Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2886-2901.doi: 10.3724/SP.J.1006.2023.21085

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association analysis of morphological traits of flag leaf in wheat

WANG Rui1,2, REN Yi1,2, CHENG Yu-Kun1,2, WANG Wei1,2,3, ZHANG Zhi-Hui1,2, GENG Hong-Wei1,2,*   

  1. 1College of Agronomy / Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Xinjiang Wheat Industry System Innovation Team, Urumqi 830052, Xinjiang, China
    3Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
  • Received:2022-12-26 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-05
  • Supported by:
    Special Project of Key Research and Development Task of Xinjiang Autonomous Region(2022B02001-3)

Abstract:

The flag leaf of wheat is the primary functional leaf for photosynthesis and contributes significantly to yield. Therefore, it is essential to investigate the genetic process of flag leaf morphology and identify the candidate genes for flag leaf morphology-related features. We combined 90K SNP gene chips and 300 wheat varieties (lines) for genome-wide association analysis of flag leaf length, width, and area under normal irrigation (NI), and drought stress (DS) conditions in five environments. The results showed that flag leaf length, width, and area exhibited significant differences between the two moisture treatments and displayed rich phenotypic variation with the coefficients of variation ranging from 0.07-0.23 in different environments (P<0.05). Moreover, genome-wide association study (GWAS) revealed that a total of 37 stable genetic loci were significantly associated with flag leaf length, width, and area. These loci were distributed on chromosomes 1D, 2A, 2B, 3A, 3D, 4A, 5A, 5B, 6A, 6B, 7A, and 7B, with individual SNP loci explaining 3.70%-9.05% of the genetic variation, including 22 stable genetic loci detected under normal irrigation and 15 stable genetic loci detected under drought stress. Eight stable genetic loci at the same time detected under both water treatments were discovered on chromosomes 2B, 3A, 5A, 6A, 7A, and 7B, while the five stable genetic loci related by several traits were simultaneously detected on chromosomes 2B, 3A, 6A, and 7A. By analyzing haplotypes at markers with stable inheritance and high contribution, it was found that the Kukri_c1406_275 (R2=9.05%) marker was significantly associated with flag leaf length, with three haplotypes of FLL-Hap1, FLL-Hap2, and FLL-Hap3, and the wsnp_bq170165A_Ta_1_1 (R2=7.88%) marker was also detected in three haplotypes, FLA-Hap1, FLA-Hap2, and FLA-Hap3. In combination with phenotypic analysis, the flag leaf length of 300 winter wheat varieties (lines) containing FLL-Hap1 (77.78% frequency of occurrence) or FLL-Hap2 (18.89%) haplotypes was significantly higher than that of FLL-Hap3 (3.33%) haplotypes. The flag leaf area was significantly higher in haplotypes containing FLA-Hap1 (48.19%) than in haplotypes containing FLA-Hap2 (30.80%) or FLA-Hap3 (21.01%) (P<0.05). Different haplotypes were distributed differently in different winter wheat varieties (lines). Haplotype FLL-Hap1 was more frequently distributed in foreign varieties (lines), while haplotypes FLL-Hap2 and FLL-Hap3 were more frequently distributed in the northern winter wheat region and the southwestern winter wheat region, respectively. Haplotypes FLA-Hap1 and FLA-Hap2 were more frequently distributed in the southwestern winter wheat region and the northern winter wheat region, respectively, while haplotypes FLA-Hap3 were no more frequently distributed in all winter wheat regions. Searching for stable genetic loci under both water treatments yielded and screening of five candidate genes associated with flag leaf morphology, which could be used as the important genes for flag leaf-related traits.

Key words: wheat, morphological characters of flag leaf, genome-wide association analysis, haplotype, candidate genes

Table 1

Statistical analysis of population phenotypic variation in different environments"

性状
Trait
环境
Environment
处理
Treatment
最小值
Min.
最大值
Max.
平均数
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
旗叶长
FLL (cm)
E1 NI 11.27 23.87 17.51 a 2.37 0.14 0.12 ‒0.32
DS 10.76 24.08 16.54 b 2.27 0.14 0.40 0.17
E2 NI 9.82 24.57 16.82 a 3.02 0.18 0.46 ‒0.19
DS 9.29 26.05 15.90 b 2.79 0.18 0.49 0.41
E3 NI 14.48 24.41 19.77 a 1.53 0.08 ‒0.03 0.17
DS 13.44 23.37 18.22 b 1.55 0.09 0.20 ‒0.05
E4 NI 12.84 23.12 18.26 a 1.41 0.08 ‒0.22 0.69
DS 12.08 22.55 17.07 b 1.71 0.10 0.20 ‒0.53
BLUE NI 14.09 25.92 18.85 a 1.97 0.10 0.43 0.19
DS 12.61 22.74 16.93 b 1.75 0.10 0.51 0.17
旗叶宽
FLW (cm)
E1 NI 0.89 1.81 1.43 a 0.14 0.10 ‒0.20 0.26
DS 0.86 1.79 1.38 b 0.13 0.09 ‒0.06 0.72
E2 NI 0.87 1.69 1.32 a 0.13 0.10 0.17 0.04
DS 0.93 1.65 1.30 b 0.13 0.10 0.00 ‒0.07
E3 NI 1.28 2.08 1.73 a 0.13 0.07 ‒0.45 0.62
DS 1.23 2.00 1.66 b 0.12 0.08 ‒0.21 0.64
E4 NI 1.20 2.01 1.59 a 0.11 0.07 ‒0.05 0.45
DS 1.17 2.00 1.57 b 0.13 0.08 0.28 0.74
BLUE NI 1.19 1.84 1.51 a 0.10 0.07 ‒0.13 0.41
DS 1.19 1.83 1.48 b 0.10 0.07 0.06 0.05
旗叶面积
FLA (cm2)
E1 NI 10.58 28.30 19.38 a 3.50 0.18 0.12 ‒0.36
DS 9.53 28.68 17.62 b 3.28 0.19 0.56 0.27
E2 NI 8.99 29.59 17.01 a 3.99 0.23 0.71 0.28
DS 8.30 28.89 15.99 b 3.65 0.23 0.72 0.56
E3 NI 15.62 35.55 26.41 a 2.98 0.11 0.12 0.71
DS 12.76 31.29 23.35 b 2.92 0.13 0.04 0.44
E4 NI 14.96 30.80 22.36 a 2.59 0.12 0.13 0.26
DS 11.91 32.90 20.67 b 3.65 0.18 0.48 0.31
BLUE NI 14.75 29.77 21.29 a 2.56 0.12 0.40 0.21
DS 13.90 27.45 19.40 b 2.64 0.14 0.58 0.14

Table 2

Population phenotype analysis of variance in different environments"

性状
Trait
变异来源
Source of variance
平方和
SS
均方
MS
F
F-value
P
P-value
遗传力
h2
FLL 基因型 Genotype (G) 16,768.48 56.08 9.26 1×10‒5 0.77
环境 Environment (E) 19,735.89 6578.63 1085.89 1×10‒5
基因型×环境 G×E 13,444.44 15.01 2.48 1×10‒5
FLW 基因型 Genotype (G) 71.96 0.24 10.52 1×10‒5 0.85
环境 Environment (E) 198.12 66.04 2886.16 1×10‒5
基因型×环境 G×E 35.80 0.04 1.75 1×10‒5
FLA 基因型 Genotype (G) 42,619.36 142.54 7.11 1×10‒5 0.75
环境 Environment (E) 138,568.38 46,189.46 2302.74 1×10‒5
基因型×环境 G×E 37,193.72 41.51 2.07 1×10‒5

Fig. 1

Population structure analysis of 300 wheat varieties (lines) A: the estimation of ?K value in population; B: principal component analysis; C: group structure diagram."

Fig. 2

Manhattan plot and Q-Q plot of flag leaf shape in different treatments A: normal irrigation flag leaf length; B: drought stress flag leaf length; C: normal irrigation flag leaf width; D: drought stress flag leaf width; E: normal irrigation flag leaf area; F: drought stress flag leaf area."

Table 3

Flag leaf shape activity related Stable loci detected by SNP-GWAS"

性状
Trait
标记名称
Marker name
环境
Environment
处理Treatment 染色体
Chr.
位置
Position (Mb)
P
P-value
贡献率
R2 (%)
先前已报道位点
Previously reported
QTL
FLL BS00067711_51 E1/E2/BLUE NI 2A 36.93 2.61E‒04-5.69E‒04 4.09-4.57
Tdurum_contig82812_213 E3/E4 NI 2A 74.11-78.33 2.17E‒04-9.46E‒04 3.81-4.72 Qfll2A-1[31]
Excalibur_c11863_289 E1/E2/BLUE DS 2B 157.69 2.45E‒04-8.93E‒04 6.87-8.40
IACX6324 E1/BLUE DS 2B 747.18 1.37E‒04-4.85E‒04 4.26-4.96 qFll-2B.1[11]
wsnp_Ex_c18747_27625264 E1/E2//E4/BLUE NI 3A 645.09-652.03 4.43E‒04-8.60E‒04 4.57-6.84
wsnp_Ex_c18747_27625264 E2/E3/BLUE DS 3A 645.09-646.85 4.02E‒04-8.05E‒04 3.94-4.28
RAC875_c10194_673 E1/E2/BLUE NI 3A 683.07-686.13 1.12E‒04-7.50E‒04 3.90-5.04 Qfla-3A[26]
wsnp_Ku_c42416_50159250 E3/E2/BLUE NI 5A 610.22-617.98 2.51E‒04-7.17E‒04 5.15-5.72 EPQFll.nau-5A[12]
BS00022378_51 E1/E2/BLUE NI 5A 663.91-664.48 4.76E‒06-9.50E‒04 4.71-7.17
BS00022378_51 E1/E2/ BLUE DS 5A 663.91-664.48 4.76E‒06-9.69E‒04 3.74-7.17
BobWhite_c8266_227 E2/BLUE NI 5A 698.51 8.40E‒06-5.90E‒04 4.12-6.75
BobWhite_c8266_227 E2 /BLUE DS 5A 698.51 5.31E‒05-2.61E‒04 4.66-5.75
RFL_Contig2206_1694 E4/ BLUE DS 6A 600.45-608.12 2.25E‒05-9.64E‒04 3.87-6.45
tplb0059j12_800 E1/E2 /BLUE DS 6B 186.70-188.19 1.94E‒04-7.95E‒04 3.94-4.71
Kukri_c1406_275 E1/E2/BLUE NI 7A 538.69-546.04 6.50E‒07-7.75E‒04 3.95-9.05
Kukri_c1406_275 E3/BLUE DS 7A 546.04 1.63E‒04-4.01E‒04 4.40-6.13
GENE-4898_208 E1/E2/BLUE NI 7A 567.58-572.87 1.67E‒05-7.72E‒04 3.78-6.42
CAP7_rep_c5949_55 E1/BLUE NI 7A 709.12-709.89 3.27E‒04-4.89E‒04 4.27-4.52
BS00067530_51 E3/E4/ NI 7B 648.92-648.93 2.70E‒05-9.32E‒04 5.00-7.72
BS00067530_51 E1/BLUE DS 7B 648.11-648.93 2.40E‒04-4.70E‒04 4.10-5.60
BobWhite_c14966_231 E1/BLUE NI 7B 693.00 1.23E‒04-4.36E‒04 4.36-5.20 Qfll7B-1[31]
FLW CAP12_c46_333 E3/BLUE NI 1D 15.32 8.92E‒06-7.96E‒04 4.14-7.45
Ra_c19501_1510 E2/BLUE NI 2B 11.19-14.83 7.15E‒04 3.96-5.02
Kukri_c783_1833 E1/BLUE DS 3D 418.39 4.35E‒05-3.65E‒04 4.38-5.79
BS00023151_51 E1/E2/BLUE NI 4A 606.59 2.74E‒04-7.94E‒04 3.97-4.82
Tdurum_contig29319_256 E3/BLUE NI 5B 558.41-558.42 1.99E‒05-6.10E‒04 4.11-6.56
BS00023192_51 E1/E2/BLUE NI 6A 13.81-18.71 3.90E‒04-9.76E‒04 3.79-5.82
RFL_Contig2206_1694 E2//BLUE NI 6A 600.45-602.71 3.36E‒04-9.64E‒04 3.87-4.45
RFL_Contig2206_1694 E2/BLUE DS 6A 600.45 2.25E‒05-1.31E‒04 5.17-6.45
tplb0024a09_2028 E1/BLUE NI 7A 42.50-46.97 7.89E‒04-8.19E‒04 3.90-4.13
Tdurum_contig66023_89 E3/E4 DS 7A 719.58-724.12 8.43E‒06-7.80E‒04 4.23-7.30 Qfla7A-1[31]
FLA Ra_c19501_1510 E1/BLUE DS 2B 7.91-11.19 5.92E‒05-7.84E‒04 3.94-6.77
wsnp_Ex_c18747_27625264 E1/E2/BLUE NI 3A 645.09-646.85 2.26E‒05-8.13E‒04 3.85-6.42
RAC875_c10194_673 E1/E2/BLUE NI 3A 683.07 4.93E‒04-9.55E‒04 3.70-4.13 Qfla-3A[26]
wsnp_bq170165A_Ta_1_1 E1/E2/BLUE NI 7A 553.39-553.99 9.01E‒05-8.84E‒04 3.81-7.88
wsnp_bq170165A_Ta_1_1 E4/BLUE DS 7A 553.39-553.99 2.11E‒04-2.96E‒04 4.50-4.80
Tdurum_contig66023_89 E3/E4 DS 7A 721.92 3.32E‒06-1.22E‒04 5.29-7.62 Qfla7A-1[31]

Fig. 3

Haplotype analysis related to flag leaf traits A: LD regions associated with Kukri_c1406_275 and wsnp_bq170165A_Ta_1_1 markers on chromosome 7A; B: haplotype distribution frequency of Kukri_c1406_275 in different wheat regions; C: haplotype distribution frequency of wsnp_bq170165A_Ta_1_1 in different wheat regions. NWWR: the northern winter wheat region; FV: foreign varieties; YHFWWR: the Yellow and Huai facultative winter wheat region; SWWR: the Southwestern winter wheat region; MLYWWR: the middle and low Yangtze winter wheat region."

Table 4

Statistical analysis of phenotypic binding haplotype"

性状
Trait
标记名称
Marker name
单倍型
Haplotype
等位基因
Allele
频率
Frequency (%)
平均值 Mean
NI (cm) DS (cm)
FLL Kukri_c1406_275 FLL-Hap1 AT 77.78 18.89 a 16.93 a
FLL-Hap2 AC 18.89 18.94 a 17.16 a
FLL-Hap3 GC 3.33 17.43 b 15.29 b
FLA wsnp_bq170165A_Ta_1_1 FLA-Hap1 GA 48.19 22.21 a 20.35 a
FLA-Hap3 AA 21.01 21.27 b 19.45 b
FLA-Hap2 GG 30.80 19.80 c 17.73 c

Table 5

Screening for candidate gene information"

染色体
Chr.
位点
Marker name
处理Treatment 性状
Trait
物理位置
Position
(Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
2B IACX6324 DS FLL 744.68 TraesCS2B01G548800 2-酮戊二酸(2OG)和Fe(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
3A RAC875_c10194_673 NI FLL, FLA 686.74 TraesCS3A01G446100 F-box家族蛋白
F-box family protein
5B Tdurum_contig29319_256 NI FLW 557.70 TraesCS5B01G379500 GDSL酯酶/脂肪酶
GDSL esterase/lipase
6A RFL_Contig2206_1694 NI/DS FLL, FLW 603.18 TraesCS6A01G385500 Myb转录因子家族蛋白
Myb family transcription factor family
protein
7A wsnp_bq170165A_Ta_1_1 NI/DS FLA 554.49 TraesCS7A01G379000 F-box家族蛋白
F-box family protein
7B BS00067530_51 NI/DS FLL 648.13 TraesCS7B01G382400 F-box家族蛋白
F-box family protein
[1] Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
doi: 10.1371/journal.pone.0066428
[2] 赵广才, 常旭虹, 王德梅, 杨玉双, 冯金凤. 中国小麦生产发展潜力研究报告. 作物杂志, 2012, (3): 1-5.
Zhao G C, Chang X H, Wang D M, Yang Y S, Feng J F. Research report on development of China’s wheat production potential. Crops, 2012, (3): 1-5 (in Chinese with English abstract).
[3] Liu Y X, Tao Y, Wang Z Q, Guo Q L, Wu F K, Yang X L, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Mol Breed, 2018, 38: 11.
doi: 10.1007/s11032-017-0766-x
[4] Sharma S N, Sain R S, Sharma R K. The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci, 2003, 141: 323-331.
doi: 10.1017/S0021859603003642
[5] 王义芹, 杨兴洪, 李滨, 童依平, 李振声. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008, 23(增刊2): 10-15.
Wang Y Q, Yang X H, Li B, Tong Y P, Li Z S. Study on the relationship between leaf area, photosynthetic rate and yield of wheat. Acta Agric Boreali-Sin, 2008, 23(S2): 10-15 (in Chinese with English abstract).
[6] 王敏, 张从宇. 小麦旗叶性状与产量因素的相关与回归分析. 种子, 2004, (3): 17-18.
Wang M, Zhang C Y. Correlation and regression analysis of flag leaf traits and yield components in wheat. Seeds, 2004, (3): 17-18 (in Chinese with English abstract).
[7] 景蕊莲. 作物抗旱节水研究进展. 中国农业科技导报, 2007, (1): 1-5.
Jing R L. Advances of research on drought resistance and water use efficiency in crop plants. J Agric Sci Technol, 2007, (1): 1-5 (in Chinese with English abstract).
[8] Biswal A K, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed, 2013, 31: 749-766.
doi: 10.1007/s11032-013-9847-7
[9] Liu K Y, Xu H, Liu G, Guan P F, Zhou X Y, Peng H R, Yao Y Y, Ni Z F, Sun Q X, Du J K. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2018, 131: 839-849.
doi: 10.1007/s00122-017-3040-z
[10] 吕学莲, 白海波, 董建力, 惠建, 孙亚宁, 蔡正云, 李树华. 春小麦旗叶大小相关性状的QTL定位分析. 麦类作物学报, 2016, 36: 1587-1593.
Lyu X L, Bai H B, Dong J L, Hui J, Sun Y N, Cai Z Y, Li S H. QTL mapping for size traits of flag leaf in spring wheat. J Triticeae Crops, 2016, 36: 1587-1593 (in Chinese with English abstract).
[11] Fan X L, Cui F, Zhao C H, Zhang W, Yang L J, Zhao X Q, Han J, Su Q N, Ji J, Zhao Z W, Tong Y P, Li J M. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed, 2015, 35: 1-16.
doi: 10.1007/s11032-015-0202-z
[12] Jia H, Wan H, Yang S, Zhang Z Z, Kong Z X, Xue S L, Zhang L X, Ma Z Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet, 2013, 126: 2123-2139.
doi: 10.1007/s00122-013-2123-8
[13] Xue S L, Xu F, Li G Q, Zhou Y, Lin M S, Gao Z X, Su X H, Xu X W, Jiang G, Zhang S, Jia H Y, Kong Z X, Zhang L X, Ma Z Q. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2013, 126: 1941-1949.
doi: 10.1007/s00122-013-2108-7
[14] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关. 作物学报, 2023, 49: 906-916.
doi: 10.3724/SP.J.1006.2023.21029
Zhu Z, Li L, Li C N, Mao X G, Hao C Y, Zhu T, Wang J Y, Chang J Z, Jing R L. Transcription factor TaMYB5-3B is associated with plant height and 1000-grain weight in wheat. Acta Agron Sin, 2023, 49: 906-916.
[15] 刘朦朦, 张萌娜, 张倩倩, 刘锡建, 郭宇航. 小麦旗叶宽主效QTL qFlw-5B遗传效应解析. 麦类作物学报, 2019, 39: 1399-1405.
Liu M M, Zhang M N, Zhang Q Q, Liu X J, Guo Y H. Genetic analysis of a major stable QTL qFlw-5B for wheat flag leaf width. J Triticeae Crops, 2019, 39: 1399-1405 (in Chinese with English abstract).
[16] 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459.
Li H R, Li H L, Wang H G, Li D X, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459 (in Chinese with English abstract).
[17] Cheng Y K, Li J, Yao F J, Long L, Wang Y Q, Wu Y, Li J, Ye X L, Wang J R, Jiang Q T, Kang H Y, Li W, Qi P F, Liu Y X, Deng M, Ma J, Jiang Y F, Chen X M, Zheng Y L, Wei Y M, Chen G Y. Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle and lower reaches of the Yangtze River via genome-wide association study. Plant Sci, 2019, 287: 110204.
doi: 10.1016/j.plantsci.2019.110204
[18] Li D D, Xu Z X, Gu R L, Wang P X, Lyle D, Xu J L, Zhang H W, Wang G Y. Enhancing genomic selection by fitting large-effect SNPs as fixed effects and a genotype-by-environment effect using a maize BC1F3:4 population. PLoS One, 2019, 14: e0223898.
doi: 10.1371/journal.pone.0223898
[19] Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X. Genome- wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017, 12: e0188662.
doi: 10.1371/journal.pone.0188662
[20] Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20.
[21] Yu J M, Pressoir G, Briggs W H, Bi L V, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[22] 李天清, 王金堂, 马真胜, 雷伟, 王林, 李萌. 骨质疏松性骨折与OPG-RANK-RANKL系统基因多态性的关联分析. 中国骨质疏松杂志, 2014, 20: 247-255.
Li T Q, Wang J T, Ma Z S, Lei W, Wang L, Li M. Correlation analysis of the relationship between the osteoporotic fracture and OPG-RANK-RANKL gene polymorphisms. Chin J Osteop, 2014, 20: 247-255 (in Chinese with English abstract).
[23] Gabriel S B, Schaffner S F, Liu-cordero S N, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander E S, Daly M J, Altshuter D, Nguyen H, Moor J M, Roy J, Blumenstiel B, Higgins J, Defelice M, Lochner A, Faggart M. The structure of haplotype blocks in the human genome. Science, 2002, 296: 2225-2229.
doi: 10.1126/science.1069424 pmid: 12029063
[24] 闫雪, 史雨刚, 梁增浩, 杨斌, 李晓宇, 王曙光, 孙黛珍. 小麦旗叶形态相关性状的QTL定位. 核农学报, 2015, 29: 1253-1259.
doi: 10.11869/j.issn.100-8551.2015.07.1253
Yan X, Shi Y G, Liang Z H, Yang B, Li X Y, Wang S G, Sun D Z. QTL mapping for morphological traits of flag leaf in wheat. J Nucl Agric Sci, 2015, 29: 1253-1259 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2015.07.1253
[25] 宋霄君, 张敏, 李秉昌, 赵城, 刘希伟, 贾晓沛, 王琨, 蔡瑞国. 干旱胁迫对小麦营养器官物质转运和籽粒灌浆特性的影响. 中国农学通报, 2016, 32(15): 25-31.
doi: 10.11924/j.issn.1000-6850.casb16010002
Song X J, Zhang M, Li B C, Zhao C, Liu X W, Jia X P, Wang K, Cai R G. Effects of drought stress on material transport and grain-filling characteristics of wheat vegetative organs. Chin Agric Sci Bull, 2016, 32(15): 25-31 (in Chinese with English abstract).
[26] Chen S, Liu F, Wu W X, Jiang Y, Zhan K H. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). Theor Appl Genet, 2021, 134: 3895-3909.
doi: 10.1007/s00122-021-03935-7
[27] Khanna C R, Singh K, Shukla S, Kadam S, Singh N K. QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population. J Plant Biochem Biotechnol, 2020, 29: 276-286.
doi: 10.1007/s13562-019-00534-y
[28] 曹英杰, 杨剑飞, 王宇. 全基因组关联分析在作物育种研究中的应用. 核农学报, 2019, 33: 1508-1518.
doi: 10.11869/j.issn.100-8551.2019.08.1508
Cao Y J, Yang J F, Wang Y. The application of GWAS in crop breeding. J Nucl Agric Sci, 2019, 33: 1508-1518 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2019.08.1508
[29] Wu Q H, Chen Y X, Fu L, Zhou S H, Chen J J, Zhao X J, Zhao D, Ou-Yang S H, Wang Z Z, Li D, Wang G X, Zhang D Y, Yuan C G, Wang L X, You M S, Han J, Liu Z Y. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica, 2016, 208: 337-351.
doi: 10.1007/s10681-015-1603-0
[30] Yang D L, Liu Y, Cheng H B, Chang L, Chen J J, Chai S X, Li M F. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.)under diverse water regimes. BMC Genet, 2016, 17: 1-15.
[31] 连俊方, 张德强, 武炳瑾, 宋晓朋, 马文洁, 周丽敏, 冯毅, 孙道杰. 利用90K基因芯片进行小麦旗叶相关性状的QTL定位. 麦类作物学报, 2016, 36: 689-698.
Lian J F, Zhang D Q, Wu B J, Song X P, Ma W J, Zhou L M, Feng Y, Sun D J. QTL mapping of flag leaf traits using an integrated high-density 90K genotyping chip. J Triticeae Crops, 2016, 36: 689-698 (in Chinese with English abstract).
[32] Yan X F, Zhao L, Ren Y, Zhang N, Dong Z D, Chen F. Identification of genetic loci and a candidate gene related to flag leaf traits in common wheat by genome-wide association study and linkage mapping. Mol Breed, 2020, 6: 40-58.
[33] 严勇亮, 张恒, 张金波, 时晓磊, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦主要籽粒性状的全基因组关联分析. 麦类作物学报, 2022, 42: 1182-1191.
Yan Y L, Zhang H, Zhang J B, Shi X L, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain traits in spring wheat. J Triticeae Crops, 2022, 42: 1182-1191 (in Chinese with English abstract).
[34] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698-1707.
doi: 10.13430/j.cnki.jpgr. 20210419003
Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle related gene GmILPA1 in soybean. J Plant Genet Resour, 2021, 22: 1698-1707 (in Chinese with English abstract).
[35] 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract).
[36] 茹振钢, 冯素伟, 李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48: 3388-3393.
doi: 10.3864/j.issn.0578-1752.2015.17.006
Ru Z G, Feng S W, Li G. High-yield potential and effective ways of wheat in Yellow & Huai Rivers valley facultative winter wheat region. Sci Agric Sin, 2015, 48: 3388-3393 (in Chinese with English abstract).
[37] Zhao Z X, Zhang G Q, Zhou S M, Ren Y Q, Wang W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci, 2017, 259: 71-85.
doi: 10.1016/j.plantsci.2017.03.010
[38] Baute J, Polyn S, Block J D, Blomme J, Lijsebettens M V, Baute J. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173
[39] Byeon Y, Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J Pineal Res, 2015, 58: 343-351.
doi: 10.1111/jpi.12220 pmid: 25728912
[40] Farrow S C, Facchini P J. Functional diversity of 2-oxoglutarate/ Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci, 2014, 5: 524-539.
doi: 10.3389/fpls.2014.00524 pmid: 25346740
[41] Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res, 2015, 59: 133-150.
doi: 10.1111/jpi.12253 pmid: 26094813
[42] MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul, 2001, 20: 387-442.
doi: 10.1007/s003440010038 pmid: 11986764
[43] Park J J, Jin P, Yoon J, Yang J, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in wilted dwarf and lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91-103.
doi: 10.1007/s11103-010-9656-x
[44] 徐文, 申浩, 郭军, 余晓丛, 李祥, 杨彦会, 马晓, 赵世杰, 宋健民. 旗叶蜡质含量不同小麦近等基因系的抗旱性. 作物学报, 2016, 42: 1700-1707.
Xu W, Shen H, Guo J, Yu X C, Li X, Yang Y H, Ma X, Zhao S J, Song J M. Drought resistance of wheat NILs with different cuticular wax contents in flag leaf. Acta Agron Sin, 2016, 42: 1700-1707 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01700
[45] 凌华. 油菜GDSL脂肪酶基因BnLIP1的克隆及其原核表达. 中国农学通报, 2007, (12): 102-106.
Ling H. Cloning of a GDSL lipase gene from Brassica napus and preliminary study of its recombinant expression in Escherichia coli. Chin Agric Sci Bull, 2007, (12): 102-106 (in Chinese with English abstract).
[46] Zhao Y, Tian X J, Wang F, Zhang L Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol, 2017, 17: 208-221.
doi: 10.1186/s12870-017-1158-4 pmid: 29157199
[1] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[2] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[3] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[4] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[5] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[6] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[7] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[8] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[9] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[10] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[11] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[12] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[13] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[14] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[15] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[6] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[7] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .