Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1166-1177.doi: 10.3724/SP.J.1006.2025.44175
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Jin-Ze1(), ZHOU Qing-Guo2, XIAO Li-Jing1, JIN Hai-Run1, OU-YANG Qing-Jing1, LONG Xu1, YAN Zhong-Bin1, TIAN En-Tang1,*(
)
[1] | Essoh A P, Monteiro F, Pena A R, Pais M S, Moura M, Romeiras M M. Exploring glucosinolates diversity in Brassicaceae: a genomic and chemical assessment for deciphering abiotic stress tolerance. Plant Physiol Biochem, 2020, 150: 151-161. |
[2] | Raboanatahiry N, Li H X, Yu L J, Li M T. Rapeseed (Brassica napus): processing, utilization, and genetic improvement. Agronomy, 2021, 11: 1776. |
[3] | Xiao M L, Wang H D, Li X N, Mason A S, Fu D H. Rapeseed as an ornamental. Horticulturae, 2022, 8: 27. |
[4] | Meng L B, Zhang Y H, Yu S P, Ogundeji A O, Zhang S, Li S M. Temporal assessment of biofumigation using mustard and oilseed rape tissues on Verticillium dahliae, soil microbiome and yield of eggplant. Agronomy, 2022, 12: 2963. |
[5] | Zheng Q, Liu K D. Worldwide rapeseed (Brassica napus L.) research: a bibliometric analysis during 2011-2021. Oil Crop Sci, 2022, 7: 157-165. |
[6] | Liu W B, Li S, Tao J B, Liu X Y, Yin G Y, Xia Y, Wang T, Zhang H Y. CARM30: China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 using multi-source data. Sci Data, 2024, 11: 356. |
[7] |
Kang L, Qian L W, Zheng M, Chen L Y, Chen H, Yang L, You L, Yang B, Yan M L, Gu Y G, et al. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet, 2021, 53: 1392-1402.
doi: 10.1038/s41588-021-00922-y pmid: 34493868 |
[8] | Nguyen V P T, Stewart J, Lopez M, Ioannou I, Allais F. Glucosinolates: natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules, 2020, 25: 4537. |
[9] | Kanstrup C, Jimidar C C, Tomas J, Cutolo G, Crocoll C, Schuler M, Klahn P, Tatibouët A, Nour-Eldin H H. Artificial fluorescent glucosinolates (F-GSLs) are transported by the glucosinolate transporters GTR1/2/3. Int J Mol Sci, 2023, 24: 920. |
[10] | Mann A, Kumari J, Kumar R, Kumar P, Pradhan A K, Pental D, Bisht N C. Targeted editing of multiple homologues of GTR1 and GTR2 genes provides the ideal low-seed, high-leaf glucosinolate oilseed mustard with uncompromised defence and yield. Plant Biotechnol J, 2023, 21: 2182-2195. |
[11] | Lou P, Zhao J J, He H J, Hanhart C, Pino Del Carpio D, Verkerk R, Custers J, Koornneef M, Bonnema G. Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol, 2008, 179: 1017-1032. |
[12] | 赵卫国, 塔娜, 王灏. 甘蓝型油菜种子硫代葡萄糖苷含量的QTL定位及候选基因分析. 西北植物学报, 2024, 44: 1261-1272. |
Zhao W G, Ta N, Wang H. QTL mapping and candidate gene identification of seed glucosinolate content in Brassica napus. Acta Bot Boreali-Occident Sin, 2024, 44: 1261-1272 (in Chinese with English abstract). | |
[13] | Wei D Y, Cui Y X, Mei J Q, Qian L W, Lu K, Wang Z M, Li J N, Tang Q L, Qian W. Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L. J Integr Plant Biol, 2019, 61: 611-623. |
[14] |
Antonious G F, Bomford M, Vincelli P. Screening Brassica species for glucosinolate content. J Environ Sci Health B, 2009, 44: 311-316.
doi: 10.1080/03601230902728476 pmid: 19280485 |
[15] |
王倩, 杨旭, 张金泽, 肖莉晶, 余坤江, 田恩堂. 芥菜型油菜茎秆抗倒伏相关性状的组织观察与QTL初定位. 植物遗传资源学报, 2024, 25: 431-439.
doi: 10.13430/j.cnki.jpgr.20230904003 |
Wang Q, Yang X, Zhang J Z, Xiao L J, Yu K J, Tian E T. Microstructure observation and QTL mapping of traits related to stalk lodging resistance in Brassica juncea. J Plant Genet Resour, 2024, 25: 431-439 (in Chinese with English abstract). | |
[16] | 杨旭, 余坤江, 向阳, 代文东, 杜才富, 田恩堂. 芥菜型油菜RIL群体QTL定位能力评价与分析. 分子植物育种, 网络首发[2023-11-01], http://kns.cnki.net/kcms/detail/46.1068.S.20231101.0933.002. |
Yang X, Yu K J, Xiang Y, Dai W D, Du C F, Tian E T. Evaluation and analysis of QTL mapping ability in RIL population of Brassica juncea. Mol Plant Breed, Published online [2023-11-01], http://kns.cnki.net/kcms/detail/46.1068.S.20231101.0933.002 (in Chinese with English abstract). | |
[17] | 李培武, 周海燕. 油菜硫代葡萄糖苷检测技术研究进展. 中国油料作物学报, 2008, 30: 127-131. |
Li P W, Zhou H Y. A review on analytical methods for glucosinolates. Chin J Oil Crop Sci, 2008, 30: 127-131 (in Chinese with English abstract). | |
[18] | 李东华, 叶春苗. 萝卜籽中活性成分提取及抑菌效果的研究. 沈阳化工大学学报, 2013, 27(1): 25-29. |
Li D H, Ye C M. Active constituents and bacteriostatic offect in radish seed. J Shenyang Univ Chem Technol, 2013, 27(1): 25-29 (in Chinese with English abstract). | |
[19] | 晏伟. 芥菜型油菜主要脂肪酸性状的QTL定位与分析. 贵州大学硕士学位论文, 贵州贵阳, 2022. |
Yan W. QTL Mapping and Analysis of Main Fatty Acid Traits in Brassica juncea. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2022 (in Chinese with English abstract). | |
[20] | Manrique-Carpintero N C, Coombs J J, Cui Y H, Veilleux R E, Buell C R, Douches D. Genetic map and QTL analysis of agronomic traits in a diploid potato population using single nucleotide polymorphism markers. Crop Sci, 2015, 55: 2566-2579. |
[21] |
Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[22] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142 |
[23] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171 |
[24] |
张金泽, 周庆国, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析. 作物学报, 2025, 51: 621-631.
doi: 10.3724/SP.J.1006.2025.44120 |
Zhang J Z, Zhou Q G, Yang X, Wang Q, Xiao L J, Jin H R, Ou-Yang Q J, Yu K J, Tian E T. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea. Acta Agron Sin, 2025, 51: 621-631 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2025.44120 |
|
[25] |
Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol, 2006, 57: 303-333.
pmid: 16669764 |
[26] |
Zhang L, Kawaguchi R, Enomoto T, Nishida S, Burow M, Maruyama-Nakashita A. Glucosinolate catabolism maintains glucosinolate profiles and transport in sulfur-starved Arabidopsis. Plant Cell Physiol, 2023, 64: 1534-1550.
doi: 10.1093/pcp/pcad075 pmid: 37464897 |
[27] |
Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003, 62: 471-481.
doi: 10.1016/s0031-9422(02)00549-6 pmid: 12620360 |
[28] |
田志涛, 赵永国, Lenka Havlickova, He Zhe S, Real Harper, Ian Bancroft, 邹锡玲, 张学昆, 陆光远. 甘蓝型油菜种子和角果皮中硫苷含量的动态变化及转录组关联分析. 中国农业科学, 2018, 51: 635-651.
doi: 10.3864/j.issn.0578-1752.2018.04.004 |
Tian Z T, Zhao Y G, Havlickova L, He Z S, Harper R, Bancroft I, Zou X L, Zhang X K, Lu G Y. Dynamic and associative transcriptomic analysis of glucosinolate content in seeds and silique walls of Brassica napus. Sci Agric Sin, 2018, 51: 635-651 (in Chinese with English abstract). | |
[29] | 李培武. 甘蓝型油菜叶片与种子硫苷相关性研究. 华中农业大学博士学位论文, 湖北武汉, 2007. |
Li P W. Correlation Between Glucosinolates in Leaves and Seeds of Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2007.(in Chinese with English abstract). | |
[30] |
Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations. Theor Appl Genet, 2015, 128: 657-666.
doi: 10.1007/s00122-015-2461-9 pmid: 25628164 |
[31] | He Y J, Fu Y, Hu D X, Wei D Y, Qian W. QTL mapping of seed glucosinolate content responsible for environment in Brassica napus. Front Plant Sci, 2018, 9: 891. |
[32] | Rahman H, Kebede B, Zimmerli C, Yang R C. Genetic study and QTL mapping of seed glucosinolate content in Brassica rapa L. Crop Sci, 2014, 54: 537-543. |
[33] |
Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X H, Xu X F, Li J N, Frauen M, Dreyer F, et al. Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet, 2015, 128: 1029-1037.
doi: 10.1007/s00122-015-2487-z pmid: 25748114 |
[34] | Schnug E, Ceynowa J. Phytopathological aspects of glucosinolates in oilseed rape. J Agron Crop Sci, 1990, 165: 319-328. |
[35] | Du L C, Ann Halkier B. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry, 1998, 48: 1145-1150. |
[36] |
Chen S, Petersen B L, Olsen C E, Schulz A, Halkier B A. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol, 2001, 127: 194-201.
doi: 10.1104/pp.127.1.194 pmid: 11553747 |
[37] |
Petersen B L, Chen S X, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214: 562-571.
pmid: 11925040 |
[38] | Tang Y S, Zhang G R, Jiang X Y, Shen S L, Guan M W, Tang Y H, Sun F J, Hu R, Chen S, Zhao H Y, et al. Genome-wide association study of glucosinolate metabolites (mGWAS) in Brassica napus L. Plants (Basel), 2023, 12: 639. |
[39] | Nour-Eldin H H, Halkier B A. Piecing together the transport pathway of aliphatic glucosinolates. Phytochem Rev, 2009, 8: 53-67. |
[40] |
Madsen S R, Olsen C E, Nour-Eldin H H, Halkier B A. Elucidating the role of transport processes in leaf glucosinolate distribution. Plant Physiol, 2014, 166: 1450-1462.
doi: 10.1104/pp.114.246249 pmid: 25209984 |
[41] | Nambiar D M, Kumari J, Augustine R, Kumar P, Bajpai P K, Bisht N C. GTR1 and GTR2 transporters differentially regulate tissue-specific glucosinolate contents and defence responses in the oilseed crop Brassica juncea. Plant Cell Environ, 2021, 44: 2729-2743. |
[42] | Tan Z D, Xie Z Q, Dai L H, Zhang Y T, Zhao H, Tang S, Wan L L, Yao X, Guo L, Hong D F. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnol J, 2022, 20: 211-225. |
[1] | LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981. |
[2] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
[3] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[4] | YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323. |
[5] | GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394. |
[6] | YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272. |
[7] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[8] | HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718. |
[9] | BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683. |
[10] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[11] | ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450. |
[12] | MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103. |
[13] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[14] | ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542. |
[15] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
|