Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (12): 2085-2091.doi: 10.3724/SP.J.1006.2008.02085

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Evaluation of EST-SSRs Derived from Gossypium herbaceum

YU Yu12,WANG Zhi-Wei1,FENG Chang-Hui1,ZHANG Yan-Xin1,LIN Zhong-Xu1*,ZHANG Xian-Long1   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei; 2 Cotton Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China
  • Received:2008-05-06 Revised:2008-07-15 Online:2008-12-12 Published:2008-10-10
  • Contact: LIN Zhong-Xu

Abstract:

Gossypium herbaceum (A genome) is generally regarded as the most closely relative of the progenitor at subgenomes of allotetraploid cotton, of which the evolution is necessary to study. In order to investigate the contribution of G. herbaceum to the tetraploid genome, EST-SSRs were isolated from 247 EST sequences of G. herbaceum documented in GenBank. Twenty-seven perfect SSRs were identified from twenty-five unique ESTs. These SSRs contained 1–6 bp nucleotide motifs with high frequency for 2-bp and 3-bp nucleotide motifs. A total of 25 primers were developed and 22 of them could amplify 24 cotton accessions including 7 diploids of A genome, 11 diploids of D genome and 6 allotetraploids of AD genome; only HAU217 could specifically amplified A genome and the other 21 primers could amplified both A and D genomes. The number of polymorphic fragments generated by each primer ranged from 1 to 9 with an average of 3.64. The PIC values ranged from 0.49 to 0.91 with an average of 0.81. Among the 25 EST-SSR primers, six primers revealed polymorphism between Emian 22 and Pima 3-79, and yielded seven polymorphic loci (five were codominant and two dominant) in the BC1 [(Emian22 × Pima3-79) × Emian22] population. Only HAU230b showed distorted segregation in the BC1 population. Six polymorphic loci were integrated into six chromosomes of our interspecific BC1 backbone genetic linkage map among which, four loci were mapped on four chromosomes of A sub-genome (Chr. 6, 10, 11, 12), and two loci on two chromosomes of D sub-genome (Chr. 19 and 20).

Key words: Gossypium herbaceum, EST, SSR, Polymorphism information content (PIC), Genetic map

[1]Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea, 1992, 2: 108-165
[2]Bolek Y, El-Zik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K. Mapping of verticillium wilt re-sistance genes in cotton. Plant Sci, 2005, 168: 1581-1590
[3]Endrizzi J E, Turcotte E L, Kohel R J. Genetics cytology and evolution of Gossypium. Adv Genet, 1985, 23: 271-375
[4]Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 1: 215-222
[5]Gupta P K, Balyan H S, Sharma P C, Ramesh B. Microsatel-lites in plants: A new class of molecular markers. Curr Sci, 1996, 70: 45-54
[6]Brown S M, Hopkins M S, Mitchell S E, Senior M L, Wang T Y, Duncan R R, Gonzalez-Candelas F, Kresovich S. Multiple methods for the identification of polymorphic simple se-quence repeats (SSRs) in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet, 1996, 93: 190-198
[7]Scott K D. Microsatellites derived from ESTs and their com-parison with those derived by other methods. In: Henry R J ed. Plant Genotyping: The DNA Fingerprinting of Plants. Wellingford, UK: CAB International, 2001. pp 225-237
[8]Zhang Y X, Lin Z X, Li W, Tu L L, Nie Y C, Zhang X L. Studies of new EST-SSRs derived from Gossypium bar-badense. Chin Sci Bull, 2007, 52: 2522-2531
[9]Saha S, Karaca M, Jenkins J N, Zipf A E, Reddy O U K, Kantety R V. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003, 130: 355-364
[10]Qureshi S N, Saha S, Kantety R V, Jenkins J N. EST-SSR: A new class of genetic markers in cotton. J Cotton Sci, 2004, 8: 112-123
[11]Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in al-lotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439
[12]Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C M, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D S, Scheffler J. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006, 49: 306-319
[13]Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004, 272: 308-327
[14]Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Ge-netic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Genet Genomics, 2005, 274: 428-441
[15]Wang C B, Guo W Z, Cai C P, Zhang T Z. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51: 557-561
[16]Huang X, Madan A. CAP3: A DNA sequence assembly pro-gram. Genome Res, 1999, 9: 868-877
[17]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127
[18]Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180-187
[19]Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
[20]Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrells M E. Optimizing parental selection for genetic link-age maps. Genome, 1993, 36: 181-186
[21]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg I. MAPMAKER: An interactive com-puter package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
[22]Kosambi D D. The estimation of map distances from recom-bination values. Ann Eugen, 1994, 12: 172-175
[23]Guo W Z, Wang W, Zhou B L, Zhang T Z. Cross-species transferability of G. arboreum-derived EST-SSRs in the dip-loid species of Gossypium. Theor Appl Genet, 2006, 112: 1573-1581
[24]Vendramin E, Dettori M T, Giovinazzi J, Micali S, Quarta R, Verde R. A set of EST-SSRs isolated from peach fruit tran-scriptome and their transportability across Prunus species. Mol Ecol Notes, 2007, 7: 307-310
[25]Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
[26]Blair M W, Giraldo M C, Buendía H F, Tovar E, Duque M C, Beebe S E. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2006, 113: 100-109
[27]Frelichowski Jr J E, Palmer M B, Main D, Tomkins J P, Cantrell R G, Stelly D M, Yu J, Kohel R J, Ulloa M. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Mol Genet Genomics, 2006, 275: 479-491
[28]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417
[1] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[2] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[3] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[4] YAN Sheng-Ji, DENG Ai-Xing, SHANG Zi-Yin, TANG Zhi-Wei, CHEN Chang-Qing, ZHANG Jun, ZHANG Wei-Jian. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production [J]. Acta Agronomica Sinica, 2022, 48(4): 930-941.
[5] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[6] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[9] YU Guo-Wu, QING Yun, HE Shan, HUANG Yu-Bi. Preparation and application of polyclonal antibody against SSIIb protein from maize [J]. Acta Agronomica Sinica, 2022, 48(1): 259-264.
[10] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[11] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[12] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[13] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[14] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[15] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!