Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1178-1188.doi: 10.3724/SP.J.1006.2025.44146

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Preparation of cotton 60K functional locus gene chip and its application to genetic research

WANG Ya-Wen1(), QI Zheng-Yang1, YOU Jia-Qi1, NIE Xin-Hui2, CAO Juan3, YANG Xi-Yan1, TU Li-Li1, ZHANG Xian-Long1, WANG Mao-Jun1,2,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Shihezi University, Shihezi 832000, Xinjiang, China
    3Xinjiang Tarim River Seed Industry Co., Ltd., Alar 843300, Xinjiang, China
  • Received:2024-09-05 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-11
  • Contact: *E-mail: mjwang@mail.hzau.edu.cn
  • Supported by:
    Special Project for Supporting High Quality Development of Seed Industry in Hubei Province(HBZY2023B002-5);National Science and Technology Major Project of Agricultural Biological Breeding in China(2023ZD0403801);National Science and Technology Major Project of Agricultural Biological Breeding in China(2023ZD0403901)

Abstract:

Cotton is the leading source of natural textile fiber and an important source of oil. However, functional locus gene chips, which can significantly improve the accuracy of breeding value assessments and breeding efficiency, remain underutilized in cotton research. In this study, we developed a 60K functional locus gene chip for cotton, leveraging high-throughput sequencing datasets, including Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq) and High-throughput Chromosome Conformation Capture (Hi-C) data from diverse cotton varieties. Compared to existing cotton gene chips, this newly developed chip incorporates a higher number of functionally annotated loci with genetic variations derived from multi-dimensional data, offering richer insights into gene function. Using this gene chip in a genome-wide association study (GWAS) of cotton fiber quality traits, we identified 40 significant single nucleotide polymorphisms (SNPs) linked to fiber quality. These include twenty-five SNPs associated with fiber elongation rate (FE), five with fiber micronaire value (FM), two with fiber strength (FS), four with fiber length (FL), and four with fiber uniformity (FU). The 60K functional locus gene chip provides a powerful tool for the evaluation of cotton germplasm resources, genetic mapping, and genome-wide selection breeding. This advancement holds great promise for accelerating genomic breeding efforts, ultimately driving improvements in cotton production and quality.

Key words: cotton breeding, gene chip, cotton 60K functional locus gene chip, genome-wide association analysis, domestication selection

Table S1

Cotton accessions used in this study"

栽培棉 Cultivars of G. hirsutum L.
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
S5 鄂棉11 Emian 11 S130 源棉10 Yuanmian 10 S255 邯7860 Han 7860
S7 Mei87-22 S133 39-38 S274 新陆中48 Xinluzhong 48
S9 晋棉17 Jinmian 17 S137 466 S275 晋棉21 Jinmian 21
S10 中植棉2 Zhongzhimian 2 S139 斯字棉4 Stoneville 4 S279 n2
S11 苏棉11 Sumian 11 148 C-450-555 280 新陆早39 Xinluzao 39
S12 泗棉3 Simian 3 S151 P09 S297 SCK321
S17 岱红岱 Daihongdai S152 Beiersinuo S298 光叶大籽Guangyedazimian
S18 豫棉8 Yumian 8 S154 鄂棉21 Emian 21 S300 LL
S21 斯字棉2B Stoneville 2B S160 Zhangyang 1 S307 皖棉17 Wanmian 17
S25 鄂光棉 Eguangmian S161 新陆中32 Xinluzhong 32 S310 黑山棉1 Heishanmian 1
S27 Nantongbian 3 S162 辽96-103 Liao 96-103 S322 晋棉29 Jinmian 29
S32 新陆中1 Xinluzhong 1 S163 陕棉1 Shaanmian 1 S323 HMJ wu
S40 陕2786 Shaan 2786 S169 敦煌77-116 Dunhuang 77-116 S324 邯109 Han 109
S42 农大94-7 Nongda 94-7 S174 大铃棉69 Dalingmian 69 S335 HC03
S44 辽金棉5 Liaojinmian 5 S176 K1543 S336 豫棉19 Yumian 19
S48 Duangguozhi 8-9 S177 新陆中75 Xinluzhong75 S337 Bawangbian
S51 陕3619 Shaan 3619 S182 晋棉20 Jinmian 20 S340 盐棉1 Yanmian 1
S52 Dunn18 S189 塔什干2 Tashigan 2 S350 华棉4 Huamian 4
S60 鄂抗棉33 Ekangmian 33 S192 晋棉13 Jinmian 13 S401 新陆中68 Xinluzhong 68
S71 豫棉5 Yumian 5 S194 Gailiangkezimian S402 陕棉9 Shaanmian 9
S79 川7327 Chuan 7327 S198 P24 S403 岱字棉14 Deltapine cotton 14
S90 新陆早36 Xinluzao36 S204 Hopical 130263 S404 豫棉14 Yumian 14
S93 科遗181 Keyi 181 S205 鲁棉研32 Lumianyan 32 S405 苏联8908 Sulian 8908
S97 鄂抗棉7 Ekangmian 7 S208 罗甸铁籽Luodiantiezi S406 源棉5 Yuanmian 5
S99 苏抗191 Sukang 191 S209 宾川373 Binchuan 373 S407 宁棉1 Ningmian 1
S102 中棉所19 Zhongmiansuo 19 S216 苏棉20 Sumian 20 S408 鄂抗棉33 Ekangmian 33
S107 豫棉15 Yumian 15 S217 晋棉26 Jinmian 26 S409 石远321 Shiyuan 321
S109 Pengzeyahuang S221 HC01 S410 471guangzi
S110 益棉8 Yimian 8 S222 中25 Zhong 25 S411 商丘24 Shangqiu 24
S111 川棉98 Chuanmian 98 S224 中棉所45 Zhongmiansuo 45 S412 新陆中48 Xinluzao 48
S113 Gz Nn S225 华东6 Huadong 6 S413 渤棉2 Bomian 2
S116 中棉所32 Zhongmiansuo 32 S235 Lixiandatao S414 Dunn18
S117 源棉8 Yuanmian8 S244 13P041 S415 新陆早31 Xinluzao31
S121 晋棉2 Jinmian 2 S253 沙农6 Shanong 6 S416 陆长丰 Luchangfeng
半野生棉 Semi-wild accessions of G. hirsutum L.
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
S1387 尖斑棉1103 Jianbanmian 1103 S1419 莫利尔194 Molier 194 S1559 雷奇蒙地281 Leiqimengdi 281
S1388 尖斑棉1108K Jianbanmian 1108K S1421 莫利尔255 Molier 255 S1560 雷奇蒙地461 Leiqimengdi 461
S1390 尖斑棉144 Jianbanmian 144 S1423 帕默尔1045A Pamoer 1045A S1561 玛利加郎特1259
Malijialangte 1259
S1393 尖斑棉488 Jianbanmian 488 S1424 帕默尔11 Pamoer 11 S1563 玛利加郎特2304C
Malijialangte 2304C
S1395 尖斑棉94 Jianbanmian 94 S1430 尤卡坦1039A Youkatan 1039A S1564 玛利加郎特246 Malijialangte 246
S1397 阔叶棉177 Kuoyemian 177 S1431 尤卡坦1046 Youkatan 1046 S1565 玛利加郎特368 Malijialangte 368
S1399 阔叶棉21 Kuoyemian 21 S1432 尤卡坦1236 Youkatan 1236 S1566 玛利加郎特883A
Malijialangte 883A
S1400 阔叶棉221 Kuoyemian 221 S1434 尤卡坦2094 Youkatan 2094 S1567 玛利加郎特904 Malijialangte 904
S1402 阔叶棉482 Kuoyemian 482 S1539 尖斑棉1103 Jianbanmian 1103 S1568 莫利尔131X Molier131X
S1403 雷奇蒙地1102 Leiqimengdi 1102 S1540 尖斑棉1108K Jianbanmian 1108K S1569 莫利尔133 Molier 133
S1404 雷奇蒙地145 Leiqimengdi 145 S1541 尖斑棉114 Jianbanmian 114 S1571 莫利尔194 Molier 194
S1407 雷奇蒙地281 Leiqimengdi 281 S1542 尖斑棉144 Jianbanmian 144 S1573 莫利尔255 Molier 255
S1411 玛利加郎特2304C
Malijialangte 2304C
S1544 尖斑棉27 Jianbanmian 27 S1575 帕默尔1045A Pamoer 1045A
S1413 玛利加郎特368 Malijialangte 368 S1545 尖斑棉488 Jianbanmian 488 S1576 帕默尔11 Pamoer 11
S1414 玛利加郎特883A
Malijialangte 883A
S1547 尖斑棉94 Jianbanmian 94 S1582 尤卡坦1039A Youkatan 1039A
S1415 玛利加郎特904 Malijialangte 904 S1552 阔叶棉221 Kuoyemian 221 S1583 尤卡坦1046 Youkatan 1046
S1416 莫利尔131X Molier 131X S1554 阔叶棉482 Kuoyemian 482 S1584 尤卡坦1236 Youkatan 1236
S1417 莫利尔133 Molier 133 S1555 雷奇蒙地1102 Leiqimengdi 1102 S1586 尤卡坦2094B Youkatan 2094B
S1418 莫利尔137X Molier 137X S1556 雷奇蒙地145 Leiqimengdi 145 S1587 尤卡坦2094D Youkatan 2094D

Table S2

Result of principal component analysis and the corresponding semi-wild accessions of G. hirsutum L. of each category"

序号
No.
材料名称
Accession name
所属类群
Category
序号
No.
材料名称
Accession name
所属类群
Category
序号
No.
材料名称
Accession name
所属类群
Category
S1561 玛利加郎特1259
Malijialangte1259
Cluster 4 S1411 玛利加郎特2304C
Malijialangte 2304C
Cluster 1 S1402 阔叶棉482
Kuoyemian 482
Cluster 1
S1414 玛利加郎特883A
Malijialangte 883A
Cluster 4 S1566 玛利加郎特883A
Malijialangte 883A
Cluster 1 S1552 阔叶棉221
Kuoyemian 221
Cluster 1
S1563 玛利加郎特2304C
Malijialangte 2304C
Cluster 4 S1430 尤卡坦1039A
Youkatan 1039A
Cluster 1 S1413 玛利加郎特368
Malijialangte 368
Cluster 1
S1587 尤卡坦2094D
Youkatan 2094D
Cluster 4 S1582 尤卡坦1039A
Youkatan 1039A
Cluster 1 S1564 玛利加郎特246
Malijialangte 246
Cluster 1
S1418 莫利尔137X
Molier 137X
Cluster 4 S1434 尤卡坦2094
Youkatan 2094
Cluster 1 S1423 帕默尔1045A
Pamoer 1045A
Cluster 3
S1567 玛利加郎特904
Malijialangte 904
Cluster 4 S1586 尤卡坦2094B
Youkatan 2094B
Cluster 1 S1575 帕默尔1045A
Pamoer 1045A
Cluster 3
S1547 尖斑棉94
Jianbanmian 94
Cluster 2 S1416 莫利尔131X
Molier 131X
Cluster 1 S1388 尖斑棉1108K
Jianbanmian 1108K
Cluster 3
S1545 尖斑棉488
Jianbanmian 488
Cluster 2 S1569 莫利尔133
Molier 133
Cluster 1 S1539 尖斑棉1103
Jianbanmian 1103
Cluster 3
S1540 尖斑棉1108K
Jianbanmian 1108K
Cluster 2 S1417 莫利尔133
Molier 133
Cluster 1 S1565 玛利加郎特368
Malijialangte 368
Cluster 3
S1554 阔叶棉482
Kuoyemian 482
Cluster 2 S1568 莫利尔131X
Molier 131X
Cluster 1 S1395 尖斑棉94
Jianbanmian 94
Cluster 3
S1431 尤卡坦1046
Youkatan 1046
Cluster 2 S1559 雷奇蒙地281
Leiqimengdi 281
Cluster 1 S1403 雷奇蒙地1102
Leiqimengdi 1102
Cluster 3
S1583 尤卡坦1046
Youkatan 1046
Cluster 2 S1432 尤卡坦1236
Youkatan 1236
Cluster 1 S1421 莫利尔255
Molier 255
Cluster 3
S1399 阔叶棉21
Kuoyemian 21
Cluster 2 S1584 尤卡坦1236
Youkatan 1236
Cluster 1 S1573 莫利尔255
Molier 255
Cluster 3
S1390 尖斑棉144
Jianbanmian 144
Cluster 2 S1419 莫利尔194
Molier 194
Cluster 1 S1393 尖斑棉488
Jianbanmian 488
Cluster 3
S1397 阔叶棉177
Kuoyemian 177
Cluster 2 S1571 莫利尔194
Molier 194
Cluster 1 S1404 雷奇蒙地145
Leiqimengdi 145
Cluster 3
S1556 雷奇蒙地145
Leiqimengdi 145
Cluster 2 S1424 帕默尔11
Pamoer 11
Cluster 1 S1387 尖斑棉1103
Jianbanmian 1103
Cluster 3
S1541 尖斑棉114
Jianbanmian 114
Cluster 2 S1576 帕默尔11
Pamoer 11
Cluster 1 S1544 尖斑棉27
Jianbanmian 27
Cluster 3
S1542 尖斑棉144
Jianbanmian 144
Cluster 2 S1407 雷奇蒙地281
Leiqimengdi 281
Cluster 1 S1400 阔叶棉221
Kuoyemian 221
Cluster 3
S1415 玛利加郎特904
Malijialangte 904
Cluster 1 S1560 雷奇蒙地461
Leiqimengdi 461
Cluster 1 S1555 雷奇蒙地1102
Leiqimengdi 1102
Cluster 3

Table 1

Summary of functional elements"

试验数据
Experimental data
组织
Tissue
峰值
Peak number
H3K27ac 下胚轴 Hypocotyl 39,663
H3K27ac 子叶 Cotyledon 37,635
H3K4me3 胚珠 Ovule 53,993
H3K4me3 胚根 Radicle 42,671
H3K4me3 下胚轴 Hypocotyl 40,116
H3K4me3 叶片 Leaf 59,619
ATAC 子叶, 胚珠, 胚根, 下胚轴, 叶片 Cotyledon, ovule, radicle, hypocotyl, leaf 219,379

Table 2

Weight table of the annotation of genetic variation"

变异种类
Variation category
权重分数
Weighting
score
变异种类
Variation category
权重分数
Weighting
score
下游区间 Downstream 1 未知类型 Unknown 1
基因间区 Intergenic 1 上游区间 Upstream 1
内含子区 Intronic 1 上下游区间 Upstream, downstream 1
非同义变异 Nonsynonymous SNV 2 3'非翻译区 3' untranslated regions (UTR3) 4
剪接位点区域 Splicing 5 5'非翻译区 5' untranslated regions (UTR5) 4
终止密码子获得 Stopgain
4 5'和3'非翻译区
5' untranslated regions (UTR5); 3' untranslated regions (UTR3)
4
终止密码子丢失 Stoploss 4 染色质开放区/染色质免疫共沉淀ATAC/ChIP 3
同义变异 Synonymous SNV 3 GWAS和eQTL位点 GWAS-associated and eQTL loci 30

Fig. 1

Distribution density of the selected functional loci on the cotton reference genome In this analysis, a 40 kb sliding window is used to count the number of functional SNPs contained in the window."

Fig. 2

Intersection between selected functional variation sites and different types of functional elements"

Fig. 3

Detection rate of different cotton varieties"

Fig. 4

Result of principal component analysis"

Fig. 5

Population genetic structure Admixture was used to analyze the data and the cross-validation error was calculated when K was 2-10. The cross-validation error value was minimized when K = 4."

Fig. 6

Manhattan plot and Quantile-Quantile plot (Q-Q plot) of different cotton fiber quality traits The traits of cotton fiber quality corresponding to the Manhattan plot, listed from top to bottom, are fiber elongation rate, fiber micronaire value, fiber strength, fiber length, and fiber uniformity."

Table 3

Summary of significant association SNP loci of different fiber quality traits"

性状
Trait
SNP位点
SNP loci
染色体
Chromosome
物理位置
Position (bp)
P
P-value
纤维伸长率
Fiber elongation rate
A06_30632495 A06 30,632,495 1.93E-05
A06_29826691 A06 29,826,691 2.72E-05
A06_29886743 A06 29,886,743 2.72E-05
A06_29911584 A06 29,911,584 2.72E-05
A06_29998092 A06 29,998,092 2.72E-05
A06_30075108 A06 30,075,108 2.72E-05
A06_30090240 A06 30,090,240 2.72E-05
A06_30183612 A06 30,183,612 2.72E-05
A06_30360014 A06 30,360,014 2.72E-05
A06_30395423 A06 30,395,423 2.72E-05
A06_30481656 A06 30,481,656 2.72E-05
A06_30521701 A06 30,521,701 2.72E-05
A06_30540961 A06 30,540,961 2.72E-05
A06_30729030 A06 30,729,030 2.72E-05
A06_30804606 A06 30,804,606 2.72E-05
A06_30822647 A06 30,822,647 2.72E-05
A06_30882123 A06 30,882,123 2.72E-05
A06_31067102 A06 31,067,102 2.72E-05
A06_31179803 A06 31,179,803 2.72E-05
A06_31422198 A06 31,422,198 2.72E-05
A06_31452632 A06 31,452,632 2.72E-05
A06_31542493 A06 31,542,493 2.72E-05
A06_34928645 A06 34,928,645 2.72E-05
A06_35040024 A06 35,040,024 2.72E-05
A06_30414712 A06 30,414,712 9.08E-05
马克隆值
Fiber micronaire value
A06_114669594 A06 114,669,594 3.05E-05
D12_54915368 D12 54,915,368 3.65E-05
D11_58293439 D11 58,293,439 4.67E-05
D11_58625039 D11 58,625,039 4.67E-05
A06_114526277 A06 114,526,277 5.84E-05
纤维强度
Fiber strength
A10_69492454 A10 69,492,454 2.43E-05
D07_58335177 D07 58,335,177 4.74E-05
纤维长度
Fiber length
A11_19546832 A11 19,546,832 1.32E-05
A11_19343086 A11 19,343,086 1.96E-05
A07_1121676 A07 1,121,676 4.18E-05
A10_69492454 A10 69,492,454 5.73E-05
纤维整齐度
Fiber uniformity
D09_810409 D09 810,409 4.85E-06
A05_21431509 A05 21,431,509 4.37E-05
D11_28341684 D11 28,341,684 4.60E-05
A06_30632495 A06 30,632,495 6.19E-05

Table 4

Significant SNPs for fiber quality traits subjected to directional selection during domestication"

SNP位点
SNP loci
性状
Trait
基因型频率Genotype frequency FST值
Fixation index
遗传多样性比率
Genetic diversity ratio (πwc)
栽培棉
Cultivars of
G. hirsutum L.
半野生棉
Semi-wild accessions of G. hirsutum L.
A06_29826691 纤维伸长率
Fiber elongation rate
A: 0.942 G: 0.058 A: 0.421 G: 0.579 0.627 3.958
A06_30632495 纤维伸长率, 纤维整齐度
Fiber elongation rate, fiber uniformity
A: 0.964 G: 0.036 A: 0.628 G: 0.372 0.365 6.829
D11_28341684 纤维整齐度 Fiber uniformity C: 0.919 T: 0.081 C: 0.143 T: 0.857 0.773 1.643
[1] Billings G T, Jones M A, Rustgi S, Bridges W C Jr, Holland J B, Hulse-Kemp A M, Campbell B T. Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants (Basel), 2022, 11: 1446.
[2] Yang Z E, Gao C X, Zhang Y H, Yan Q D, Hu W, Yang L, Wang Z, Li F G. Recent progression and future perspectives in cotton genomic breeding. J Integr Plant Biol, 2023, 65: 548-569.
doi: 10.1111/jipb.13388
[3] Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437-462.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477
[4] Yu H H, Xie W B, Li J, Zhou F S, Zhang Q F. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12: 28-37.
doi: 10.1111/pbi.12113 pmid: 24034357
[5] Tung C W, Zhao K Y, Wright M H, Ali M L, Jung J, Kimball J, Tyagi W, Thomson M J, McNally K, Leung H, et al. Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice, 2010, 3: 205-217.
[6] Singh N, Jayaswal P K, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V, et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep, 2015, 5: 11600.
[7] Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011, 6: e28334.
[8] Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics, 2014, 15: 823.
doi: 10.1186/1471-2164-15-823 pmid: 25266061
[9] Lee Y G, Jeong N, Kim J H, Lee K, Kim K H, Pirani A, Ha B K, Kang S T, Park B S, Moon J K, et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J, 2015, 81: 625-636.
[10] Vos P G, Uitdewilligen J G A M L, Voorrips R E, Visser R G F, van Eck H J. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet, 2015, 128: 2387-2401.
doi: 10.1007/s00122-015-2593-y pmid: 26263902
[11] Cavanagh C R, Chao S, Wang S C, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057-8062.
doi: 10.1073/pnas.1217133110 pmid: 23630259
[12] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[13] Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X P, Upadhyaya H D, et al. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017, 7: 40577.
[14] Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M, et al. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet, 2016, 129: 317-329.
doi: 10.1007/s00122-015-2629-3 pmid: 26536890
[15] 李双双, 陈丽丽, 拉毛杰布, 九麦扎西, 勒毛才让, 马毅. 基因芯片在奶牛遗传育种中的应用. 中国畜禽种业, 2024, 20(8): 53-62.
Li S S, Chen L L, Lamao J B, Jiumai Z X, Lemao C R, Ma Y. The application of gene chips in genetic breeding of dariry cattle. Chin Livest Poult Breed, 2024, 20(8): 53-62 (in Chinese with English abstract).
[16] Tan Z D, Han X, Dai C, Lu S P, He H Z, Yao X, Chen P, Yang C, Zhao L, Yang Q Y, et al. Functional genomics of Brassica napus: progresses, challenges, and perspectives. J Integr Plant Biol, 2024, 66: 484-509.
[17] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 等. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, et al. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[18] Cai C P, Zhu G Z, Zhang T Z, Guo W Z. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654.
[19] Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3: Genes Genom Genet, 2015, 5: 1187-1209.
[20] Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629.
[21] Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385-1391.
doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[22] He S P, Sun G F, Geng X L, Gong W F, Dai P H, Jia Y H, Shi W J, Pan Z E, Wang J D, Wang L Y, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet, 2021, 53: 916-924.
doi: 10.1038/s41588-021-00844-9 pmid: 33859417
[23] Yuan D J, Grover C E, Hu G J, Pan M Q, Miller E R, Conover J L, Hunt S P, Udall J A, Wendel J F. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv Sci, 2021, 8: 2003634.
[24] You J Q, Liu Z P, Qi Z Y, Ma Y Z, Sun M L, Su L, Niu H, Peng Y B, Luo X X, Zhu M M, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet, 2023, 55: 1987-1997.
doi: 10.1038/s41588-023-01530-8 pmid: 37845354
[25] Lappalainen T, MacArthur D G. From variant to function in human disease genetics. Science, 2021, 373: 1464-1468.
doi: 10.1126/science.abi8207 pmid: 34554789
[26] Finucane H K, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P R, Anttila V, Xu H, Zang C Z, Farh K, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet, 2015, 47: 1228-1235.
doi: 10.1038/ng.3404 pmid: 26414678
[27] Xiang R D, Berg I V D, MacLeod I M, Hayes B J, Prowse-Wilkins C P, Wang M, Bolormaa S, Liu Z Q, Rochfort S J, Reich C M, et al. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proc Natl Acad Sci USA, 2019, 116: 19398-19408.
doi: 10.1073/pnas.1904159116 pmid: 31501319
[28] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229.
[29] 房嫌嫌, 吴大鹏, 陈进红, 祝水金. 陆地棉半野生种系的遗传多样性和亲缘关系分析. 棉花学报, 2011, 23(2): 99-105.
doi: 10.11963/cs110201
Fang X X, Wu D P, Chen J H, Zhu S J. Diversity and genetic relationship among the semi-cultivars of G.hirsutum L. Races using SSR markers. Cotton Sci, 2011, 23(2): 99-105 (in Chinese with English abstract).
[30] Viot C R, Wendel J F. Evolution of the cotton genus, Gossypium, and its domestication in the Americas. Crit Rev Plant Sci, 2023, 42: 1-33.
[31] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748.
[32] Chen X Y, Hu X B, Li G, Grover C E, You J Q, Wang R P, Liu Z P, Qi Z Y, Luo X X, Peng Y B, et al. Genetic regulatory perturbation of gene expression impacted by genomic introgression in fiber development of allotetraploid cotton. Adv Sci, 2024, 11: e2401549.
[1] LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408.
[2] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[3] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[4] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[5] YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997.
[6] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[7] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[8] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
[9] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[10] WANG Rui, REN Yi, CHENG Yu-Kun, WANG Wei, ZHANG Zhi-Hui, GENG Hong-Wei. Genome-wide association analysis of morphological traits of flag leaf in wheat [J]. Acta Agronomica Sinica, 2023, 49(11): 2886-2901.
[11] YANG Hao, XIANG Shi-Hua, LIU Li, NING Ke-Jun, YANG Xue, SHU Ying-Jie, HE Qing-Yuan. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing [J]. Acta Agronomica Sinica, 2023, 49(10): 2727-2737.
[12] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[13] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[14] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[15] Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!