Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1166-1177.doi: 10.3724/SP.J.1006.2025.44175

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea

ZHANG Jin-Ze1(), ZHOU Qing-Guo2, XIAO Li-Jing1, JIN Hai-Run1, OU-YANG Qing-Jing1, LONG Xu1, YAN Zhong-Bin1, TIAN En-Tang1,*()   

  1. 1College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
    2Anhui Dingke Seed Industry Co, Ltd., Hefei 230001, Anhui, China
  • Received:2024-10-20 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-17
  • Contact: *E-mail: erictian121@163.com
  • Supported by:
    Guizhou Provincial Science and Technology Support Program(Guizhou Kehe Support [2022] Key 031);National Natural Science Foundation of China(32160483);National Natural Science Foundation of China(32360497);Post-Funded Project for National Natural Science Foundation of Guizhou University([2023] No. 093)

Abstract:

Glucosinolates are critical secondary metabolites that play a pivotal role in the growth and development of rapeseed, as well as in its defense against diseases and pests. In this study, a mapping population comprising 197 recombinant inbred lines (RILs) of Brassica juncea was utilized to investigate glucosinolate distribution and genetic regulation. The glucosinolate contents in leaves, stems, buds, and seeds were quantified across all lines. The results revealed significant differences in glucosinolate content among different tissues within the same line and considerable variation across lines within the species, exhibiting an overall normal distribution. Correlation analysis showed a strong positive correlation in glucosinolate content among buds, stems, and seeds, as well as a notable positive correlation between leaves and flower buds. To further elucidate the genetic regulation of glucosinolate content, quantitative trait locus (QTL) mapping was conducted, resulting in the identification of 9, 10, 9, and 18 QTLs associated with glucosinolate content in leaves, stems, buds, and seeds, respectively. By integrating QTL interval sequence information with gene expression data, six candidate genes were preliminarily identified. Among them, BjuB018426 (GTR1) and BjuB020498 (GTR2) were implicated in the transport of glucosinolates from vegetative tissues to reproductive tissues, suggesting their potential roles as key regulatory genes underlying the differential distribution of glucosinolates observed in this study. These findings provide valuable insights into the mechanisms governing glucosinolate synthesis and distribution across various tissues in Brassica juncea. Moreover, they offer a foundational basis for breeding multifunctional varieties with tailored glucosinolate profiles to meet diverse agricultural and industrial needs.

Key words: Brassica juncea, glucosinolate contents, QTL mapping, candidate genes, glucosinolate transport

Table 1

Descriptive statistical analysis of glucosinolate content in different tissues"

性状
Trait
组织
Tissue
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
硫苷含量
Glucosinolate contents
(μmol g-1)
叶片Leaves 17.62 82.36 37.70 9.74 25.84 1.08 1.93
茎秆Stems 0.09 12.97 5.50 3.36 60.65 -0.42 -0.18
花蕾Buds 27.21 85.39 60.30 10.36 17.18 0.36 -1.02
种子Seeds (S1) 81.09 190.25 134.75 20.88 15.50 0.07 -0.39
种子Seeds (S2) 50.70 197.10 130.99 20.13 15.37 -0.21 1.18

Fig. 1

Frequency distribution of glucosinolate content in different tissues S1 is the seed harvested in 2023, and S2 is the seed harvested in 2024."

Fig. 2

Correlation heatmap of glucosinolate content across different tissues * and ** indicate significant correlation at the 0.05 and 0.01 probability level, respectively. S1 is the seed harvested in 2023, and S2 is the seed harvested in 2024."

Fig. 3

Distribution of QTLs across chromosomes in mustard-type Brassica juncea for different tissues A and B represent the distribution of QTLs in different tissues across the A and B genomes, respectively. QTL names are the same as those given in Table 2."

Table 2

Information on QTLs for glucosinolate content traits in different tissues"

组织
Tissue
性状位点
Trait locus
染色体
Chromosome
QTL峰值
QTL peak (cM)
QTL区间
QTL interval (cM)
最近的SNP标记
Recent SNP marker
LOD值
LOD score
表型贡献率
PVE (%)
叶片
Leaves
qL-A02 A02 35.86 31.97-38.91 Marker 4,424,668 3.44 7.85
qL-A03 A03 27.14 23.50-31.22 Marker 1,757,168 11.46 26.40
qL-A04 A04 33.40 28.29-37.03 Marker 4,955,778 4.14 9.60
qL-A05 A05 43.18 39.57-48.06 Marker 470,368 3.51 8.10
qL-B02 B02 54.16 49.39-58.75 Marker 51,065 3.51 8.10
qL-B03 B03 95.18 93.13-98.55 Marker 4,697,670 3.29 7.59
qL-B05 B05 15.33 11.89-19.87 Marker 3,595,171 3.15 7.29
qL-B06 B06 32.54 26.25-35.41 Marker 3,645,990 3.67 8.44
qL-B08 B08 92.18 87.52-93.50 Marker 982,815 3.45 7.80
茎秆
Stems
qS-A02 A02 37.27 33.69-44.78 Marker 4,545,960 4.39 10.13
qS-A03 A03 26.36 21.44-32.09 Marker 1,838,334 7.02 16.20
qS-A04 A04 35.05 30.16-36.40 Marker 5,062,389 4.20 9.60
qS-A06 A06 76.01 73.67-80.43 Marker 1,382,718 3.45 7.80
qS-A08 A08 13.60 11.00-17.51 Marker 731,978 3.87 9.00
qS-A09 A09 0.53 0-7.19 Marker 4,053,639 3.00 6.90
qS-B04 B04 3.47 0-8.52 Marker 2,409,165 5.64 12.90
qS-B05 B05 13.22 9.48-17.74 Marker 3,360,685 3.81 8.70
qS-B06 B06 32.54 29.94-34.90 Marker 3,645,990 3.69 8.40
qS-B08 B08 90.87 86.75-96.93 Marker 920,085 4.20 9.60
花蕾
Buds
qF-A02 A02 35.86 31.97-39.78 Marker 4,424,668 2.61 6.08
qF-A03 A03 26.11 21.69-31.48 Marker 1,944,874 9.39 22.35
qF-A04 A04 31.35 28.00-36.08 Marker 4,981,184 3.17 7.20
qF-A07 A07 38.85 33.93-44.88 Marker 2,098,338 3.42 7.80
qF-A09 A09 48.23 43.38-52.24 Marker 3,898,423 3.18 7.50
qF-B01 B01 33.91 29.17-37.58 Marker 1,517,061 5.31 12.00
qF-B05 B05 11.89 6.32-15.33 Marker 3,601,337 4.32 9.90
qF-B06 B06 31.51 29.09-34.90 Marker 3,631,838 3.90 8.85
qF-B07 B07 15.49 11.13-20.50 Marker 2,661,101 3.48 8.10
种子
Seeds (S1)
qS1-A01 A01 96.91 91.17-100.11 Marker 3,090,840 3.10 7.44
qS1-A02 A02 33.69 28.47-39.78 Marker 4,441,071 4.25 10.13
qS1-A03 A03 23.76 20.92-27.14 Marker 1,809,778 8.11 19.20
qS1-A04 A04 34.19 32.26-37.03 Marker 4,999,692 2.95 9.00
qS1-A08 A08 16.73 13.09-23.10 Marker 602,965 3.11 7.38
qS1-B03 B03 94.66 91.57-98.55 Marker 4,754,822 3.00 7.20
qS1-B05 B05 14.01 9.48-17.74 Marker 3,441,132 3.72 8.70
qS1-B06 B06 28.09 25.21-35.16 Marker 3,847,963 3.33 7.89
qS1-B08 B08 91.13 79.77-92.72 Marker 1,000,761 3.15 7.35
种子
Seeds (S2)
qS2-A02 A02 35.04 31.97-39.78 Marker 4,487,079 4.30 9.90
qS2-A03 A03 25.58 23.76-31.73 Marker 1,900,789 6.39 15.06
qS2-A04 A04 28.90 27.14-33.40 Marker 4,925,233 3.75 9.00
qS2-B01 B01 5.01 0.87-9.59 Marker 1,451,547 3.06 7.20
qS2-B03 B03 96.73 93.13-100.63 Marker 4,648,733 3.42 8.10
qS2-B04 B04 49.07 46.08-54.87 Marker 2,242,137 4.12 9.68
qS2-B05 B05 11.89 8.17-15.33 Marker 3,601,337 3.74 8.78
qS2-B06 B06 34.12 31.51-37.73 Marker 3,783,270 3.69 8.70
qS2-B08 B08 93.50 88.29-97.48 Marker 856,065 3.00 6.36

Table 3

Candidate genes related to glucosinolate content in major effect intervals"

cQTL名称
cQTL name
区间范围
Interval range (cM)
候选基因ID
Candidate gene ID
拟南芥同源基因信息
Information of
Arabidopsis
homologous genes
基因功能
Gene function
cQTLA02 33.69-38.78 BjuA043503/BjuB010312 AT1G74080, MYB122 参与吲哚族硫苷生物合成与调控
Involved in indole glucosinolate biosynthesis and regulation
BjuA005541/BjuB010311 AT1G74100, SOT16 硫苷合成中硫基团转移
Sulfate group transfer in glucosinolate biosynthesis
cQTLA04 32.26-33.40 BjuA024283/BjuO013418 AT3G27785, MYB118 调控参与硫苷合成的下游基因
Regulates downstream genes involved in glucosinolate biosynthesis
BjuA015922/BjuB024226 AT2G22300, CAMTA3 响应钙信号调控硫苷合成
Responds to calcium signals to regulate glucosinolate biosynthesis
cQTLB05 11.89-15.33 BjuA002613 AT2G22330, CYP79B3 参与色氨酸途径, 生成吲哚硫苷的前体物质
Involved in the tryptophan pathway, producing precursor substances for indole glucosinolates
BjuO011663/BjuA003553 AT4G30530, GGP1 负责转化前体物质的酶
Enzyme responsible for converting precursor substances
cQTLB06 31.51-34.90 BjuA040529/BjuB003228 AT4G21990, APR3 提供硫苷合成所需的还原性硫
Provides reduced sulfur needed for glucosinolate biosynthesis
BjuA003915/BjuA040691 AT4G17880, MYC4 调节硫苷合成相关基因的表达
Regulates the expression of genes related to glucosinolate biosynthesis
cQTLA03 23.76-27.14 BjuB020498 AT5G62680, GTR2 参与硫苷从源到库组织的运输
Involved in transporting glucosinolates from source to sink tissues
BjuA009868 介导硫苷长距离运输
Mediates long-distance transport of glucosinolates
cQTLB08 88.29-92.72 BjuB018426/BjuA022496 AT3G47960, GTR1 将蛋氨酸和色氨酸衍生的硫苷转运到种子
Transports glucosinolates derived from methionine and tryptophan to seeds

Fig. 4

Expression heat map of candidate genes in different tissues of materials with high and low glucosinolate content The vertical axis represents the candidate genes and their functional abbreviations in Arabidopsis, while the horizontal axis represents the sample abbreviations of different tissues from high and low glucosinolate content materials. H and L represent high and low glucosinolate content materials, respectively; F, L, S, and Z07 represent the flower bud, leaf, stem, and silique seven days after self-pollination, respectively; R1, R2, and R3 represent the three biological replicates; FPKM denotes the relative expression level of the gene in a given sample."

[1] Essoh A P, Monteiro F, Pena A R, Pais M S, Moura M, Romeiras M M. Exploring glucosinolates diversity in Brassicaceae: a genomic and chemical assessment for deciphering abiotic stress tolerance. Plant Physiol Biochem, 2020, 150: 151-161.
[2] Raboanatahiry N, Li H X, Yu L J, Li M T. Rapeseed (Brassica napus): processing, utilization, and genetic improvement. Agronomy, 2021, 11: 1776.
[3] Xiao M L, Wang H D, Li X N, Mason A S, Fu D H. Rapeseed as an ornamental. Horticulturae, 2022, 8: 27.
[4] Meng L B, Zhang Y H, Yu S P, Ogundeji A O, Zhang S, Li S M. Temporal assessment of biofumigation using mustard and oilseed rape tissues on Verticillium dahliae, soil microbiome and yield of eggplant. Agronomy, 2022, 12: 2963.
[5] Zheng Q, Liu K D. Worldwide rapeseed (Brassica napus L.) research: a bibliometric analysis during 2011-2021. Oil Crop Sci, 2022, 7: 157-165.
[6] Liu W B, Li S, Tao J B, Liu X Y, Yin G Y, Xia Y, Wang T, Zhang H Y. CARM30: China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 using multi-source data. Sci Data, 2024, 11: 356.
[7] Kang L, Qian L W, Zheng M, Chen L Y, Chen H, Yang L, You L, Yang B, Yan M L, Gu Y G, et al. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet, 2021, 53: 1392-1402.
doi: 10.1038/s41588-021-00922-y pmid: 34493868
[8] Nguyen V P T, Stewart J, Lopez M, Ioannou I, Allais F. Glucosinolates: natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules, 2020, 25: 4537.
[9] Kanstrup C, Jimidar C C, Tomas J, Cutolo G, Crocoll C, Schuler M, Klahn P, Tatibouët A, Nour-Eldin H H. Artificial fluorescent glucosinolates (F-GSLs) are transported by the glucosinolate transporters GTR1/2/3. Int J Mol Sci, 2023, 24: 920.
[10] Mann A, Kumari J, Kumar R, Kumar P, Pradhan A K, Pental D, Bisht N C. Targeted editing of multiple homologues of GTR1 and GTR2 genes provides the ideal low-seed, high-leaf glucosinolate oilseed mustard with uncompromised defence and yield. Plant Biotechnol J, 2023, 21: 2182-2195.
[11] Lou P, Zhao J J, He H J, Hanhart C, Pino Del Carpio D, Verkerk R, Custers J, Koornneef M, Bonnema G. Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol, 2008, 179: 1017-1032.
[12] 赵卫国, 塔娜, 王灏. 甘蓝型油菜种子硫代葡萄糖苷含量的QTL定位及候选基因分析. 西北植物学报, 2024, 44: 1261-1272.
Zhao W G, Ta N, Wang H. QTL mapping and candidate gene identification of seed glucosinolate content in Brassica napus. Acta Bot Boreali-Occident Sin, 2024, 44: 1261-1272 (in Chinese with English abstract).
[13] Wei D Y, Cui Y X, Mei J Q, Qian L W, Lu K, Wang Z M, Li J N, Tang Q L, Qian W. Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L. J Integr Plant Biol, 2019, 61: 611-623.
[14] Antonious G F, Bomford M, Vincelli P. Screening Brassica species for glucosinolate content. J Environ Sci Health B, 2009, 44: 311-316.
doi: 10.1080/03601230902728476 pmid: 19280485
[15] 王倩, 杨旭, 张金泽, 肖莉晶, 余坤江, 田恩堂. 芥菜型油菜茎秆抗倒伏相关性状的组织观察与QTL初定位. 植物遗传资源学报, 2024, 25: 431-439.
doi: 10.13430/j.cnki.jpgr.20230904003
Wang Q, Yang X, Zhang J Z, Xiao L J, Yu K J, Tian E T. Microstructure observation and QTL mapping of traits related to stalk lodging resistance in Brassica juncea. J Plant Genet Resour, 2024, 25: 431-439 (in Chinese with English abstract).
[16] 杨旭, 余坤江, 向阳, 代文东, 杜才富, 田恩堂. 芥菜型油菜RIL群体QTL定位能力评价与分析. 分子植物育种, 网络首发[2023-11-01], http://kns.cnki.net/kcms/detail/46.1068.S.20231101.0933.002.
Yang X, Yu K J, Xiang Y, Dai W D, Du C F, Tian E T. Evaluation and analysis of QTL mapping ability in RIL population of Brassica juncea. Mol Plant Breed, Published online [2023-11-01], http://kns.cnki.net/kcms/detail/46.1068.S.20231101.0933.002 (in Chinese with English abstract).
[17] 李培武, 周海燕. 油菜硫代葡萄糖苷检测技术研究进展. 中国油料作物学报, 2008, 30: 127-131.
Li P W, Zhou H Y. A review on analytical methods for glucosinolates. Chin J Oil Crop Sci, 2008, 30: 127-131 (in Chinese with English abstract).
[18] 李东华, 叶春苗. 萝卜籽中活性成分提取及抑菌效果的研究. 沈阳化工大学学报, 2013, 27(1): 25-29.
Li D H, Ye C M. Active constituents and bacteriostatic offect in radish seed. J Shenyang Univ Chem Technol, 2013, 27(1): 25-29 (in Chinese with English abstract).
[19] 晏伟. 芥菜型油菜主要脂肪酸性状的QTL定位与分析. 贵州大学硕士学位论文, 贵州贵阳, 2022.
Yan W. QTL Mapping and Analysis of Main Fatty Acid Traits in Brassica juncea. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2022 (in Chinese with English abstract).
[20] Manrique-Carpintero N C, Coombs J J, Cui Y H, Veilleux R E, Buell C R, Douches D. Genetic map and QTL analysis of agronomic traits in a diploid potato population using single nucleotide polymorphism markers. Crop Sci, 2015, 55: 2566-2579.
[21] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[22] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142
[23] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[24] 张金泽, 周庆国, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析. 作物学报, 2025, 51: 621-631.
doi: 10.3724/SP.J.1006.2025.44120
Zhang J Z, Zhou Q G, Yang X, Wang Q, Xiao L J, Jin H R, Ou-Yang Q J, Yu K J, Tian E T. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea. Acta Agron Sin, 2025, 51: 621-631 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2025.44120
[25] Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol, 2006, 57: 303-333.
pmid: 16669764
[26] Zhang L, Kawaguchi R, Enomoto T, Nishida S, Burow M, Maruyama-Nakashita A. Glucosinolate catabolism maintains glucosinolate profiles and transport in sulfur-starved Arabidopsis. Plant Cell Physiol, 2023, 64: 1534-1550.
doi: 10.1093/pcp/pcad075 pmid: 37464897
[27] Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003, 62: 471-481.
doi: 10.1016/s0031-9422(02)00549-6 pmid: 12620360
[28] 田志涛, 赵永国, Lenka Havlickova, He Zhe S, Real Harper, Ian Bancroft, 邹锡玲, 张学昆, 陆光远. 甘蓝型油菜种子和角果皮中硫苷含量的动态变化及转录组关联分析. 中国农业科学, 2018, 51: 635-651.
doi: 10.3864/j.issn.0578-1752.2018.04.004
Tian Z T, Zhao Y G, Havlickova L, He Z S, Harper R, Bancroft I, Zou X L, Zhang X K, Lu G Y. Dynamic and associative transcriptomic analysis of glucosinolate content in seeds and silique walls of Brassica napus. Sci Agric Sin, 2018, 51: 635-651 (in Chinese with English abstract).
[29] 李培武. 甘蓝型油菜叶片与种子硫苷相关性研究. 华中农业大学博士学位论文, 湖北武汉, 2007.
Li P W. Correlation Between Glucosinolates in Leaves and Seeds of Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2007.(in Chinese with English abstract).
[30] Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations. Theor Appl Genet, 2015, 128: 657-666.
doi: 10.1007/s00122-015-2461-9 pmid: 25628164
[31] He Y J, Fu Y, Hu D X, Wei D Y, Qian W. QTL mapping of seed glucosinolate content responsible for environment in Brassica napus. Front Plant Sci, 2018, 9: 891.
[32] Rahman H, Kebede B, Zimmerli C, Yang R C. Genetic study and QTL mapping of seed glucosinolate content in Brassica rapa L. Crop Sci, 2014, 54: 537-543.
[33] Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X H, Xu X F, Li J N, Frauen M, Dreyer F, et al. Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet, 2015, 128: 1029-1037.
doi: 10.1007/s00122-015-2487-z pmid: 25748114
[34] Schnug E, Ceynowa J. Phytopathological aspects of glucosinolates in oilseed rape. J Agron Crop Sci, 1990, 165: 319-328.
[35] Du L C, Ann Halkier B. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry, 1998, 48: 1145-1150.
[36] Chen S, Petersen B L, Olsen C E, Schulz A, Halkier B A. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol, 2001, 127: 194-201.
doi: 10.1104/pp.127.1.194 pmid: 11553747
[37] Petersen B L, Chen S X, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214: 562-571.
pmid: 11925040
[38] Tang Y S, Zhang G R, Jiang X Y, Shen S L, Guan M W, Tang Y H, Sun F J, Hu R, Chen S, Zhao H Y, et al. Genome-wide association study of glucosinolate metabolites (mGWAS) in Brassica napus L. Plants (Basel), 2023, 12: 639.
[39] Nour-Eldin H H, Halkier B A. Piecing together the transport pathway of aliphatic glucosinolates. Phytochem Rev, 2009, 8: 53-67.
[40] Madsen S R, Olsen C E, Nour-Eldin H H, Halkier B A. Elucidating the role of transport processes in leaf glucosinolate distribution. Plant Physiol, 2014, 166: 1450-1462.
doi: 10.1104/pp.114.246249 pmid: 25209984
[41] Nambiar D M, Kumari J, Augustine R, Kumar P, Bajpai P K, Bisht N C. GTR1 and GTR2 transporters differentially regulate tissue-specific glucosinolate contents and defence responses in the oilseed crop Brassica juncea. Plant Cell Environ, 2021, 44: 2729-2743.
[42] Tan Z D, Xie Z Q, Dai L H, Zhang Y T, Zhao H, Tang S, Wan L L, Yao X, Guo L, Hong D F. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnol J, 2022, 20: 211-225.
[1] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[2] ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631.
[3] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[4] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[5] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[6] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[7] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[8] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[9] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[10] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[11] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[12] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[13] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[14] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[15] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!