Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (6): 1122-1130.doi: 10.3724/SP.J.1006.2009.01122
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
FANG Quan-Xiao1,YU Qiang2,WANG Jian-Lin1
[1] Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2003, 4: 671-677 [2] Liu C M, Yu J J, Kendy E. Groundwater exploitation and its impact on the environment in the North China Plain. Water Int, 2001, 26: 265-272 [3] Zhang J H, Sui X Z, Li B, Su B L, Li J M, Zhou D X. An improved water-use efficiency of winter wheat grown under reduced irrigation. Field Crops Res, 1998, 59: 91-98 [4] Zhang Y Q, Kendy E, Yu Q, Liu, C M, Shen, Y J, Sun H Y. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric Water Manage,2004, 64: 107-122 [5] Zhang X Y, Chen S, Liu M Y, Pei D, Sun H Y. Improved Water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron J, 2005, 97: 783-790 [6] Li J M, Inanaga S, Li Z, Eneji A E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manage, 2005, 76: 8-23 [7] Fang Q X, Chen Y H, Yu Q, Ouyang Z, Li Q Q, Yu S Z. Much improved irrigation use efficiency in an intensive wheat-maize double cropping system in the North China Plain. J Integr Plant Biol, 2007, 49: 1517-1526 [8] Fang Q X, Yu Q, Wang E L, Chen Y H, Zhang G L, Wang J, Li L H. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil, 2006, 284: 335-350 [9] Wang H X, Liu C M, Zhang L. Water-saving agriculture in China: An overview. Adv Agron, 2002, 75: 135-171 [10] Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric Water Manage, 2004, 69: 115-133 [11] Thomas R S, Seligman No’am G. Crop modeling: from infancy to maturity. Agron J, 1996, 88: 698-704 [12] Boote K J, Jones J W, Pickering N B. 1996. Potential uses and limitations of crop models. Agron J, 88: 704-716 [13] Jiang M(江敏), Jin Z-Q(金之庆), Ge D-K(葛道阔), Shi C-L(石春林).Validation and modification of CERES-Wheat model in winter wheat production region of China. Jiangsu J Agric Sci (江苏农学院报), 1998, 19(3): 64-67 (in Chinese with English abstract) [14] Li J(李军), Shao M-A(邵明安), Fan T-L(樊廷录), Wang L-X(王立祥). Databases creation of crop growth model DSSAT3 on the loess plateau region of China. Agric Res in the Arid Areas (干旱地区农业研究), 2001, 19(1): 120-126(in Chinese with English abstract) [15] Zhang Y-H(张艳红), Ma Y-L(马永良), Liao S-H(廖树华). Method of optimizing maize variety parameters in the CERES-maize simulation model. J Chin Agric Univ (中国农业大学学报), 2004, 9(4): 24-29(in Chinese with English abstract) [16] Jin L(金梁), Hu K-L(胡克林), Li B-G(李保国), Gong Y-S(龚元石). Coupled simulation on crop growth and soil water-heat-nitrogen transport Ⅱ. Model validation and application. J Hydraulic Eng (水利学报), 2007, 38(8): 972-980 (in Chinese with English abstract) [17] Chen X-R(成向荣), Huang M-B(黄明斌), Shao M-A(邵明安). Simulation of soil moisture dynamics in croplands using SHAW model in the semi-arid region of the Loess Plateau. Trans CSAE (农业工程学报), 2007, 23(11): 1-8 (in Chinese with English abstract) [18] Chen Y(陈研), Hu K-L(胡克林), Feng L(冯凌), Li B-G(李保国). Optimal management of water and nitrogen for winter wheat based on simulation model in soil-plant system in agricultural field. Trans CSAE (农业工程学报), 2007, 23(6): 55-60 (in Chinese with English abstract) [19] Xue C-Y(薛昌颖), Yang X-G(杨晓光), Deng W(邓伟), Zhang Q-P(张秋平), Yan W-X(闫伟兄), Wang H-Q(王化琪), B.A.M.Bouman. Establishing optimum irrigation schedules for aerobic rice in Beijing using ORYZA2000 model. Trans CSAE (农业工程学报), 2008, 24(4): 76-82 (in Chinese with English abstract) [20] Ahuja L R, Johnsen K E, Rojas K W.Water and chemical transport in soil matrix and macropores. In: Ahuja, L R, Rojas K W, Hanson J D, Shafer M J, Ma L, eds. Root Zone Water Quality Model. Water Resources Publications, LLC, Highlands Ranch, CO, 2000. pp 13-50 [21] Ma L, Ahuja L R, Ascough II J C, Shaffer M J, Rojas K W, Malone R W, Cameira M R. Integrating system modeling with field research in agriculture: Applications of Root Zone Water Quality Model (RZWQM). Adv Agron, 2000, 71: 233-292 [22] Ma L, Hoogenboom G, Ahuja L R, Ascough II J C, Saseendran S A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agric Syst, 2006, 87: 274-295 [23] Ritchie J T. Soil water balance and plant water stress. In: Tsuji G Y, Hoogenboom G, Thorton, P K eds. Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1998. pp 41-55 [24] Ma L, Malone R W, Heilman P, Jaynes D L, Ahuja L R, Saseendran S A, Kanwar R S, Ascough II J C. RZWQM simulated effects of crop rotation, tillage, and controlled drainage on crop yield and nitrate-N loss in drain flow. Geoderma, 2007, 140: 260-271 [25] Yu Q, Saseendran S A, Ma L, Flerchinger G N, Green T R, Ahuja L R. Modeling a wheat-maize double cropping system in China using two plant growth models in RZWQM. Agric Syst, 2006, 89: 457-477 [26] Hansen S, Shaffer M J, Jensen H E. Developments in modeling nitrogen transformations in soil. In: P. E. Bacon (Eds.). Nitrogen Fertilization in the Environment. New York. Marcel Dekker, Inc. 1995. pp 83-107 [27] Hanson J D, Rojas K W, Shaffer M J. Calibrating the Root Zone Water Quality Model. Agron J, 1999, 91: 171-177 [28] Brooks R H, Corey A T. Hydraulic properties of porous media. Hydrology paper 3. Colorado State Univ., Fort Collins, CO, USA, 1964. pp 1-15. [29] Ma L, Nielsen D C, Ahuja L R, Kiniry J R, Hanson J D, Hoogenboom G. An evaluation of RZWQM, CROPGRO, and CERES-maize for responses to water stress in the Central Great Plains of the U. S. In: Ahuja L R, Ma L, Howell T A eds. Agricultural System Models in Field Research and Technology Transfer. Boca Raton, FL.CRC Press. 2001. pp 119-148 [30] Tsuji G Y. DSSAT35 User’s Guide. Vo1. 1-3. The University of Hawaii, 1998 [31] Legates D R, McCabe G J. Evaluating the use of “goodness-offit” measures in hydrologic and hydroclimate model validation. Water Resour Res, 1999, 35: 233-241 [32] Wu L S, Chen W, Baker J M, Lamb J A. Evaluation of the Root Zone Water Quality Model using field-measured data from a sandy soil. Agron J, 1999, 91: 177-182 [33] Jaynes D B, Miller J G. Evaluation of the Root Zone Water Quality Model using data from Iowa MESA. Agron J, 1999, 91: 192-200 [34] Hu C S, Saseendran S A, Green T R, Ma L, Li X X, Ahuja L R. Evaluating N and water management in a double cropping system using RZWQM. Vadoze Zone J, 2006, 5: 493-505 [35] Ahuja L R, Ma L. Parameterization of agricultural system models: Current approaches and future needs. In Ahuja L R, Ma L, Howell T A, eds. Agricultural system models in field research and technology transfer. Lewis Publ., New York. 2002, pp. 273-316 [36] Godwin D C, Ritchie J T, Singh U, Hunt L. A User’s Guide to CERES Wheat-V2.10. International Fertilizer Development Center, Muscle Shoals, AL, 1989 [37] Malone R W, Ma L, Ahuja L R, Rojas K W. Evaluation of the Root Zone Water Quality Model (RZWQM): A review. In: Parsons J E, Thomas D L, Huffman R L, eds. Agricultural non-point Source Water Quality Models: their use and application. Southern Cooperative Series Bulletin #398 2001. http://s1004.okstate.edu/S1004/Regional-Bulletins/Modeling-Bulletin/ RZWQM2-word.html |
|