Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Creation and physiological analysis of an e1-as gene mutant in soybean

HE Hong-Li1,ZHANG Yu-Han1,YANG Jing2,CHENG Yun-Qing1,ZHAO Yang1,LI Xing-Nuo1,SI Hong-Liang3,ZHANG Xing-Zheng1,*,YANG Xiang-Dong2,*   

  1. 1 Jilin Normal University, Siping 136000, Jilin, China; 2 Jilin Academy of Agricultural Sciences, Changchun 130000, Jilin, China; 3 Boda College, Jilin Normal University, Siping 136000, Jilin, China
  • Received:2024-09-24 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-05-13
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32101649) and the Outstanding Talents Team Project of Department of Science and Technology of Jilin Province (20240601063RC).

Abstract: Glycine max is a photoperiod-sensitive plant, and E1 is a key gene regulating flowering time in soybean. As a core component of the photoperiodic flowering pathway, E1 plays a critical role in controlling the timing of floral transition. In this study, we constructed a CRISPR/Cas9-based genome editing vector targeting the E1 gene and introduced it into the soybean cultivar Williams 82. Gene editing was successfully detected in the E1 gene of T1 generation plants, and T2 generation plants were subsequently developed. Sequencing analysis revealed a single base insertion at target site 1 in the E1 gene, resulting in a premature stop codon and truncated protein. Phenotypic analysis showed that the flowering time of the T3 generation was approximately (10±2) days earlier than that of the wild type. In addition, chlorophyll content in the newly emerged trifoliate leaves of the mutant was (6±2) μg g?1 lower than in the wild type, while in fully expanded leaves, it was (10±4) μg g?1 lower. The pollen germination rate in the mutant was 8%±1% lower compared to the wild type. Furthermore, mutant pollen tube lengths measured at 0.25, 0.50, 1.00, and 2.00 h were (33.96±5.00), (74.14±5.00), (142.86±5.00), (183.50±5.00) μm, respectively, whereas the corresponding values in the wild type were (46.08±5.00), (118.89±5.00), (228.35±5.00), and (307.72±5.00) μm. Transcriptome analysis of the e1-as-79 mutant and the wild type identified 3,615 differentially expressed genes, including key flowering regulators FT2a and FT5a, which likely contribute to the early flowering phenotype observed in the mutant.

Key words: soybean, E1 gene, gene editing, mutant, transcriptome

[1] 赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展. 遗传, 2023, 45: 793–800.

Lai B W, Chen L, Lu S J. The current status of photoperiod adaptability in soybean. Hereditas (Beijing), 2023, 45: 793–800 (in Chinese with English abstract).

[2] Zheng N W, Guo Y K, Wang S Y, Zhang H, Wang L, Gao Y, Xu M, Wang W Y, Liu W G, Yang W Y. Identification of E1–E4 allele combinations and ecological adaptability of soybean varieties from different geographical origins in China. Front Plant Sci, 2023, 14: 1222755.

[3] Perfil’ev R, Shcherban A, Potapov D, Maksimenko K, Kiryukhin S, Gurinovich S, Panarina V, Polyudina R, Salina E. Impact of allelic variation in maturity genes E1–E4 on soybean adaptation to central and west Siberian regions of Russia. Agriculture, 2023, 13: 1251.

[4] Zhai H, Wan Z, Jiao S, Zhou J W, Xu K, Nan H Y, Liu Y X, Xiong S S, Fan R, Zhu J L, et al. GmMDE genes bridge the maturity gene E1 and florigens in photoperiodic regulation of flowering in soybean. Plant Physiol, 2022, 189: 1021–1036.

[5] Liu L F, Gao L, Zhang L X, Cai Y P, Song W W, Chen L, Yuan S, Wu T T, Jiang B J, Sun S, et al. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions. J Integr Agric, 2022, 21: 326–335.

[6] 侯思宇, 王俊苏, 韩德复. 大豆生育期基因E1E4研究概述. 长春师范大学学报, 2024, 43(2): 118–123.

Hou S Y, Wang J S, Han D F. Overview of research on soybean maturity genes E1E4. J Changchun Norm Univ, 2024, 43(2): 118–123 (in Chinese with English abstract).

[7] 张普, 贾世豪, 莎珍, 杨植雅, 欧侨欣, 曹永策. 大豆开花和成熟期显性E1等位基因关联分析. 西北植物学报, 2024, 44: 624–633.

Zhang P, Jia S H, Sha Z, Yang Z Y, Ou Q X, Cao Y C. Association analysis of dominant E1 alleles at flowering and maturing stage in soybean. Acta Bot Boreali-Occident Sin, 2024, 44: 624–633 (in Chinese with English abstract).

[8] 朱瑞艳, 许莹, 时敏, 开国银. CRISPR/Cas9技术在药用植物中的应用与展望. 科学通报, 网络首发[2024-03-21], https://link.cnki.net/urlid/11.1784.N.20240319.1433.002

Zhu R Y, Xu Y, Shi M, Kai G Y. Application and prospect of CRISPR/Cas9 technology in medicinal plants. Chin Sci Bull, Published online [2024-03-21], https://link.cnki.net/urlid/11.1784.N.20240319.1433.002 (in Chinese with English abstract).

[9] 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展. 中国农学通报, 2022, 38(26): 9–14.

Quan Y, Zhang X J, Zhao H, Sun X M, Ma X Q. CRISPER/Cas9 system in plant genome modification and crop genetics and breeding: research progress. Chin Agric Sci Bull, 2022, 38(26): 9–14 (in Chinese with English abstract).

[10] 李可, 吴传银, 隋毅. CRISPR/Cas基因编辑技术在水稻育种中的研究进展. 科学通报, 网络首发[2024-03-20], https://link.cnki.net/urlid/11.1784.N.20240318.1541.004.

Li K, Wu C Y, Sui Y. Research progress of CRISPR/Cas gene editing technology in rice breeding. Chin Sci Bull, Published online [2024-03-20], https://link.cnki.net/urlid/11.1784.N.20240318.1541.004 (in Chinese with English abstract).

[11] 朱宗财, 王志军, 高能, 武冬梅. CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述. 江苏农业科学, 2024, 52(3): 1–11.

Zhu Z C, Wang Z J, Gao N, Wu D M, Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance: a review. Jiangsu Agric Sci, 2024, 52(3): 1–11 (in Chinese with English abstract).

[12] 谢先荣, 曾栋昌, 谭健韬, 祝钦泷, 刘耀光. 基于CRISPR编辑系统的DNA片段删除技术. 植物学报, 2021, 56: 44–49.

Xie X R, Zeng D C, Tan J T, Zhu L Z, Liu Y G. CRISPR-based DNA fragment deletion in plants. Chin Bull Bot, 2021, 56: 44–49 (in Chinese with English abstract).

[13] 淡俊豪, 夏玉梅, 詹祎捷, 余木兰, 唐宁, 卜小兰, 齐绍武, 曹孟良. 植物转基因删除技术研究进展. 分子植物育种, 2021, 19: 4005–4013.

Dan J H, Xia Y M, Zhan Y J, Yu M L, Tang N, Bu X L, Qi S W, Cao M L. Advances on gene deletion technology in transgenic plant. Mol Plant Breed, 2021, 19: 4005–4013 (in Chinese with English abstract).

[14] Yang J, Xing G J, Niu L, He H L, Guo D Q, Du Q, Qian X Y, Yao Y, Li H Y, Zhong X F, et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1BTransgenic Res, 2018, 27: 155–166.

[15] Ha D H, Kim H J. Mutation of storage protein gene using CRISPR/Cas9 removed α’-subunit of β-conglycinin in soybean seeds. Plant Biotechnol Rep, 2023, 17: 939–945.

[16] Cai Y P, Chen L, Hou W S. Genome editing technologies accelerate innovation in soybean breeding. Agronomy, 2023, 13: 2045.

[17] 李亦君, 夏琳, 杨小贝, 王中, 谢小东, 杨军, 宁黔冀, 武明珠. 基于CRISPR/Cas9技术的烟草NtHQT2基因敲除及功能分析. 烟草科技, 2024, 57(9): 33–39.

Li Y J, Xia L, Yang X B, Wang Z, Xie X D, Yang J, Ning Q J, Wu M Z. CRISPR/Cas9-mediated knockout and functional analysis of NtHQT2 gene in tobacco. Tob Sci Technol, 2024, 57(9): 33–39 (in Chinese with English abstract).

[18] 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018, 48: 783–794.

Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin Vitae, 2018, 48: 783–794 (in Chinese with English abstract).

[19] Omelina E S, Yushkova A A, Motorina D M, Volegov G A, Kozhevnikova E N, Pindyurin A V. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. Int J Mol Sci, 2022, 23: 1737.

[20] 郭梦茹, 夏义苗, 陈复生. 大豆制品转基因检测中PCR技术的应用进展及展望. 大豆科学, 2022, 41: 490–497.

Guo M R, Xia Y M, Chen F S. Application progress of PCR technology in transgenic detection of soybean products. Soybean Sci, 2022, 41: 490–497 (in Chinese with English abstract).

[21]李有宝, 于寒松. 抗除草剂转基因大豆的研究进展. 分子植物育种, 网络首发[2022-06-28], https://link.cnki.net/urlid/46.1068.S.20220627.1722.005

Li Y B, Yu H S. Research progress of herbicide-resistant transgenic soybean. Mol Plant Breed, Published online [2022-06-28], https://link.cnki.net/urlid/46.1068.S.20220627.1722.005 (in Chinese with English abstract).

[22] Wicharuck S, Suang S, Chaichana C, Chromkaew Y, Mawan N, Soilueang P, Khongdee N. The implementation of the SPAD-502 Chlorophyll meter for the quantification of nitrogen content in Arabica coffee leaves. MethodsX, 2024,12: 102566.

[23] Vishwakarma M, Kulhare P S, Tagore G S. Estimation of chlorophyll using SPAD meter. Int J Environ Clim Change, 2023, 13: 1901–1912.

[24] 明帮燕, 黄梅, 付旭娟, 杨青山, 周浓, 郭冬琴. 浙贝母叶片SPAD值与叶绿素含量的相关性分析. 南方农业, 2023, 17(9): 34–37.

Ming B Y, Huang M, Fu X J, Yang Q S, Zhou N, Guo D Q. Correlation analysis between SPAD value and chlorophyll content of Fritillaria thunbergii leaves. South China Agric, 2023, 17(9): 34–37 (in Chinese with English abstract).

[25] 骆亮仲, 李卓蔚, 周浓, 夏李, 付旭娟, 黄梅, 郭冬琴. 滇重楼叶片和花萼的SPAD值与叶绿素含量的相关性分析. 南方农业, 2023, 17(3): 155–161.

Luo L Z, Li Z W, Zhou N, Xia L, Fu X J, Huang M, Guo D Q. Correlation analysis between SPAD value and chlorophyll content in leaves and Calyx of Paris polyphylla var. yunnanensis. South China Agric, 2023, 17(3): 155–161 (in Chinese with English abstract).

[26] 华超. 类钙调蛋白PlCML25调控芍药远缘杂交花粉生长的功能研究. 河南农业大学硕士学位论文, 河南郑州, 2024.

Hua C. Study on the Function of Calmodulin PlCML25 in Regulating the Pollen Growth of Paeonia lactiflora Distant Hybridization. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2024 (in Chinese with English abstract).

[27] 乔倩. 拟南芥蛋白激酶PDK1调控花粉管极性生长的分子机理研究. 山东农业大学硕士学位论文, 山东泰安, 2023.

Qiao Q. Molecular Mechanism of Arabidopsis Protein Kinase PDK1 Regulating Polar Growth of Pollen tubes. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).

[28] 张舒展. ROP信号途径调控花粉萌发的分子机理研究. 山东农业大学硕士学位论文, 山东泰安, 2023.

Zhang S Z. Functional Analysis of ROP Signaling in Pollen Germination in Arabidopsis. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).

[29] 曹颖, 竹龙鸣, 邓平, 陈紫芸, 袁凤杰. 模拟干旱胁迫下大豆耐旱突变体的生理和转录组分析. 大豆科学, 2024, 43: 421–430.

Cao Y, Zhu L M, Deng P, Chen Z Y, Yuan F J. Physiological and transcriptomic analysis of A soybean drought-tolerant mutant under simulate drought stress. Soybean Sci, 2024, 43: 421–430 (in Chinese with English abstract).

[30] Han J N, Guo B F, Guo Y, Zhang B, Wang X B, Qiu L J. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci, 2019, 10: 1446.

[31] Wan Z, Liu Y X, Guo D D, Fan R, Liu Y, Xu K, Zhu J L, Quan L, Lu W T, Bai X, et al. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Front Plant Sci, 2022, 13: 1066820.

[32] Li H Y, Chen Z, Wang F, Xiang H L, Liu S R, Gou C J, Fang C, Chen L Y, Bu T T, Kong F J, et al. J-family genes redundantly regulate flowering time and increase yield in soybean. Crop J, 2024, 12: 944–949.

[1] YIN Cong-Cong, LI Rui-Qi, YUE Pei-Yao, LI Chen, NIU Jing-Ping, ZHAO Jin-Zhong, DU Wei-Jun, YUE Ai-Qin. Establishment and application of a visual detection method for soybean mosaic virus SC15 based on closed dumbbell mediated isothermal amplification [J]. Acta Agronomica Sinica, 2025, 51(5): 1248-1260.
[2] WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899.
[3] ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631.
[4] SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567.
[5] QIAN Yu-Ping, SU Bing-Bing, GAO Ji-Xing, RUAN Fen-Hua, LI Ya-Wei, MAO Lin-Chun. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region [J]. Acta Agronomica Sinica, 2025, 51(1): 273-284.
[6] DING Shu-Qi, CHENG Tong, WANG Bi-Kun, YU De-Bin, RAO De-Min, MENG Fan-Gang, ZHAO Yin-Kai, WANG Xiao-Hui, ZHANG Wei. Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras [J]. Acta Agronomica Sinica, 2025, 51(1): 161-173.
[7] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[8] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[9] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[10] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[11] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[12] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[13] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
[14] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[15] WANG Jia-Xiang, YU Xue-Ting, LI Meng-Tao, MAI Wei-Tao, CHEN Xin, WANG Wen-Quan. Preliminary study on the regulation of cassava plant type by MeLAZY1c gene [J]. Acta Agronomica Sinica, 2024, 50(6): 1514-1524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!