Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1467-1479.doi: 10.3724/SP.J.1006.2025.42052
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
LEI Song-Han,FAN Jun-Yang,CHE Yan-Yi,DAI Yong-Dong,ZHENG Yu-Meng,TIAN Wei-Jiang,SANG Xian-Chun*,WANG Xiao-Wen*
[1] 朱德峰, 林贤青, 曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较. 作物学报, 2001, 27: 329–333. Zhu D F, Lin X Q, Cao W X. Comparison of leaf photosynthetic characteristics among rice hybrids with different leaf rolling index. Acta Agron Sin, 2001, 27: 329–333 (in Chinese with English abstract). [2] 田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华. 水稻卷叶基因RL13的遗传分析和分子定位. 作物学报, 2012, 38: 423–428. Tian X Q, Sang X C, Zhao F M, Li Y F, Ling Y H, Yang Z L, He G H. Genetic analysis and molecular mapping of a rolled leaf gene RL13 in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 423–428 (in Chinese with English abstract). [3] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位. 作物学报, 2023, 49: 3029–3041. Zhou W Q, Qiang X X, Li S Y, Wang S, Wei W R. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice. Acta Agron Sin, 2023, 49: 3029–3041 (in Chinese with English abstract). [4] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展. 植物学报, 2018, 53: 848–855. Zhou T T, Rao Y C, Ren D Y. Research advances in the cytological and molecular mechanisms of leaf rolling in rice. Chin Bull Bot, 2018, 53: 848–855 (in Chinese with English abstract). [5] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803–816. [6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807–817. [7] Xu Y, Kong W Y, Wang F Q, Wang J, Tao Y J, Li W Q, Chen Z H, Fan F J, Jiang Y J, Zhu Q H, et al. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice. Plant Biotechnol J, 2021, 19: 2662–2672. [8] Sun J, Cui X A, Teng S Z, Zhao K N, Wang Y W, Chen Z H, Sun X H, Wu J X, Ai P F, Quick W P, et al. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnol J, 2020, 18: 2559–2572. [9] Fang J J, Guo T T, Xie Z W, Chun Y, Zhao J F, Peng L X, Zafar S A, Yuan S J, Xiao L T, Li X Y. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiol, 2021, 185: 1722–1744. [10] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156:1589–1602. [11] Zhang X B, Wang Y, Zhu X Y, Wang X W, Zhu Z, Li Y Y, Xie J, Xiong Y Z, Yang Z L, He G H, et al. Curled flag leaf 2, encoding a cytochrome P450 protein, regulated by the transcription factor Roc5, influences flag leaf development in rice. Front Plant Sci, 2021, 11: 616977. [12] Zhou L, Chen S H, Cai M H, Cui S, Ren Y L, Zhang X Y, Liu T Z, Zhou C L, Jin X, Zhang L M, et al. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. J Integr Plant Biol, 2023, 65: 1408–1422. [13] Wang J J, Xu J, Wang L, Zhou M Y, Nian J Q, Chen M M, Lu X L, Liu X, Wang Z A, Cen J S, et al. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). Plant Biotechnol J, 2023, 21: 819–838. [14] 沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009, 7: 852–860. Shen N W, Qian Q, Zhang G H. Research progress on rice rolled leaf and its application in breeding program. Mol Plant Breed, 2009, 7: 852–860 (in Chinese with English abstract). [15] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719–735. [16] Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67: 2139–2150. [17] Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392–3411. [18] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524–532. [19] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, et al. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016, 78: 345–356. [20] Li Y Y, He P L, Wang X W, Chen H Y, Ni J L, Tian W J, Zhang X B, Cui Z B, He G H, Sang X C. FGW1, a protein containing DUF630 and DUF632 domains, regulates grain size and filling in Oryza sativa L. Crop J, 2023, 11: 1390–1400. [21] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37. [22] Wen X X, Sun L P, Chen Y Y, Xue P, Yang Q Q, Wang B F, Yu N, Cao Y R, Zhang Y, Gong K, et al. Rice dwarf and low tillering 10 (OsDLT10) regulates tiller number by monitoring auxin homeostasis. Plant Sci, 2020, 297: 110502. [23] Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J N M, Souer E, Koes R. FLOOZY of Petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev, 2002, 16: 753–763. [24] Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291: 306–309. [25] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499–507. [26] Woo Y M, Park H J, Su’udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125–136. [27] Huang J, Li Z Y, Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016, 6: 29938. [28] 杨璇, 胡骏. 杂交水稻育种技术的研究进展. 武汉大学学报(理学版), 2024, 70: 556–566. Yang X, Hu J. Progress in hybrid rice breeding technology. J Wuhan Univ (Nat Sci Edn), 2024, 70: 556–566 (in Chinese with English abstract). [29] 梁容, 秦冉, 曾冬冬, 郑希, 金晓丽, 石春海. 水稻窄卷叶突变体nrl4的表型分析与基因定位. 中国农业科学, 2016, 49: 3863–3873. Liang R, Qin R, Zeng D D, Zheng X, Jin X L, Shi C H. Phenotype analysis and gene mapping of narrow and rolling leaf mutant nrl4 in rice (Oryza sativa L.). Sci Agric Sin, 2016, 49: 3863–3873 (in Chinese with English abstract). [30] Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, et al. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017, 213: 275–286. [31] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆. 作物学报, 2023, 49: 2288–2295. Jia L Q, Sun Y, Tian R, Zhang X F, Dai Y D, Cui Z B, Li Y Y, Feng X Y, Sang X C, Wang X W. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice. Acta Agron Sin, 2023, 49: 2288–2295 (in Chinese with English abstract). [32] Zhuang H, Wang H L, Zhang T, Zeng X Q, Chen H, Wang Z W, Zhang J, Zheng H, Tang J, Ling Y H, et al. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. Plant Cell, 2020, 32: 392–413. [33] Richards R A, Rebetzke G J, Condon A G, van Herwaarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci, 2002, 42: 111–121. [34] 胡忠孝, 田妍, 徐秋生. 中国杂交水稻推广历程及现状分析. 杂交水稻, 2016, 31(2): 1–8. Hu Z X, Tian Y, Xu Q S. Review of extension and analysis on current status of hybrid rice in China. Hybrid Rice, 2016, 31(2): 1–8 (in Chinese with English abstract). [35] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002, 130: 1152–1161. [36] 夏玉梅, 唐宁, 詹祎捷, 卜小兰, 胡远艺, 余木兰, 淡俊豪, 曹孟良. 杂交水稻混播机械化制种技术研究进展. 杂交水稻, 2020, 35(2): 1–5. Xia Y M, Tang N, Zhan Y J, Bu X L, Hu Y Y, Yu M L, Dan J H, Cao M L. Research progress of mechanized mixed-sowing hybrid rice seed production technology. Hybrid Rice, 2020, 35(2): 1–5 (in Chinese with English abstract). [37] 郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究Ⅱ.光合特性、物质生产与产量形成. 作物学报, 2004, 30: 883–887. Lang Y Z, Zhang Z J, Gu X Y, Yang J C, Zhu Q S. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) Ⅱ. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin, 2004, 30: 883–887 (in Chinese with English abstract). [38] Yu Q, Chen L, Zhou W Q, An Y H, Luo T X, Wu Z L, Wang Y Q, Xi Y F, Yan L F, Hou S W. RSD1 is essential for stomatal patterning and files in rice. Front Plant Sci, 2020, 11: 600021. [39] Attia K A, Abdelkhalik A F, Ammar M H, Wei C, Yang J S, Lightfoot D A, El-Sayed W M, El-Shemy H A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol, 2009, 11: i29–i34. [40] Song S Y, Chen Y, Liu L, See Y H B, Mao C Z, Gan Y B, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nat Plants, 2018, 4: 495–504. [41] He Y B, Yan L, Ge C N, Yao X F, Han X, Wang R C, Xiong L Z, Jiang L W, Liu C M, Zhao Y D. PINOID is required for formation of the stigma and style in rice. Plant Physiol, 2019, 180: 926–936. [42] Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. Plant Mol Biol, 2004, 54: 11–22. [43] Zhao Z G, Wang C L, Yu X W, Tian Y L, Wang W X, Zhang Y H, Bai W T, Yang N, Zhang T, Zheng H, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci USA, 2022, 119: e2121671119. [44] Xiang J J, Zhang G H, Qian Q, Xue H W. Semi-rolled leaf 1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488–1500. [45] Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, et al. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J, 2017, 92: 904–923. [46] 王翠红, 马建, 王帅, 田鹏, 岂长燕, 赵志超, 王久林, 王洁, 程治军, 张欣, 等. 一个新的水稻D1基因等位突变体的遗传鉴定与基因功能分析. 作物学报, 2016, 42: 1261–1272. Wang C H, Ma J, Wang S, Tian P, Qi C Y, Zhao Z C, Wang J L, Wang J, Cheng Z J, Zhang X, et al. Genetic identification of a new D1-allelic mutant and analysis of its gene function in rice. Acta Agron Sin, 2016, 42: 1261–1272 (in Chinese with English abstract). |
[1] | ZHANG Qin, DAI Cheng, MA Chao-Zhi. Auxin response reporter gene transformation of Brassica napus and dynamic signal analysis of GUS in different tissues [J]. Acta Agronomica Sinica, 2025, 51(3): 667-675. |
[2] | TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513. |
[3] | FU Jia-Qi, LI Shi-Kuan, TAN Meng-Hui, LUO Fang, ZHANG Chuan-Ling, LIU Ling-Yue, LU Qian, GU Yong-Zhe. Soybean GmRSM1 promotes apical hook disappearance by regulating PIN gene expression [J]. Acta Agronomica Sinica, 2024, 50(11): 2731-2741. |
[4] | HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698. |
[5] | LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385. |
[6] | CUI Fang-Fang, MENG Lin-Feng, LIU Miao-Miao, ZHANG Jian-Qiang, WANG Jian-Ge, LIU Qi-Yuan. Characteristics of MADS-box and SUPERMAN genes in tobacco cytoplasmic male sterile line K326 [J]. Acta Agronomica Sinica, 2023, 49(12): 3204-3214. |
[7] | LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35. |
[8] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[9] | CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379. |
[10] | WANG Yu-Kui,ZHANG He-Cui,BAI Xiao-Jing,LIAN Xiao-Ping,SHI Song-Mei,LIU Qian-Ying,ZUO Tong-Hong,ZHU Li-Quan. Characteristics and expression analysis of BoPINs family genes in Brassica oleracea [J]. Acta Agronomica Sinica, 2019, 45(8): 1270-1278. |
[11] | Kun GAO,Ying-Peng HUA,Hai-Xing SONG,Chun-Yun GUAN,Zhen-Hua ZHANG,Ting ZHOU. Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(9): 1334-1346. |
[12] | Xiao-Yan DING,Juan ZHAO,Shan-Shan QIAN,Xing-Ying YAN,Yan PEI. Improving Fiber Yield and Quality in the Short Season Cotton Variety Jinmian 11 by Introducing FBP7::iaaM [J]. Acta Agronomica Sinica, 2018, 44(8): 1152-1158. |
[13] | GUO Guo-Qiang,SUN Xue-Wu,SUN Ping-Yong,YIN Jian-Ying,HE Qiang,YUAN Ding-Yang,DENG Hua-Feng,YUAN Long-Ping. Morphological Characterization and Fine Mapping of Zebra Leaf Mutant zebra1349 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2016, 42(07): 957-965. |
[14] | WANG Bo,CAO Hong-Li,HUANG Yu-Ting,HU Yu-Rong,QIAN Wen-Jun,HAO Xin-Yuan, WANG Lu,YANG Ya-Jun,WANG Xin-Chao. Cloning and Expression Analysis of Auxin Efflux Carrier Gene CsPIN3 in Tea Plant (Camellia sinensis) [J]. Acta Agron Sin, 2016, 42(01): 58-69. |
[15] | NIU Jing,CHEN Sai-Hua*,ZHAO Jie-Yu,ZENG Zhao-Qiong,CAI Mao-Hong,ZHOU Liang,LIU Xi,JIANG Ling,WAN Jian-Min. Identification and Map-based Cloning of rad-1 and rad-2, Two Rice Architecture Determinant Mutants [J]. Acta Agron Sin, 2015, 41(11): 1621-1631. |
|