Peanut (Arachis hypogaea L.),SSR,Genetic linkage map,"/> Construction of Genetic Linkage Map in Peanut(<em>Arachis hypogaea</em> L.) Cultivars
Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (3): 395-402.doi: 10.3724/SP.J.1006.2009.00395

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Genetic Linkage Map in Peanut(Arachis hypogaea L.) Cultivars

HONG Yan-Bin;LIANG Xuan-Qiang*;CHEN Xiao-Ping;LIU Hai-Yan;ZHOU Gui-Yuan;LI Shao-Xiong;WEN Shi-Jie   

  1. Crops Research Institute, GuangdongAcademy of Agricultural Sciences,Guangzhou 510640,China
  • Received:2008-05-16 Revised:2008-09-11 Online:2009-03-12 Published:2009-01-15
  • Contact: LIANG Xuan-Qiang

Abstract:

Molecular genetic map is a fundamental organizational tool for genomic research. However, a comprehensive genetic linkage map for peanut cultivars has not yet been developed due to extremely low levels of DNA polymorphisms in cultivated peanut. In this study, 184 recombinant inbred lines (RIL), derived from a cross between two Spanish type peanut cultivars (Yueyou 13 × Fu95-5), were used as mapping population. A total of 652 pairs of genomic-SSR primers and 392 pairs of EST-SSR primers were used to detect the polymorphisms between the parental cultivars. Of them, 121 SSR primer pairs amplified 123 segregating loci and were selected to analyze the RIL population. A genetic linkage map consisting of 108 SSR loci (102 genomic-SSR and 6 EST-SSR) in 20 linkage groups and covers 568 cM with an average distance of 6.45 cM of intermaker was constructed. By comparing the SSR genetic map of Arachis (A. duranensis × A. stenosperma) with AA genome, 11 linkage groups in the linkage map constructed in this study were confirmed to have homology with 6 linkage groups of wild peanut species.

Key words: Peanut (Arachis hypogaea L.)')">Peanut (Arachis hypogaea L.), SSR, Genetic linkage map

[1]Kochert G, Halward T, Branch W D, Simpson C E. RFLP variability in peanut(Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991, 81: 565-570
[2]Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (PAPD) assay. Genome, 2000, 43: 656-660
[3]Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 8: 1-11
[4]Herselman L, Thwaites R, Kimmins F M, Courtois B, van der Merwe P J, Seal S E. Identification and mapping of AFLP markers linked to peanut(Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet, 2004, 109: 1426-1433
[5]Gimenes M A, Hoshino A A, Barbosa A V, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol, 2007, 7: 9
[6]Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic differences in peanut cultivated types (Arachis hypogaea) revealed by SSR polymorphism. Mol Plant Breed (分子植物育种), 2008, 6(1): 71-78 (in Chinese with English abstract)
[7]Jiang H-F(姜慧芳), Chen B-Y(陈本银), Ren X-P(任小平), Liao B-S(廖伯寿), Lei Y(雷永), Fu T-D(傅廷栋), Ma C-Z(马朝芝), Mace E, Crouch J H. Identification of SSR markers linked to bacterial wilt resistance of peanut with RIL. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(1): 26-30(in Chinese with English abstract)
[8]Kantety R V, La Rota M, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510
[9]Lu S-D(卢圣栋). Current Protocols for Molecular Biology (现代分子生物学实验技术). Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1999. pp 101-136
[10]Hopkins M S, Casa A M, Wang T, Mitchell S E, Dean R E, Kochert G D, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSR) in peanut. Crop Sci, 1999, 39: 1243-1247
[11]Palmieri D A, Hoshino A A, Bravo J P, Lopes C R, Gimenes M A. Isolation and characterization of microsatellite loci from the forage species Arachis Pintoi (Genus Arachis). Mol Ecol Notes, 2002, 2: 551-553
[12]He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biol, 2003, 3: 3
[13]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut(A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064-1070
[14]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F, Ferreira M E. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11
[15]Moretzsohn M C, Leoi L, Proite K, Guimaras P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060-1071
[16]Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes, 2005, 5: 77-79
[17]Martins W, Sousa D D, Proite K, Guinaraes P, Moretzsohn M, Bertioli D. New softwares for automated microsatellite marker development. Nucl Acids Res, 2006, 34:1-4
[18]Varshney R K, Graner A, Sorrells M E. Genetic microsatellite markers in plants: features and applications. Trends Biotechnol, 2005, 23: 48-55
[19]Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploids to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837
[20]Halward T M, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384
[21]Sewell M M, Sherman B K, Neale D B. A consensus map for loblolly (Pinustaeda L.): I. Construction and intergration of individual linkage maps from two outbred three-generation pedigree. Genetics, 1999, 151: 321-330
[22]Butcher P A, Williams E R, Whitaker D, Kiene K L, Temesgen B. Improving linkage analysis in outcrossed forest trees --- an example from Acacia mangium. Theor Appl Genet, 2001, 104: 1185-1191
[23]Gosselin I, Zhou Y, Bousquet J, Isabel N. Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet, 2002, 104: 987-997
[24]Stam P. Construction of integrated genetic linkage maps by means of a new computer package JoinMap. Plant J, 1993, 3: 739-744
[25]Bozhko M, Riegel R, Schubert R, Muller-Starck G. A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Mol Ecol, 2003, 12: 3147-55
[26]Schubert R, Starck G M, Riegel R. Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies L. Karst. Theor Appl Genet, 2001, 103: 1223-1231
[27]Brown G R, Kadel E E, Bassoni D L, Kiehne K L, Temesgen B, van Buijtenen J P, Sewell M M, Marshall K A, Neale D B. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics, 2001, 159: 799-809
[28]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[29]Varshney P K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Grane A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202
[30]Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 713-722
[31]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[32]Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P. Study of simple sequence repeat(SSR) markers from wheat expressed sequences tags (EST). Theor Appl Genet, 2004, 109: 800-805
[33]Areshchenkova T, Ganal M W. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet, 2002, 104: 229-235
[34]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[35]Ramsay L, Macaulay M, Ivanissivich S, MacLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, Maestri E, Marniorlin N, Sjakste T, Ganal M, Powell W, Powell W, Waugh R. A simple sequence repeat-based linkage map of barley. Genetics, 2000, 156: 1997-2005
[36]Kasha K J, Kao K N. High frequency haploid production in barley (Hordeum vulgare L.). Nature, 1970, 225: 874-876
[37]Bradshaw H D, Stettler R F. Molecular genetics of growth and development in Populus: II. Segregation distortion due to genetics load. Theor Appl Genet, 1994, 89: 551-558
[38]Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M. Segregation distortion of AFLP markers in Cryptomeria japonica. Genes Genet Syst, 1999, 74: 55-59
[39]Echt C S, Nelson C D. Linkage mapping and genome length in eastern white pine (Pinus strobes L.). Theor Appl Genet, 1997, 94: 1031-1037
[40]Myburg A A, Griffin A R, Sederoff R R, Whetten R W. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globules and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet, 2003, 107: 1028-1042
[41]Singh A K, Moss J P. Utilization of wild relatives in genetic improvement of Arachis hypogaea L: II. Chromosome complements of species of section Arachis. Theor Appl Genet, 1982, 61: 305-314
[42]Wynne J C, Halward T. Cytogenetics and genetics of Arachis. Crit Rev Plant Sci, 1989, 8: 189-220
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[7] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[8] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[9] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[10] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[11] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[12] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[13] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[14] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[15] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!