Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1467-1479.doi: 10.3724/SP.J.1006.2025.42052

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.)

LEI Song-Han(), FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun(), WANG Xiao-Wen()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2024-12-02 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-09
  • Contact: *E-mail: xwwang78@126.com;E-mail: sangxianchun@163.com
  • Supported by:
    the Chongqing Modern Agricultural Industry Technology System(CQMAITS202401);the National Key Research and Development Program of China(2022YFD1201600);the College Students’ Innovation and Entrepreneurship Training Scientific Research Project(202410635004)

Abstract:

Moderate leaf curling is beneficial for cross-pollination, fruit set, and enhancing the photosynthetic efficiency of crop canopies, making it highly valuable for hybrid rice seed production and cultivation. To elucidate the molecular mechanisms underlying leaf rolling in rice, we identified a stably inherited adaxial leaf-rolling mutant, acl3 (adaxially curled leaf 3), from an ethyl methanesulfonate (EMS)-mutagenized population. In addition to leaf curling, acl3 exhibits reduced plant height and seed-setting rate, along with a highly significant increase in 1000-grain weight. Histological analysis using paraffin sections revealed that the extreme curling in acl3 primarily results from a reduction in both the number and area of bulliform cells between vascular bundles in the adaxial epidermis. Genetic analysis indicated that the acl3 mutant phenotype is controlled by a single recessive nuclear gene, which was preliminarily mapped to a 409 kb physical region between Indel markers 07g89 and 07g498 on chromosome 7. Whole-genome sequencing of acl3 and the wild-type Xida 1B was performed, and sequence variations within the acl3 mapping interval were identified using IGV software. A G-to-A base substitution was detected in the sixth exon of the annotated gene LOC_Os07g01240/SRL1/CLD1, leading to a structural change in the encoded protein. This gene was preliminarily identified as the candidate gene for ACL3. Complementary vector construction and transformation of the acl3 mutant restored the mutant traits—leaf curling, plant height, and grain size to wild-type levels, confirming that ACL3 is a new allele of SRL1 with pleiotropic effects. Quantitative real-time PCR (qRT-PCR) analysis revealed highly significant upregulation of leaf-rolling-related genes REL2 and NAL7. Further investigation of auxin IAA pathway-related genes showed that auxin synthesis gene YUCCA2, auxin response genes ARF1 and ARF7, and primary auxin response genes IAA10, IAA21, and IAA22 were all upregulated to varying degrees, suggesting that ACL3 may regulate rice plant architecture development through the auxin signaling pathway.

Key words: rice (Oryza sativa L.), bulliform cells, curled leaf, SRL1, auxin

Table 1

Primer sequences used for gene mapping and qRT-PCR analysis"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
07g20 GCCACTTATCCAAATGCCCTT GCTGGGCCAAAGGAGAGAGG
07g89 GCTGCTACTCGATGATGATGATC TCTTCTTCCAGGACCAGCTTGC
07g498 CGGATTGAAACCCATCCACC ATGTTGGGTGGACGTGGATG
07g798 TGATGTCCGAAGTCAAGGTGC GCTTAACCGCAAACGTGGATT
ACTIN GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
ADL1 AATGGAATGGTCCGTGGTCAG CACCTGCACTATAACCACGCCA
ACL1 TCTAGGGGCATCGACCTGAA GCATGACGTAGATGAAGCAGCGA
ROC5 AGGTGGAAATGTGAAGTGTAGG AGGCGAGACCAGACCGAAG
RL14 CTATCCACCGTGCTTGAA AGAACCATTTGCCATCCT
REL2 CTTGCTATCGTCGCTGTCGT GCTCTTCCCTTCCATTGACT
NAL7 CAGGAGGACGGTGAGTTGTTC GCAGTAGAGCCCGTTTGGAC
SLL1 CGGCGACATGGACCAGTCGT GCTCGATCTGCACGGTTCCAA
AVB CACAGTCTTCTCCGGGCAGCAA CATTACCACCACCTAAGCCAGCTCT

Fig. 1

Phenotypic identification of the wild type (WT) and mutant (acl3) A-C: plant phenotypes of Xida 1B (WT) and acl3 mutant at the 3-leaf and 1-tiller stage, jointing stage, and maturity stage. A, scale bar: 5 cm; B and C, scale bar: 10 cm. D: flag leaf phenotype of WT and acl3 mutant at the maturity stage, with scale bar of 1 cm. E: leaf rolling index (LRI) of WT and acl3 mutant. F: phenotype of panicle and internode in WT (left) and acl3 mutant (right), with scale bar of 5 cm. G: statistics of panicle and internode length in WT and acl3 mutant. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 2

Statistical analysis of yield traits in wild type (WT) and mutant (acl3) A: panicle structure of WT and acl3 mutant, the red arrow indicates unfertilized empty spikelets (Scale bar = 3.5 cm); B: comparison of primary and secondary branch numbers in WT and acl3 mutant; C: flower structure of WT and acl3 mutant, ① and ② represent pollen grains stained with 1% KI-I2 solution (Scale bar = 2 mm); D: seed setting rates of WT and acl3 mutant; E: seed morphological characteristics of WT and acl3 mutant, with scale bars of 6 mm; F: 1000-grain weight comparison of WT and acl3 mutant; G: grain length comparison of WT and acl3 mutant; H: grains width comparison of WT and acl3 mutant; I: grains thickness comparison of WT and acl3 mutant; J: effective panicle comparison of WT and acl3 mutant; ** indicates significant differences at P < 0.01."

Table 2

Comparison of major agronomic traits between WT and acl3 mutant"

性状Trait 野生型Wild type 突变体Mutant
株高 Plant height (cm) 89.00±1.41 71.00±1.22**
穗长 Panicle length (cm) 25.80±0.45 24.00±1.00*
有效穗数 Panicles per plant 5.80±0.84 6.80±0.45
结实率 Seed-setting rate (%) 92.71±2.40 40.33±7.11**
粒长 Grain length (mm) 9.10±0.10 8.78±0.08**
粒宽 Grain width (mm) 2.76±0.05 2.82±0.04
粒厚 Grain thickness (mm) 1.92±0.04 2.13±0.04**
千粒重 1000-grain weight (g) 23.25±0.28 3.13±0.62**

Fig. 3

Cytological observations and photosynthetic efficiency in wild type (WT) and mutant (acl3) A and B: cross-section of the flag leaf between WT and acl3 mutant at the heading stage, with scale bars of 500 μm; a and b: enlarged views of the red-boxed regions in Fig. A and B, with scale bars of 100 μm; C: comparison of bulliform cell numbers between two minor vascular bundles; D: total area of bulliform cells; E: net photosynthetic rate; F: stomatal conductance; G: transpiration rate; H: intercellular CO2 concentration. BC: bulliform cells. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Table 3

Genetic analysis of rolling leaf acl3 mutant"

组合名称
Combination
F2群体株数
Total number
野生型株数
Wild type number
突变株数
Mutant number
理论值
Theory value
χ2 0.05=3.84
acl3/缙恢10 acl3/Jinhui 10 636 463 173 3:1 1.64

Fig. 4

Map-based cloning of ACL3 A: gene mapping of ACL3; B: different locus in gene-mapped region identified by IGV, the red arrow indicates the sites of base difference; C: mutational sequence of wild type (WT) and acl3 mutant, the red box indicates the mutant base; D: gene structure of candidate gene LOC_Os07g01240, the white and black boxes indicate 5′UTR and exons respectively, the white arrow indicates 3′UTR and the black lines indicate introns, the mutation site was marked by red line; E: phenotypes of WT, acl3 and complementary transgenic plants (COM), with scale bar of 20 cm; F: flag leaf shape of WT, acl3 and COM, with scale bar of 1 cm."

Fig. 5

Protein structure and phylogenetic analysis of ACL3 A: ACL3 structure in WT and acl3 mutant. The arrow indicates the variant region. B: phylogenetic analysis of ACL3; C: conserved domain of ACL3 (red box) and the amino acid mutation site (red asterisk)."

Fig. 6

qRT-PCR analysis of genes involved in leaf curling and auxin pathway A: qRT-PCR analysis of genes regulating curled leaves; B: qRT-PCR analysis of genes regulating auxin pathway. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

[1] 朱德峰, 林贤青, 曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较. 作物学报, 2001, 27: 329-333.
Zhu D F, Lin X Q, Cao W X. Comparison of leaf photosynthetic characteristics among rice hybrids with different leaf rolling index. Acta Agron Sin, 2001, 27: 329-333 (in Chinese with English abstract).
[2] 田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华. 水稻卷叶基因RL13的遗传分析和分子定位. 作物学报, 2012, 38: 423-428.
doi: 10.3724/SP.J.1006.2012.00423
Tian X Q, Sang X C, Zhao F M, Li Y F, Ling Y H, Yang Z L, He G H. Genetic analysis and molecular mapping of a rolled leaf gene RL13 in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 423-428 (in Chinese with English abstract).
[3] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位. 作物学报, 2023, 49: 3029-3041.
doi: 10.3724/SP.J.1006.2023.22061
Zhou W Q, Qiang X X, Li S Y, Wang S, Wei W R. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice. Acta Agron Sin, 2023, 49: 3029-3041 (in Chinese with English abstract).
[4] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展. 植物学报, 2018, 53: 848-855.
doi: 10.11983/CBB17236
Zhou T T, Rao Y C, Ren D Y. Research advances in the cytological and molecular mechanisms of leaf rolling in rice. Chin Bull Bot, 2018, 53: 848-855 (in Chinese with English abstract).
[5] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
[6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
[7] Xu Y, Kong W Y, Wang F Q, Wang J, Tao Y J, Li W Q, Chen Z H, Fan F J, Jiang Y J, Zhu Q H, et al. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice. Plant Biotechnol J, 2021, 19: 2662-2672.
doi: 10.1111/pbi.13690 pmid: 34448351
[8] Sun J, Cui X A, Teng S Z, Zhao K N, Wang Y W, Chen Z H, Sun X H, Wu J X, Ai P F, Quick W P, et al. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnol J, 2020, 18: 2559-2572.
[9] Fang J J, Guo T T, Xie Z W, Chun Y, Zhao J F, Peng L X, Zafar S A, Yuan S J, Xiao L T, Li X Y. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiol, 2021, 185: 1722-1744.
[10] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
[11] Zhang X B, Wang Y, Zhu X Y, Wang X W, Zhu Z, Li Y Y, Xie J, Xiong Y Z, Yang Z L, He G H, et al. Curled flag leaf 2, encoding a cytochrome P450 protein, regulated by the transcription factor Roc5, influences flag leaf development in rice. Front Plant Sci, 2021, 11: 616977.
[12] Zhou L, Chen S H, Cai M H, Cui S, Ren Y L, Zhang X Y, Liu T Z, Zhou C L, Jin X, Zhang L M, et al. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. J Integr Plant Biol, 2023, 65: 1408-1422.
doi: 10.1111/jipb.13460
[13] Wang J J, Xu J, Wang L, Zhou M Y, Nian J Q, Chen M M, Lu X L, Liu X, Wang Z A, Cen J S, et al. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). Plant Biotechnol J, 2023, 21: 819-838.
[14] 沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009, 7: 852-860.
Shen N W, Qian Q, Zhang G H. Research progress on rice rolled leaf and its application in breeding program. Mol Plant Breed, 2009, 7: 852-860 (in Chinese with English abstract).
[15] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
[16] Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67: 2139-2150.
[17] Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y.CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392-3411.
[18] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/j.1467-7652.2012.00679.x pmid: 22329407
[19] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, et al. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016, 78: 345-356.
[20] Li Y Y, He P L, Wang X W, Chen H Y, Ni J L, Tian W J, Zhang X B, Cui Z B, He G H, Sang X C. FGW1, a protein containing DUF630 and DUF632 domains, regulates grain size and filling in Oryza sativa L. Crop J, 2023, 11: 1390-1400.
[21] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
[22] Wen X X, Sun L P, Chen Y Y, Xue P, Yang Q Q, Wang B F, Yu N, Cao Y R, Zhang Y, Gong K, et al. Rice dwarf and low tillering 10 (OsDLT10) regulates tiller number by monitoring auxin homeostasis. Plant Sci, 2020, 297: 110502.
[23] Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J N M, Souer E, Koes R. FLOOZY of Petunia is a flavin mono- oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev, 2002, 16: 753-763.
[24] Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291: 306-309.
doi: 10.1126/science.291.5502.306 pmid: 11209081
[25] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507.
doi: 10.1007/s00438-008-0328-3 pmid: 18293011
[26] Woo Y M, Park H J, Su’udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
[27] Huang J, Li Z Y, Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016, 6: 29938.
doi: 10.1038/srep29938 pmid: 27444058
[28] 杨璇, 胡骏. 杂交水稻育种技术的研究进展. 武汉大学学报(理学版), 2024, 70: 556-566.
Yang X, Hu J. Progress in hybrid rice breeding technology. J Wuhan Univ (Nat Sci Edn), 2024, 70: 556-566 (in Chinese with English abstract).
[29] 梁容, 秦冉, 曾冬冬, 郑希, 金晓丽, 石春海. 水稻窄卷叶突变体nrl4的表型分析与基因定位. 中国农业科学, 2016, 49: 3863-3873.
doi: 10.3864/j.issn.0578-1752.2016.20.001
Liang R, Qin R, Zeng D D, Zheng X, Jin X L, Shi C H. Phenotype analysis and gene mapping of narrow and rolling leaf mutant nrl4 in rice (Oryza sativa L.). Sci Agric Sin, 2016, 49: 3863-3873 (in Chinese with English abstract).
[30] Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, et al. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017, 213: 275-286.
[31] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆. 作物学报, 2023, 49: 2288-2295.
doi: 10.3724/SP.J.1006.2023.22056
Jia L Q, Sun Y, Tian R, Zhang X F, Dai Y D, Cui Z B, Li Y Y, Feng X Y, Sang X C, Wang X W. Identification of the rgs1mutant with rapid germination of seed and isolation of the regulated gene in rice. Acta Agron Sin, 2023, 49: 2288-2295 (in Chinese with English abstract).
[32] Zhuang H, Wang H L, Zhang T, Zeng X Q, Chen H, Wang Z W, Zhang J, Zheng H, Tang J, Ling Y H, et al. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. Plant Cell, 2020, 32: 392-413.
[33] Richards R A, Rebetzke G J, Condon A G, van Herwaarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci, 2002, 42: 111-121.
doi: 10.2135/cropsci2002.1110 pmid: 11756261
[34] 胡忠孝, 田妍, 徐秋生. 中国杂交水稻推广历程及现状分析. 杂交水稻, 2016, 31(2): 1-8.
Hu Z X, Tian Y, Xu Q S. Review of extension and analysis on current status of hybrid rice in China. Hybrid Rice, 2016, 31(2): 1-8 (in Chinese with English abstract).
[35] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002, 130: 1152-1161.
doi: 10.1104/pp.007179 pmid: 12427982
[36] 夏玉梅, 唐宁, 詹祎捷, 卜小兰, 胡远艺, 余木兰, 淡俊豪, 曹孟良. 杂交水稻混播机械化制种技术研究进展. 杂交水稻, 2020, 35(2): 1-5.
Xia Y M, Tang N, Zhan Y J, Bu X L, Hu Y Y, Yu M L, Dan J H, Cao M L. Research progress of mechanized mixed-sowing hybrid rice seed production technology. Hybrid Rice, 2020, 35(2): 1-5 (in Chinese with English abstract).
[37] 郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究II. 光合特性、物质生产与产量形成. 作物学报, 2004, 30: 883-887.
Lang Y Z, Zhang Z J, Gu X Y, Yang J C, Zhu Q S. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin, 2004, 30: 883-887 (in Chinese with English abstract).
[38] Yu Q, Chen L, Zhou W Q, An Y H, Luo T X, Wu Z L, Wang Y Q, Xi Y F, Yan L F, Hou S W. RSD1 is essential for stomatal patterning and files in rice. Front Plant Sci, 2020, 11: 600021.
[39] Attia K A, Abdelkhalik A F, Ammar M H, Wei C, Yang J S, Lightfoot D A, El-Sayed W M, El-Shemy H A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol, 2009, 11: i29-i34.
[40] Song S Y, Chen Y, Liu L, See Y H B, Mao C Z, Gan Y B, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nat Plants, 2018, 4: 495-504.
doi: 10.1038/s41477-018-0175-0 pmid: 29915329
[41] He Y B, Yan L, Ge C N, Yao X F, Han X, Wang R C, Xiong L Z, Jiang L W, Liu C M, Zhao Y D. PINOID is required for formation of the stigma and style in rice. Plant Physiol, 2019, 180: 926-936.
doi: 10.1104/pp.18.01389 pmid: 30918083
[42] Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y.In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. Plant Mol Biol, 2004, 54: 11-22.
[43] Zhao Z G, Wang C L, Yu X W, Tian Y L, Wang W X, Zhang Y H, Bai W T, Yang N, Zhang T, Zheng H, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci USA, 2022, 119: e2121671119.
[44] Xiang J J, Zhang G H, Qian Q, Xue H W. Semi-rolled leaf 1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
[45] Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, et al. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J, 2017, 92: 904-923.
[46] 王翠红, 马建, 王帅, 田鹏, 岂长燕, 赵志超, 王久林, 王洁, 程治军, 张欣, 等. 一个新的水稻D1基因等位突变体的遗传鉴定与基因功能分析. 作物学报, 2016, 42: 1261-1272.
doi: 10.3724/SP.J.1006.2016.01261
Wang C H, Ma J, Wang S, Tian P, Qi C Y, Zhao Z C, Wang J L, Wang J, Cheng Z J, Zhang X, et al. Genetic identification of a new D1-allelic mutant and analysis of its gene function in rice. Acta Agron Sin, 2016, 42: 1261-1272 (in Chinese with English abstract).
[1] ZHANG Qin, DAI Cheng, MA Chao-Zhi. Auxin response reporter gene transformation of Brassica napus and dynamic signal analysis of GUS in different tissues [J]. Acta Agronomica Sinica, 2025, 51(3): 667-675.
[2] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[3] FU Jia-Qi, LI Shi-Kuan, TAN Meng-Hui, LUO Fang, ZHANG Chuan-Ling, LIU Ling-Yue, LU Qian, GU Yong-Zhe. Soybean GmRSM1 promotes apical hook disappearance by regulating PIN gene expression [J]. Acta Agronomica Sinica, 2024, 50(11): 2731-2741.
[4] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[5] LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385.
[6] CUI Fang-Fang, MENG Lin-Feng, LIU Miao-Miao, ZHANG Jian-Qiang, WANG Jian-Ge, LIU Qi-Yuan. Characteristics of MADS-box and SUPERMAN genes in tobacco cytoplasmic male sterile line K326 [J]. Acta Agronomica Sinica, 2023, 49(12): 3204-3214.
[7] LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35.
[8] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[9] CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379.
[10] WANG Yu-Kui,ZHANG He-Cui,BAI Xiao-Jing,LIAN Xiao-Ping,SHI Song-Mei,LIU Qian-Ying,ZUO Tong-Hong,ZHU Li-Quan. Characteristics and expression analysis of BoPINs family genes in Brassica oleracea [J]. Acta Agronomica Sinica, 2019, 45(8): 1270-1278.
[11] Kun GAO,Ying-Peng HUA,Hai-Xing SONG,Chun-Yun GUAN,Zhen-Hua ZHANG,Ting ZHOU. Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(9): 1334-1346.
[12] Xiao-Yan DING,Juan ZHAO,Shan-Shan QIAN,Xing-Ying YAN,Yan PEI. Improving Fiber Yield and Quality in the Short Season Cotton Variety Jinmian 11 by Introducing FBP7::iaaM [J]. Acta Agronomica Sinica, 2018, 44(8): 1152-1158.
[13] ZHOU Jin-Song,YAN Ping,ZHANG Wei-Ming,ZHENG Fu-Yu,CHENG Xiao-Yi,CHEN Wen-Fu. Effect of Biochar on Root Morphogenesis and Anatomical Structure of Rice Cultivated in Cold Region of Northeast China [J]. Acta Agron Sin, 2017, 43(01): 72-81.
[14] WANG Bo,CAO Hong-Li,HUANG Yu-Ting,HU Yu-Rong,QIAN Wen-Jun,HAO Xin-Yuan, WANG Lu,YANG Ya-Jun,WANG Xin-Chao. Cloning and Expression Analysis of Auxin Efflux Carrier Gene CsPIN3 in Tea Plant (Camellia sinensis) [J]. Acta Agron Sin, 2016, 42(01): 58-69.
[15] NIU Jing,CHEN Sai-Hua*,ZHAO Jie-Yu,ZENG Zhao-Qiong,CAI Mao-Hong,ZHOU Liang,LIU Xi,JIANG Ling,WAN Jian-Min. Identification and Map-based Cloning of rad-1 and rad-2, Two Rice Architecture Determinant Mutants [J]. Acta Agron Sin, 2015, 41(11): 1621-1631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .