Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1178-1188.doi: 10.3724/SP.J.1006.2025.44146
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Ya-Wen1(), QI Zheng-Yang1, YOU Jia-Qi1, NIE Xin-Hui2, CAO Juan3, YANG Xi-Yan1, TU Li-Li1, ZHANG Xian-Long1, WANG Mao-Jun1,2,*(
)
[1] | Billings G T, Jones M A, Rustgi S, Bridges W C Jr, Holland J B, Hulse-Kemp A M, Campbell B T. Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants (Basel), 2022, 11: 1446. |
[2] |
Yang Z E, Gao C X, Zhang Y H, Yan Q D, Hu W, Yang L, Wang Z, Li F G. Recent progression and future perspectives in cotton genomic breeding. J Integr Plant Biol, 2023, 65: 548-569.
doi: 10.1111/jipb.13388 |
[3] |
Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437-462.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477 |
[4] |
Yu H H, Xie W B, Li J, Zhou F S, Zhang Q F. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12: 28-37.
doi: 10.1111/pbi.12113 pmid: 24034357 |
[5] | Tung C W, Zhao K Y, Wright M H, Ali M L, Jung J, Kimball J, Tyagi W, Thomson M J, McNally K, Leung H, et al. Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice, 2010, 3: 205-217. |
[6] | Singh N, Jayaswal P K, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V, et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep, 2015, 5: 11600. |
[7] | Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011, 6: e28334. |
[8] |
Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics, 2014, 15: 823.
doi: 10.1186/1471-2164-15-823 pmid: 25266061 |
[9] | Lee Y G, Jeong N, Kim J H, Lee K, Kim K H, Pirani A, Ha B K, Kang S T, Park B S, Moon J K, et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J, 2015, 81: 625-636. |
[10] |
Vos P G, Uitdewilligen J G A M L, Voorrips R E, Visser R G F, van Eck H J. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet, 2015, 128: 2387-2401.
doi: 10.1007/s00122-015-2593-y pmid: 26263902 |
[11] |
Cavanagh C R, Chao S, Wang S C, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057-8062.
doi: 10.1073/pnas.1217133110 pmid: 23630259 |
[12] |
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773 |
[13] | Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X P, Upadhyaya H D, et al. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017, 7: 40577. |
[14] |
Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M, et al. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet, 2016, 129: 317-329.
doi: 10.1007/s00122-015-2629-3 pmid: 26536890 |
[15] | 李双双, 陈丽丽, 拉毛杰布, 九麦扎西, 勒毛才让, 马毅. 基因芯片在奶牛遗传育种中的应用. 中国畜禽种业, 2024, 20(8): 53-62. |
Li S S, Chen L L, Lamao J B, Jiumai Z X, Lemao C R, Ma Y. The application of gene chips in genetic breeding of dariry cattle. Chin Livest Poult Breed, 2024, 20(8): 53-62 (in Chinese with English abstract). | |
[16] | Tan Z D, Han X, Dai C, Lu S P, He H Z, Yao X, Chen P, Yang C, Zhao L, Yang Q Y, et al. Functional genomics of Brassica napus: progresses, challenges, and perspectives. J Integr Plant Biol, 2024, 66: 484-509. |
[17] |
徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 等. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001 |
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, et al. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001 |
|
[18] | Cai C P, Zhu G Z, Zhang T Z, Guo W Z. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654. |
[19] | Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3: Genes Genom Genet, 2015, 5: 1187-1209. |
[20] | Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629. |
[21] |
Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385-1391.
doi: 10.1038/s41588-021-00910-2 pmid: 34373642 |
[22] |
He S P, Sun G F, Geng X L, Gong W F, Dai P H, Jia Y H, Shi W J, Pan Z E, Wang J D, Wang L Y, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet, 2021, 53: 916-924.
doi: 10.1038/s41588-021-00844-9 pmid: 33859417 |
[23] | Yuan D J, Grover C E, Hu G J, Pan M Q, Miller E R, Conover J L, Hunt S P, Udall J A, Wendel J F. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv Sci, 2021, 8: 2003634. |
[24] |
You J Q, Liu Z P, Qi Z Y, Ma Y Z, Sun M L, Su L, Niu H, Peng Y B, Luo X X, Zhu M M, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet, 2023, 55: 1987-1997.
doi: 10.1038/s41588-023-01530-8 pmid: 37845354 |
[25] |
Lappalainen T, MacArthur D G. From variant to function in human disease genetics. Science, 2021, 373: 1464-1468.
doi: 10.1126/science.abi8207 pmid: 34554789 |
[26] |
Finucane H K, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P R, Anttila V, Xu H, Zang C Z, Farh K, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet, 2015, 47: 1228-1235.
doi: 10.1038/ng.3404 pmid: 26414678 |
[27] |
Xiang R D, Berg I V D, MacLeod I M, Hayes B J, Prowse-Wilkins C P, Wang M, Bolormaa S, Liu Z Q, Rochfort S J, Reich C M, et al. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proc Natl Acad Sci USA, 2019, 116: 19398-19408.
doi: 10.1073/pnas.1904159116 pmid: 31501319 |
[28] | Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229. |
[29] |
房嫌嫌, 吴大鹏, 陈进红, 祝水金. 陆地棉半野生种系的遗传多样性和亲缘关系分析. 棉花学报, 2011, 23(2): 99-105.
doi: 10.11963/cs110201 |
Fang X X, Wu D P, Chen J H, Zhu S J. Diversity and genetic relationship among the semi-cultivars of G.hirsutum L. Races using SSR markers. Cotton Sci, 2011, 23(2): 99-105 (in Chinese with English abstract). | |
[30] | Viot C R, Wendel J F. Evolution of the cotton genus, Gossypium, and its domestication in the Americas. Crit Rev Plant Sci, 2023, 42: 1-33. |
[31] | Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748. |
[32] | Chen X Y, Hu X B, Li G, Grover C E, You J Q, Wang R P, Liu Z P, Qi Z Y, Luo X X, Peng Y B, et al. Genetic regulatory perturbation of gene expression impacted by genomic introgression in fiber development of allotetraploid cotton. Adv Sci, 2024, 11: e2401549. |
[1] | LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408. |
[2] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[3] | GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394. |
[4] | MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405. |
[5] | YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997. |
[6] | LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492. |
[7] | WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859. |
[8] | TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732. |
[9] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
[10] | WANG Rui, REN Yi, CHENG Yu-Kun, WANG Wei, ZHANG Zhi-Hui, GENG Hong-Wei. Genome-wide association analysis of morphological traits of flag leaf in wheat [J]. Acta Agronomica Sinica, 2023, 49(11): 2886-2901. |
[11] | YANG Hao, XIANG Shi-Hua, LIU Li, NING Ke-Jun, YANG Xue, SHU Ying-Jie, HE Qing-Yuan. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing [J]. Acta Agronomica Sinica, 2023, 49(10): 2727-2737. |
[12] | XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96. |
[13] | JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261. |
[14] | XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902. |
[15] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
|