Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2528-2537.doi: 10.3724/SP.J.1006.2024.44012

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic diversity analysis and evaluation of domestic and international cotton germplasm resources under different planting environments

SHANG Hong-Yan1(), PU Jing1, KE Hui-Feng1, GU Qi-Shen1, SUN Zheng-Wen1, YANG Jun1, WANG Guo-Ning1, ZHANG Yan1, LU Huai-Yu2, XU Dong-Yong2, WU Li-Qiang1, MA Zhi-Ying1, WANG Xing-Fen1,*(), WU Jin-Hua1,*()   

  1. 1Hebei Agricultural University / State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources Research and Utilization, Ministry of Education, Baoding 071001, Hebei, China
    2Hejian Guoxin Rural Technical Service Association, Hejian 062450, Hebei, China
  • Received:2024-01-17 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-26
  • Contact: *E-mail: nxywjh@126.com;E-mail: cotton@hebau.edu.cn
  • Supported by:
    Key Research and Development Program of Hebei(21326314D);China Agriculture Research System of MOF and MARA (Cotton, CARS-15-03)

Abstract:

Currently, there are several issues in cotton breeding in China, including the high uniformity of existing varieties, declining genetic diversity of germplasm resources, and underutilization of valuable gene resources. In light of these challenges, a comprehensive assessment and analysis of genetic diversity were conducted on 415 cotton germplasm resources collected from three major cotton regions in China (Yellow River Basin, Yangtze River Basin, and Northwest Inland) as well as international sources. The evaluation encompassed three yield traits and seven fiber quality traits in three different locations: Sanya city, Hainan province; Hejian city, Hebei province; and Xinji city, Hebei province. The findings revealed that Hainan exhibited the highest fiber weight per boll and lint percentage but had relatively poor fiber quality. Hejian displayed the highest boll weight and superior fiber quality, while Xinji had the lowest yield performance. Additionally, it was observed that 10 phenotypic traits demonstrated significant variation and abundant genetic diversity across all three environments. Notably, there were significant differences among cotton germplasm resources from different origins, except for fiber length, uniformity, and short fiber percentage. Germplasm resources from the Yellow River Basin showed the best yield traits, highest fiber length, and fiber strength, with the largest proportion of materials surpassing the ‘double 30’ threshold. However, these resources had relatively high Micronaire values. Germplasm resources from the Yangtze River Basin exhibited higher fiber weight per boll and lint percentage. Foreign germplasm resources displayed higher boll weight but the lowest lint percentage. Correlation and cluster analyses demonstrated predominantly positive associations among yield traits, leading to the classification of germplasm resources into five categories. Furthermore, a factor analysis was conducted to comprehensively rank the tested materials, resulting in the identification of several elite resources. These included seven germplasm resources with large boll weight ( > 7 g), 26 with high lint percentage ( > 42%), 11 with high fiber length and strength surpassing the ‘30’ threshold, and nine resources exhibiting excellent comprehensive traits. These findings provide valuable parental materials for cotton breeding and serve as a crucial foundation for further research endeavors.

Key words: cotton, germplasm resources, yield, fiber quality, elite resources

Table 1

Performance of major yield traits in different environments"

环境
Environment
性状
Trait
均值
Mean
最大值
Max.
最小值
Min.
极差
Range
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
多样性指数
H'
2022 SY 单铃重
BW (g)
5.96 7.97 3.78 4.19 0.73 12.18 0.20 -0.07 2.07
2022 HJ 6.06 7.88 4.09 3.79 0.62 10.23 0.19 0.36 2.06
2022 XJ 5.94 7.91 3.73 4.18 0.71 11.98 -0.03 0.03 2.08
2022 SY 单铃纤维重
FWPB (g)
2.50 3.59 1.50 2.09 0.38 15.15 0.13 0.01 2.09
2022 HJ 2.16 3.18 1.16 2.02 0.35 16.30 0.16 0.08 2.07
2022 XJ 2.03 3.23 1.28 1.95 0.33 16.35 0.30 -0.20 2.08
2022 SY 衣分
LP (%)
41.89 51.13 30.50 20.63 3.91 9.34 -0.29 -0.28 2.09
2022 HJ 35.60 46.72 22.03 24.69 4.37 12.28 0.14 -0.30 2.08
2022 XJ 34.18 42.65 24.07 18.58 3.61 10.56 0.04 -0.70 2.08

Table 2

Fiber quality traits and its variations under different experimental environments"

环境
Environment
性状
Trait
均值
Mean
最大值
Max.
最小值
Min.
极差
Range
标准差
SD
变异
系数
CV (%)
偏度
Skewness
峰度
Kurtosis
多样性指数
H'
2022 SY 纤维长度
FL (mm)
26.70 32.86 22.46 10.40 1.77 6.65 0.52 0.43 2.06
2022 HJ 29.28 33.60 24.02 9.58 1.50 5.14 -0.04 0.57 2.06
2022 XJ 28.03 34.27 23.67 10.60 1.54 5.50 0.15 0.52 2.07
2022 SY 断裂比强度
FS (cN tex-1)
27.10 36.02 20.97 15.05 2.57 9.47 0.56 0.60 2.04
2022 HJ 32.55 42.51 25.40 17.11 2.80 8.61 0.42 0.50 2.05
2022 XJ 31.73 42.93 19.59 23.34 3.01 9.49 -0.09 1.28 2.03
2022 SY 马克隆值
FM
4.71 5.81 3.12 2.69 0.44 9.33 -0.13 0.06 2.07
2022 HJ 4.73 6.22 3.30 2.92 0.50 10.65 0.09 -0.12 2.08
2022 XJ 4.76 6.07 3.35 2.72 0.48 10.13 -0.21 0.02 2.07
2022 SY 整齐度指数
FU (%)
84.21 88.15 80.40 7.75 1.45 1.73 0.06 -0.26 2.08
2022 HJ 85.28 88.08 81.80 6.28 1.16 1.37 -0.29 -0.11 2.09
2022 XJ 84.52 87.86 79.22 8.64 1.33 1.57 -0.64 1.40 2.03
2022 SY 伸长率
FE (%)
10.42 12.66 7.66 5.00 0.89 8.50 -0.24 0.06 2.09
2022 HJ 8.53 10.63 6.27 4.36 0.77 9.05 0.11 -0.08 2.08
2022 XJ 8.06 10.96 5.88 5.08 0.81 10.10 0.33 0.17 2.06
2022 SY 成熟度
MAT
0.84 0.88 0.80 0.08 0.01 1.44 0.07 0.15 2.08
2022 HJ 0.86 0.90 0.82 0.08 0.01 1.67 0.24 -0.05 2.08
2022 XJ 0.86 0.90 0.82 0.08 0.01 1.50 -0.17 0.23 2.04
2022 SY 短纤维率
SFI (%)
7.16 10.57 4.68 5.89 1.10 15.32 0.37 -0.36 2.07
2022 HJ 7.06 9.54 5.41 4.13 0.78 11.06 0.60 -0.02 2.05
2022 XJ 7.31 11.52 5.38 6.14 0.95 13.03 0.86 1.38 2.01

Table 3

Variance analysis of yield and quality traits of tested materials (F-value)"

变异来源
Source of
variation
单铃重
BW
单铃
纤维重
FWPB
衣分
LP
纤维
长度
FL
断裂比
强度
FS
马克
隆值
FM
整齐度
FU
伸长率
FE
成熟度
MAT
短纤
维率
SFI
基因型Genotype 2.90** 4.64** 10.06** 5.24** 3.58** 5.51** 2.13** 4.24** 4.75** 1.80**
环境Environment 6.26** 424.41** 1777.81** 640.06** 849.82** 3.58* 98.16** 1993.10** 622.04** 9.25**

Table 4

Analysis of phenotypic variation of cotton germplasm resources in different regions"

性状
Trait
黄河流域棉区
Yellow River Basin
长江流域棉区
Yangtze River Basin
西北内陆棉区
Northwest Inland
国外
Foreign countries
FF-value
平均值
Mean
变异系数
CV (%)
平均值
Mean
变异系数
CV (%)
平均值
Mean
变异系数
CV (%)
平均值
Mean
变异系数
CV (%)
单铃重 BW (g) 6.08 8.66 5.87 7.25 5.85 9.87 6.01 9.00 3.70*
单铃纤维重 FWPB (g) 2.45 12.21 2.23 9.68 2.14 12.69 2.10 11.44 44.07**
衣分 LP (%) 40.34 7.20 38.02 7.50 36.57 9.06 35.04 7.87 80.21**
纤维长度 FL (mm) 28.13 4.85 28.07 5.34 27.85 3.99 27.93 4.88 0.76
断裂比强度 FS (cN tex-1) 31.12 7.23 30.15 8.04 30.47 6.86 30.17 6.93 4.94**
马克隆值 FM 5.05 7.53 4.70 6.72 4.52 9.14 4.60 7.33 43.28**
整齐度指数 FU (%) 84.85 1.08 84.55 1.17 84.75 1.06 84.58 1.11 2.38
伸长率FE (%) 8.94 7.45 9.15 7.80 9.17 6.53 8.93 7.55 3.17*
成熟度 MAT 0.86 1.20 0.85 0.86 0.85 1.20 0.85 1.09 43.30**
短纤维率 SFI (%) 7.15 8.87 7.23 9.07 7.11 9.73 7.19 9.12 0.42

Fig. 1

Correlation analysis of yield and fiber traits * indicates significance at P < 0.05;** indicates significance at P < 0.01. Abbreviations are the same as those given in Tables 1 and 2."

Fig. 2

Cluster dendrogram of tested cotton germplasm resources"

Table 5

Performance of traits in various types of germplasm"

类群
Group
参数
Parameter
单铃重
BW (g)
单铃纤
维重
FWPB (g)
衣分
LP (%)
纤维长度
FL
(mm)
断裂比
强度
FS
(cN tex-1)
马克
隆值
FM
整齐度
FU
(%)
伸长率
FE (%)
成熟度
MAT
短纤维率
SFI
(%)
I 平均值 Mean 5.95 2.11 35.48 27.72 29.77 4.62 84.48 9.04 0.85 7.29
最大值 Max. 7.38 2.72 40.42 30.64 34.05 5.62 86.65 11.03 0.88 9.20
最小值 Min. 4.63 1.51 28.14 24.26 25.01 3.64 81.42 7.16 0.83 5.80
标准差 SD 0.51 0.22 2.48 1.21 1.75 0.34 0.86 0.64 0.01 0.64
变异系数 CV (%) 8.51 10.58 6.98 4.37 5.87 7.32 1.02 7.04 1.04 8.73
II 平均值 Mean 6.24 2.19 35.14 23.82 26.98 5.22 80.93 10.29 0.85 8.58
III 平均值 Mean 5.74 1.74 30.29 29.32 32.71 4.11 84.90 8.77 0.84 6.98
最大值 Max. 6.37 1.92 30.67 30.66 33.77 4.73 85.37 9.54 0.85 7.39
最小值 Min. 5.06 1.53 30.11 28.09 31.65 3.64 83.95 7.00 0.83 6.64
标准差 SD 0.47 0.14 0.21 1.00 0.69 0.37 0.52 0.92 0.01 0.24
变异系数 CV (%) 8.16 7.94 0.69 3.41 2.12 9.07 0.62 10.48 1.17 3.49
IV 平均值 Mean 6.04 2.18 36.18 30.64 35.27 4.49 86.06 8.36 0.85 6.43
最大值 Max. 7.42 2.66 38.80 32.86 39.05 5.10 87.37 9.34 0.87 7.45
最小值 Min. 5.02 1.80 33.06 28.93 32.21 3.73 84.92 7.09 0.83 5.74
标准差 SD 0.68 0.21 1.68 0.94 1.50 0.37 0.70 0.64 0.01 0.46
变异系数 CV (%) 11.31 9.53 4.66 3.07 4.25 8.28 0.81 7.66 1.23 7.12
V 平均值 Mean 6.06 2.53 41.76 28.08 31.00 5.06 84.85 9.05 0.86 7.08
最大值 Max. 7.58 3.26 46.02 30.64 34.68 5.82 86.97 10.89 0.89 9.31
最小值 Min. 4.73 1.90 38.62 25.35 25.10 4.15 82.54 7.35 0.83 5.92
标准差 SD 0.53 0.23 1.49 1.10 1.97 0.36 0.86 0.70 0.01 0.62
变异系数 CV (%) 8.83 9.25 3.57 3.93 6.35 7.05 1.02 7.68 1.23 8.70

Table 6

Eigenvalues of common factors, contribution rates and the rotated factor loading matrix"

性状Trait 第一公因子F1 第二公因子F2 第三公因子F3 第四公因子F4
整齐度 FU 0.92 0.02 0.11 0.05
短纤维率 SFI 0.88 0.05 0.01 0.12
纤维长度 FL 0.83 -0.17 0.16 -0.19
断裂比强度 FS 0.80 0.16 -0.05 -0.32
马克隆值 FM 0.13 -0.91 -0.01 0.02
成熟度 MAT 0.02 0.86 0.08 -0.44
衣分 LP 0.17 0.79 0.19 0.28
单铃重 BW 0.05 0 0.95 -0.15
单铃纤维重 FWPB 0.15 0.59 0.77 0.10
伸长率 FE -0.13 0 -0.10 0.94
特征值Numerical value 3.04 2.58 1.58 1.35
贡献率Contribution rate (%) 30.38 25.83 15.78 13.48
累计贡献率Cumulative percentage (%) 30.38 56.21 71.99 85.47

Table 7

Performance of nine varieties with superior traits"

品种名称
Name
单铃重
BW (g)
单铃纤
维重
FWPB (g)
衣分
LP (%)
纤维长度
FL (mm)
断裂比强度
FS
(cN tex-1)
马克隆值
FM
整齐度
FU (%)
伸长率
FE (%)
成熟度
MAT
短纤维率
SFI (%)
冀资61 Jizi 61 7.31 3.02 41.28 29.00 31.22 4.75 85.60 8.57 0.86 6.67
FH87 5.76 2.33 40.60 28.93 30.80 4.57 86.59 9.97 0.84 6.22
冀资72 Jizi 72 6.27 2.53 40.61 30.45 34.65 4.55 86.12 8.96 0.85 6.95
冀资73 Jizi 73 6.13 2.47 40.36 30.64 32.88 4.86 85.64 8.72 0.86 6.92
苏研6004 Suyan 6004 6.15 2.55 41.42 28.75 33.10 4.81 85.33 8.46 0.86 6.48
安农121 Annong 121 6.37 2.54 40.09 29.00 30.29 4.72 85.43 9.50 0.85 6.85
鲁R0295 Lu R0295 5.68 2.37 41.78 28.02 32.11 4.59 85.46 9.33 0.85 6.38
鄂棉7号 Emian 7 6.08 2.48 41.09 29.88 32.43 4.55 85.98 8.29 0.85 6.49
冀资78 Jizi 78 6.11 2.57 42.22 29.68 30.98 4.83 85.18 8.66 0.86 7.39
[1] 喻树迅. 中国棉花产业百年发展历程. 农学学报, 2018, 8(1): 85-91.
Yu S X. The development of cotton production in the recent hundred years of China. J Agric, 2018, 8(1): 85-91 (in Chinese with English abstract).
[2] Campbell B T, Greene J, Wu J, Jones D C. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm. Crop Sci, 2016, 56: 1689-1697.
[3] 李生梅, 杨涛, 黄雅婕, 任丹, 耿世伟, 李典鹏, 芮存, 高文伟. 海陆回交群体主要农艺性状与纤维品质关系的探讨. 中国农业科技导报, 2021, 23(8): 16-24.
Li S M, Yang T, Huang Y J, Ren D, Geng S W, Li D P, Rui C, Gao W W. Discussion on the relationship between main agronomic traits and fiber quality in backcross populations of Gossypium hirsutum L. × Gossypium barbadense L. J Agric Sci Technol, 2021, 23(8): 16-24 (in Chinese with English abstract).
[4] 杨丹, 熊圆, 谢章书, 李侃, 许豆豆, 覃业玲, 周成轩, 刘爱玉, 贺云新, 周仲华. 陆地棉优异种质资源的综合性评价与分析. 分子植物育种, 网络首发[2023-03-08], http://kns.cnki.net/ kcms/detail/46.1068.S.20230307.1810.004.html.
Yang D, Xiong Y, Xie Z S, Li K, Xu D D, Qin Y L, Zhou C X, Liu A Y, He Y X, Zhou Z H. Comprehensive evaluation and analysis of excellent germplasm resources of upland cotton. Mol Plant Breed, Published online [2023-03-08], http://kns.cnki.net/kcms/detail/46.1068.S.20230307.1810.004.html (in Chinese with English abstract).
[5] 张超. 棉花耐高温亲本品种的鉴定筛选. 安徽农业大学硕士学位论文, 安徽合肥, 2020.
Zhang C. Identification and Selection of High Temperature Resistant Parents in Cotton. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2020 (in Chinese with English abstract).
[6] 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 25-26.
Du X M, Zhou Z L. Descriptors and Data Standard for Cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005. pp 25-26 (in Chinese).
[7] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价. 作物学报, 2024, 50: 280-293.
doi: 10.3724/SP.J.1006.2023.34075
Ke H F, Su H M, Sun Z W, Gu Q S, Yang J, Wang G N, Xu D Y, Wang H Z, Wu L Q, Zhang Y, Zhang G Y, Ma Z Y, Wang X F. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties. Acta Agron Sin, 2024, 50: 280-293 (in Chinese with English abstract).
[8] 中华人民共和国农业农村部. NY/T 1426-2007 棉花纤维品质评价方法. 北京: 中国农业出版社, 2007.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. NY/T 1426-2007 Evaluation Method of Cotton Fiber Quality. Beijing: China Agriculture Press, 2007 (in Chinese).
[9] 王凤宇, 梁国玲, 刘文辉. 590份燕麦种质资源营养器官表型性状遗传多样性分析. 草地学报, 2024, 32: 158-167.
doi: 10.11733/j.issn.1007-0435.2024.01.017
Wang F Y, Liang G L, Liu W H. Phenotypic diversity analysis of nutritional organs in 590 oats germplasm. Acta Agrest Sin, 2024, 32: 158-167 (in Chinese with English abstract).
[10] 陈超, 曹永策. 基于熵权TOPSIS的我国上市房地产企业融资能力评价研究. 辽宁工业大学学报(社会科学版), 2023, 25(3): 25-27.
Chen C, Cao Y C. Evaluation of financing ability of Chinese listed real estate enterprises based on entropy weight TOPSIS. J Liaoning Inst Technol (Soc Sci Edn), 2023, 25(3): 25-27 (in Chinese).
[11] 王慧丽. 长期地表覆盖及施氮对土壤肥力质量的影响评价. 山西农业大学硕士学位论文, 山西太谷, 2017.
Wang H L. Effects of Long-term Land Cover and Nitrogen Application on Soil Fertility Quality Impact Assessment. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2017 (in Chinese with English abstract).
[12] 王秀秀, 邢爱双, 杨茹, 何守朴, 贾银华, 潘兆娥, 王立如, 杜雄明, 宋宪亮. 陆地棉种质资源表型性状综合评价. 中国农业科学, 2022, 55: 1082-1094.
doi: 10.3864/j.issn.0578-1752.2022.06.003
Wang X X, Xing A S, Yang R, He S P, Jia Y H, Pan Z E, Wang L R, Du X M, Song X L. Comprehensive evaluation of phenotypic characters of nature population in upland cotton. Sci Agric Sin, 2022, 55: 1082-1094 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.06.003
[13] 刘文欣. 建国以来我国棉花品种遗传改良研究. 中国农业大学博士学位论文, 北京, 2004.
Liu W X. Studies on Genetic Improvement in Cotton Planted in China Since 1949. PhD Dissertation of China Agricultural University, Beijing, China, 2004 (in Chinese with English abstract).
[14] 许乃银, 李健. 我国主产棉区棉花纤维品质性状的区域分布特征. 中国生态农业学报, 2016, 24: 1547-1554.
Xu N Y, Li J. Regional distribution characteristics of cotton fiber quality in main cotton production areas in China. Chin J Eco- Agric, 2016, 24: 1547-1554 (in Chinese with English abstract).
[15] 朱青竹, 赵国忠, 马峙英. 不同来源棉花种质资源材料主要农艺经济性状鉴定与分析. 棉花学报, 2002, 14: 237-241.
Zhu Q Z, Zhao G Z, Ma Z Y. Identification and analysis of germplasm resources of cotton from different countries. Cotton Sci, 2002, 14: 237-241 (in Chinese with English abstract).
[16] Campbell B T, Jones M A. Assessment of genotype × environment interactions for yield and fiber quality in cotton performance trials. Euphytica, 2005, 144: 69-78.
[17] 李成奇, 李鹏云, 王浩丽, 付远志, 王清连. 不同生态环境下棉花早熟性与皮棉产量的关系. 河南科技学院学报(自然科学版), 2015, 43(5): 1-5.
Li C Q, Li P Y, Wang H L, Fu Y Z, Wang Q L. Correlation of cotton earliness and lint yield in different ecological environments. J Henan Inst Sci Technol (Nat Sci Edn), 2015, 43(5): 1-5 (in Chinese with English abstract).
[18] 乔银桃. 基于GGE模型的西北内陆棉区品种生态区划分和试验环境评价. 江苏大学硕士学位论文, 江苏镇江, 2022.
Qiao Y T. Mega environment Investigation and Test Environment Evaluation in Northwest Inland Cotton in China Based on GGE Model. MS Thesis of Jiangsu University, Zhenjiang, Jiangsu, China, 2022 (in Chinese with English abstract).
[19] 尚建立, 王吉明, 郭琳琳, 马双武. 西瓜种质资源主要植物学性状的遗传多样性及相关性分析. 植物遗传资源学报, 2012, 13: 11-15.
doi: 10.13430/j.cnki.jpgr.2012.01.002
Shang J L, Wang J M, Guo L L, Ma S W. Genetic diversity and correlation analysis of main botany characters in watermelon genetic resources. J Plant Genet Resour, 2012, 13: 11-15 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2012.01.002
[20] 李慧琴, 于娅, 王鹏, 刘记, 胡伟, 鲁丽丽, 秦文强. 270份陆地棉种质资源农艺性状与品质性状的遗传多样性分析. 植物遗传资源学报, 2019, 20: 903-910.
doi: 10.13430/j.cnki.jpgr.20181025003
Li H Q, Yu Y, Wang P, Liu J, Hu W, Lu L L, Qin W Q. Genetic diversity analysis of the main agronomic and fiber quality characteristics in 270 upland cotton germplasm resources. J Plant Genet Resour, 2019, 20: 903-910 (in Chinese with English abstract).
[21] 钱玉源, 刘祎, 崔淑芳, 王广恩, 张曦, 金卫平, 李俊兰. 基于表型的棉花种质资源遗传多样性分析及核心种质的抽提. 华北农学报, 2019, 34(增刊1): 29-35.
Qian Y Y, Liu Y, Cui S F, Wang G E, Zhang X, Jin W P, Li J L. Analysis of genetic diversity of cotton germplasm resources and extraction of core germplasm based on phenotypic traits. Acta Agric Boreali-Sin, 2019, 34(S1): 29-35 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20190960
[22] 杜磊, 雄东毕, 李成奇, 赵海红. 盐胁迫下黄河流域棉花品种主要性状的通径分析及优异种质筛选. 江苏农业科学, 2023, 51(14): 101-108.
Du L, Xiong D B, Li C Q, Zhao H H. Path analysis of main traits of cotton varieties in yellow river basin under salt stress and potential germplasm selection. J Jiangsu Agric Sci, 2023, 51(14): 101-108 (in Chinese with English abstract).
[1] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[2] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[3] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[4] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[5] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[6] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[7] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[8] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[9] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[10] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[11] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[12] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[13] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[14] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
[15] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!