁伟. 缺铁胁迫对梨氮代谢及赤霉素信号转导相关基因表达的影响. 安徽农业大学硕士学位论文, 安徽合肥, 2015.

Ding W. Effects of Iron-deficiency Stress on the Related Genes Expression of Nitrogen Metabolism and GA Signal Transduction of Pear. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015 (in Chinese with English abstract).

[30] Xin W, Zhang L, Zhang W Z, Gao J P, Yi J, Zhen X X, Li Z, Zhao Y, Peng C C, Zhao C. An integrated analysis of the rice transcriptome and metabolome reveals differential regulation of carbon and nitrogen metabolism in response to nitrogen availability. Int J Mol Sci, 2019, 20: 2349.

[31] Abouelsaad I, Weihrauch D, Renault S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Sci Hortic, 2016, 211: 70–78.

[32] Rae T D, Goff H M. The heme prosthetic group of lactoperoxidase: structural characteristics of heme I and heme I-peptides. J Biol Chem, 1998, 273: 27968–27977.

[33] 冯万军, 邢国芳, 牛旭龙, 窦晨, 韩渊怀. 植物谷氨酰胺合成酶研究进展及其应用前景. 生物工程学报, 2015, 31: 1301–1312.

Feng W J, Xing G F, Niu X L, Dou C, Han Y H. Progress and application prospects of glutamine synthetase in plants. Chin J Biotechnol, 2015, 31: 1301–1312 (in Chinese with English abstract).

[34] Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004, 45: 1640–1647.

[35] Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67: 89–105.

[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[3] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[4] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[5] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[6] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[7] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[8] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[9] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[10] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[11] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[12] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[13] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[14] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[15] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!